Substituent-Controlled Reactivity in the Nazarov Cyclisation of Allenyl Vinyl Ketones

Vanessa M. Marx, Rhonda L. Stoddard, Gavin S. Heverly-Coulson, and D. Jean Burnell^{*[a]}

Abstract: Alkyl substitution α to the ketone of an allenyl vinyl ketone enhances Nazarov reactivity by inhibiting alternative pathways involving the allene moiety and through electron donation and/or steric hindrance. This substitution pattern also accelerates Nazarov cyclisation by increasing the population of the reactive conformer and by stabilising the oxyallyl cation

intermediate. Furthermore, α substitution by an alkyl group does not alter the regioselectivity of interrupted Nazarov reactions when the oxyallyl cation intermediate is intercepted by addition

Keywords: allenes • carbocations • cyclic compounds • cycloaddition • Nazarov reaction

of an oxygen nucleophile, or by [4+3] cyclisation with acyclic dienes. The regioselectivity of the Nazarov process for allenyl vinyl ketones was determined to be a result of an electronic bias in the oxyallyl cation intermediate. Computational data are consistent with this observation.

Introduction

The Nazarov reaction^[1] of dialkenyl ketones and its more recently investigated variant, the "interrupted" Nazarov reaction,^[2] are powerful tools for the construction of fivemembered rings. Although strong acids may be required to induce cyclisation for divinyl ketone substrates, the reaction proceeds more rapidly when the substrate is activated by substitution α to the carbonyl group.^[3] An alternative means of activation involves an allene used in the place of one of the alkene units.^[4,5] Allenyl ethers cyclise spontaneously following their generation from propargyl precursors,^[4] but allenyl vinyl ketones (AVKs) of general structure 1 are easily isolable and can be stored for prolonged periods. However, in the presence of acid, compound 1 undergoes rapid Nazarov cyclisation (Scheme 1), and the intermediate oxyallyl cation 2 has a propensity to be intercepted by nucleophilic species rather than to follow the traditional elimination pathway.^[6] This interrupted Nazarov reaction has been exploited to provide a variety of products, such as 3, 4 and 5, by capture at positions a, c, or a and b of 2 by heteroatomor carbon-based nucleophiles.

Although previous studies have demonstrated that some AVKs with general structure **1** are valuable substrates for a diverse range of interrupted Nazarov cyclisations, structure

[a]	Dr. V. M. Marx, R. L. Stoddard, G. S. Heverly-Coulson,
	Prof. D. J. Burnell
	Department of Chemistry, Dalhousie University
	Nova Scotia, B3H 4R2 (Canada)
	Fax: (+1) 902-494-1310
	E-mail: jean.burnell@dal.ca
	Supporting information for this article is available on the V

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201100519.

Scheme 1. Nazarov cyclisation of AVK 1 and representative products formed by interception of oxyallyl cation 2.

1 represents a single pattern of substitution. The substituent on the alkene terminus of the AVK (R in 1) has been varied, and the course of the Nazarov reaction did not change significantly. However, it was not known if the regiochemistry of the trapping process (e.g., in the formation of 3 and 5) might be explained simply by steric hindrance imparted by the methyl group at position b in 2 or if there is an electronic bias in oxyallyl cation 2. Before AVKs can be exploited fully for the synthesis of complex structures possessing five-membered rings, it is crucial that the implications of substitution on the AVK, especially α to the carbonyl group, be understood in terms of reactivity and regioselectivity in the trapping process. The results of a computational and experimental study addressing this important issue are presented herein.

8098

© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Figure 1. a) Selected atomic charges and b) delocalisation indices for oxyallyl cations **6–8**, in their lowest-energy conformations, as calculated by QTAIM methods (RI-MP2/cc-pvdz).^[9]

Results and Discussion

a)

An increased amount of positive charge borne largely at position a in **6** (Figure 1), rather than at positions b or c, might play a significant role in the high regioselectivity observed for position a in the interrupted Nazarov reactions of AVKs of general structure **1**. Thus, a computational examination of oxyallyl cation **6**, derived from Nazarov cyclisation of AVK **9** with BF₃ as the acid, was carried out with the intent of lo-

cating any significant electronic bias in the oxyallyl cation. In addition, to specifically probe the electronic role of substitution α to the carbonyl group, oxyallyl cation **7**, bearing no α -substituent, and oxyallyl cation **8**, derived from a compound with an α -methyl substituent on the alkenyl side of the carbonyl group, were also examined computationally (Figure 1). Species **7** and **8** would be derived from the BF₃mediated Nazarov cyclisations of AVKs **10** and **11**, respectively.

By using the quantum theory of atoms in molecules (QTAIM),^[7] the atomic charges on all of the atoms in **6**, **7** and **8** were determined computationally (Figure 1a). There were no significant differences between **6**, **7** and **8** in the lengths of the bonds between adjacent sp² carbon atoms, but

important differences were revealed in the delocalisation indices (Figure 1 b),^[8] which are estimates of bond population by pairs of electrons. Regardless of the presence or position of the methyl group, the bond from the oxygen-bearing carbon to *b* and the carbon–carbon bond to *c* had larger indices than the bond from the oxygen-bearing carbon to *a*, which points to position *a* as the most electrophilic carbon in all three oxyallyl cations. Thus, if steric differences are negligible, AVKs **9–11** should exhibit similar regioselectivities in interrupted Nazarov processes.

AVKs **10–12** were synthesised to compare experimentally with AVK **9** (Scheme 2). The zinc-mediated Barbier-type coupling of propargyl bromide with the corresponding α,β unsaturated aldehydes^[10] was more satisfactory than a procedure that uses more costly indium.^[6a] The use of indium in

Scheme 2. Preparation of AVKs 10-12.

www.chemeurj.org

lieu of zinc gave a 1:1 mixture of the propargyl alcohol and the allenyl alcohol and attempts to prepare the AVKs by oxidation of the allenyl alcohols were unsuccessful with a variety of oxidants, including (COCl)₂/Et₃N, iodoxybenzoic acid, BaMnO₄, MnO₂, the Dess-Martin periodinane (DMP) and a DMP/NaHCO₃ combination.^[11] Oxidation of propargyl alcohols 13-15, however, was accomplished successfully by using DMP/NaHCO₃. Other reagents, such as CrO₃/H₂SO₄, (COCl)₂/Et₃N and even DMP alone, resulted in decomposed material, and BaMnO₄ and MnO₂ did not react with the starting material. Oxidation of 13 was accompanied through isomerisation of 16 to give AVK 10 directly, whereas AVKs 11 and 12 required a separate base-mediated isomerisation step with 17 and 18 as the intermediate productsYES. Although both K₂CO₃ and triethylamine were equally effective for the base-induced isomerisation of 17 to 11, Na₂CO₃ and NaHCO₃ failed to produce **11** in acceptable yield.

AVK 9 was amenable to purification by chromatography over silica gel.^[6a] AVK 10 also proved to be stable with silica gel, but AVKs 11 and 12 were much less so. In the presence of silica gel, 11 and 12 produced some of the corresponding Nazarov elimination products 19 (41%) and 20 (14%). This

observation parallels the reactivity observed by Hashmi et al.^[5a] for AVKs with this substitution pattern, which also underwent rapid Nazarov cyclisation promoted by the weakly acidic silica gel. Purification of AVKs **11** and **12** was also attempted by chromatography using basic alumina; however, this resulted in decomposition. Thus, the two-step yields of **11** and **12** were determined without purification, by ¹H NMR spectroscopy by using 1,3,5-trimethoxybenzene as an internal standard. It is important to note that AVKs **11** and **12** decomposed rapidly at room temperature, either neat or in CH₂Cl₂. These compounds could only be stored for less than 24 h in CH₂Cl₂ (0.1 M) at -20 °C.

Treatment of **11** and **12** with $BF_3 \cdot OEt_2$ at $-78 \, ^\circC$ for 10 min led to complex mixtures, although 23 % of Nazarov product **20** was isolated following the reaction of the latter. On the other hand, compound **10** was much more tolerant of the acid and after one hour Nazarov product **21** was obtained in 64 % yield.

AVK 10 reacted cleanly in the presence of TFA, but the product was compound 22, the result of conjugate addition to the allene (Scheme 3). AVK 11 yielded Nazarov elimination product 19 in 48 % yield, although AVK 12 gave mainly 23, which represents an intercepted Nazarov product in which the oxygen nucleophile attacked position *a*. The relative stereochemistry of 23 was confirmed by X-ray crystallographic analysis of the 3,5-dinitrobenzoate of 23 (Figure 2).^[12]

Scheme 3. Reactions of AVKs 10-12 with trifluoroacetic acid.

Figure 2. X-ray crystal structure of dinitrobenzoate 23a.

Although AVK 9 yielded [3+2] cyclisation products, such as 5, if Nazarov cyclisation was induced with BF₃·OEt₂ in the presence of electron-rich alkenes,^[6c] similar products were not seen with **10–12** and NMR analysis of the product mixtures suggested that the bulk of the material reacted directly with the allene moiety of the AVK. Cation 6, derived from AVK 9, also underwent [4+3] cyclisations^[13] with substituted butadiene derivatives to give bicyclo[4.2.1]nonenone derivatives **24–26** (Scheme 4).

AVK **10** reacted with 2,3-dimethylbutadiene, but the major product was Diels–Alder adduct **27** (Scheme 5). In contrast, AVK **11** underwent rapid Nazarov cyclisation followed by [4+3] cyclisation in the presence of 2,3-dimethylbutadiene to afford bicyclo[4.2.1]nonenone derivative **28**^[14] in good yield (Scheme 6). AVK **12** reacted similarly to provide **31**. Both **11** and **12** gave regioisomeric [4+3] cyclisation products (**29a** and **b**, and **32a** and **b**) upon reaction in the presence of *trans*-piperylene gave **30** and **33** and the regioselectivity of these [4+3] cyclisations was the same as was seen with

Scheme 5. [4+2] Cyclisation of AVK 10 with 2,3-dimethylbutadiene.

AVK 9, that is, $26.^{[6c, 14, 15]}$ These provide experimental corroboration of the computational result that the electronic bias in the oxyallyl cations derived from AVKs 9 and 11 (i.e., 6 and 8) is the same, regardless of the position of the alkyl substituent. That 26, 30 and 33 were obtained as single stereoisomers is consistent with the [4+3] cyclisation being through a concerted, though likely asynchronous, reaction with an extended geometry.

The computational and experimental data presented herein concerning substituent-controlled reactivity in the Nazarov cyclisation of allenyl vinyl ketones are in accord with the following rationalisation. The most inherently electrophilic site on the oxyallyl cation intermediate is position a (the α -alkenyl position) and alkyl substitution on position a does not change this. However, substitution by an alkyl group can significantly change the outcome of Nazarov cyclisations. Although AVK 10 is capable of cyclisation, as shown by the formation of **21** in the presence of $BF_3 \cdot OEt_2$, attempts to elicit an interrupted Nazarov process are predicted to be pre-empted by the more rapid acid-mediated reaction of the allene, as in the formation of 22 and 27. It is proposed that an alkyl group on the allene (as in 9) attenuates the reactivity at the central carbon of the allene, by electron donation and/or by steric hindrance, allowing the Nazarov pathway to dominate. Furthermore, it is hypothesised that an alkyl group on the alkene or the allene acceler-

FULL PAPER

Scheme 6. Nazarov reactions with subsequent [4+3] cyclisations of AVKs 11 and 12.

ates the Nazarov reaction. It can be seen in Figure 1 a that the methyl groups in oxyallyl cations **7** and **8** bear a significant atomic charge that should facilitate the formation of the oxyallyl cation intermediate. In addition, calculations revealed that the alkyl group on the alkene in **11** exerts a significant influence on the conformation, and thus the reactivity, of the AVK (Scheme 7). An s-*trans*-s-*trans* arrangement must resemble the transition state geometry for the Nazarov cyclisation. An s-*trans* conformation of the carbonyl and the allene must be favoured because this feature is seen in the lowest energy conformers of **9**, **10** and **11**. However, without a methyl group on the alkene, the s-*cis* conformation is preferred for the carbonyl–alkene moiety leading to s-*cis*-s-

www.chemeurj.org

Scheme 7. Conformations of AVKs calculated at RI-MP2/cc-pvdz.^[9]

trans conformations for AVKs **9** and **10** being lower in energy than the s-*trans*-s-*trans* conformation by more than 12 kJ mol⁻¹. In contrast, the s-*trans*-s-*trans* conformation is the lowest-energy conformation for AVK **11** by 5.5 kJ mol⁻¹ over the s-*cis*-s-*trans* conformation because the methyl group on the alkene induces an unfavourable through-space interaction with the allene when the alkene–carbonyl moiety is in an s-*cis* conformation. Enhancement of Nazarov reactivity though the influence of an α substituent on conformation has previously been observed for divinyl ketones.^[1c]

Interrupted Nazarov processes, however, are expected to be less efficient with **11** and **12** than with **9** because the more substituted position *a* offers more steric hindrance. This is shown by comparison of the yields of trapped products from AVK **9**, which are nearly quantitative in the reaction with TFA and with BF₃·OEt₂ and 2,3-dimethylbutadiene, with the yields of the analogous processes with AVKs **11** and **12**. This steric hindrance also explains why AVK **11** gave conventional, eliminated Nazarov product **19** with TFA, whereas AVK **9** yielded only the interrupted Nazarov product.^[6a]

Conclusion

The presence of an alkyl group α to the ketone on either the alkene or the allene of an AVK has a significant impact on the efficiency of Nazarov and interrupted Nazarov reactions. AVKs lacking an α substituent can undergo a conventional Nazarov cyclisation, but the interrupted variant of the reaction is not feasible. Interrupted Nazarov reactions can be expected with an AVK bearing an α substituent. An alkyl substituent on the allene is beneficial as it inhibits alternative allene reactions and may accelerate the Nazarov reaction. An alkyl substituent on the alkene accelerates the Nazarov reaction, but interception of the intermediate oxyallyl cation by a nucleophile is retarded by steric hindrance. Overall, with alkyl substitution, the efficiency of the interrupted Nazarov process is dependent on steric hindrance about position a, although the electronic bias in favour of position a in the intermediate oxyallyl cation is responsible for the regioselectivity. These findings will be invaluable in the design of feasible synthetic approaches involving Nazarov cyclisations of AVKs.

Experimental Section

General considerations: Dichloromethane was distilled from calcium hydride. Ethyl acetate and hexanes were distilled. Flash column chromatography used 230–400 mesh silica gel. Melting points were acquired by using a Fisher–Johns apparatus and are uncorrected. IR spectra (FT) were recorded with an FT instrument by using CsI plates. ¹H NMR spectra were acquired at 500 MHz and ¹³C NMR spectra at 125 MHz as solutions in CDCl₃. All HRMS were collected through positive-ion electrospray ionisation (ESI). For computational methods see the Supporting Information.

(E)-2-Methyl-1-phenylhex-1-en-5-yn-3-ol (14): Propargyl bromide (12 g, 0.10 mol) was combined with α -methyl-trans-cinnamaldehyde (10 mL, 0.08 mol) in a mixture of a saturated aqueous solution of ammonium chloride and methanol (5:1, 200 mL) and stirred in an ice bath. Zinc dust (6.7 g, 0.10 mol) was added in four portions, over 20 min. Additional zinc dust (10.3 g, 0.16 mol) was then added in four portions, over 10 min, and the mixture was stirred vigorously at RT for 1 h. The mixture was filtered through Celite, and the aqueous layer was extracted thoroughly with diethyl ether. The combined organic layers were washed with brine, dried over MgSO4 and concentrated under vacuum. Flash column chromatography of the residue (10% diethyl ether in pentane) yielded 14 (5.5 g, 37%) as a colourless oil. ¹H NMR: $\delta = 7.34$ (2H, m), 7.23 (2H, m), 7.11 (1H, m), 6.60 (1H, m), 4.37 (1H, m), 2.58 (2H, m), 2.19 (1H, d, J= 3.7 Hz), 2.09 (1 H, t, J=2.7 Hz), 1.89 ppm (3 H, d, J=1.4 Hz); ¹³C NMR: $\delta = 138.4, 137.2, 129.0, 128.1, 126.6, 126.5, 80.6, 75.5, 70.9, 26.1, 13.5 \text{ ppm};$ IR (film): $\tilde{v} = 3380$, 3297, 2128, 1605 cm⁻¹; HRMS (ESI): m/z calcd for C13H14ONa+: 209.0937; found: 209.0941. NMR data match the literature.[16,17]

(E)-2-Methyl-1-phenylhex-1-en-5-yn-3-one (17) and (E)-2-methyl-1-phenylhexa-1,4,5-trien-3-one (11): DMP (1.5 g, 3.5 mmol) was added to a vigorously stirring solution of alcohol 14 (0.5 g, 2.7 mmol) and sodium bicarbonate (2.3 g, 27 mmol) in CH₂Cl₂ (25 mL) at RT. After 45 min, saturated aqueous solutions of sodium bicarbonate (25 mL) and sodium thiosulphate (25 mL) were added, as well as a small amount of diethyl ether, and the mixture was stirred until both layers went clear. The mixture was extracted thoroughly with CH2Cl2 and the organic layer was washed with brine, dried over MgSO4 and concentrated under vacuum, yielding crude 17 as a pale yellow oil. ¹H NMR: $\delta = 7.58$ (1 H, q, J = 1.4 Hz), 7.43 (4 H, m), 7.37 (1H, m), 3.74 (2H, d, J=2.8 Hz), 2.29 (1H, t, J=2.8 Hz), 2.10 ppm (3H, d, J=1.4 Hz); ¹³C NMR: $\delta = 194.8$, 140.5, 135.8, 135.4, 129.8, 128.8, 128.5, 77.3, 72.9, 29.7, 13.3 ppm; IR (film): $\tilde{\nu} = 1641 \text{ cm}^{-1}$; HRMS (ESI): *m/z* calcd for C₁₃H₁₂ONa⁺: 207.0780; found: 207.0781. Without further purification, propargyl ketone 17 from the initial step was redissolved in CH2Cl2 (25 mL) and potassium carbonate (0.41 g, 3.0 mmol) was added. After stirring at RT for 20 min, the solution was filtered and concentrated under vacuum, yielding 11 (0.18 g, 36%) as a red oil. ¹H NMR: $\delta = 7.50 (1 \text{ H}, \text{ m}), 7.41 (5 \text{ H}, \text{ m}), 6.34 (1 \text{ H}, \text{ t}, J = 6.6 \text{ Hz}),$ 5.21 (2H, d, J=6.6 Hz), 2.12 ppm (3H, d, J=1.9 Hz); ¹³C NMR: $\delta =$ 215.8, 193.0, 139.3, 137.2, 135.7, 133.2, 129.7, 128.4, 92.5, 78.5, 13.9 ppm; IR (film): $\tilde{v} = 1967$, 1943, 1650, 1601 cm⁻¹; HRMS (ESI): m/z calcd for C13H13ONa+: 185.0961; found: 185.0968. Note: the yield of AVK 11 in the crude reaction mixture was determined by ¹H NMR spectroscopy by using 1,3,5-trimethoxybenzene as an internal standard and was used without further purification.

2-Methyl-4-methylene-3-phenylcyclopent-2-enone (19): SiO_2 (0.12 g, 2.7 mmol) was added to a solution of AVK **11** (0.10 g, 0.54 mmol) in CH_2Cl_2 (5 mL) at RT and stirred overnight. The mixture was filtered and

FULL PAPER

concentrated under vacuum and flash column chromatography (10–20% ethyl acetate in hexanes) of the residue yielded **19** (0.041 g, 41%) as a yellow oil. ¹H NMR: δ =7.47 (3H, m), 7.34 (2H, m), 5.29 (1H, s), 5.22 (1H, s), 3.19 (2H, s), 1.88 ppm (3H, s); ¹³C NMR: δ =205.2, 164.5, 143.7, 141.1, 133.2, 128.8, 128.5 (4C), 110.9, 39.7, 9.4 ppm; IR (film): $\tilde{\nu}$ =1703, 1612 cm⁻¹; HRMS (ESI): *m*/*z* calcd for C₁₃H₁₃O⁺: 185.0961; found: 185.0962.

4-Methylene-3-phenylcyclopent-2-enone (21): BF₃·OEt₂ (0.070 mL, 0.60 mmol) was added to a solution of AVK **10** (0.070 g, 0.41 mmol) in CH₂Cl₂ (40 mL) at -78 °C. The solution was stirred for 1 h and then poured into a separatory funnel containing a saturated solution of sodium bicarbonate. The organic layer was removed and the aqueous layer was extracted with additional CH₂Cl₂ (×2). The combined organic layers were dried over Na₂SO₄ and concentrated under vacuum. Flash column chromatography (10–20 % EtOAc in hexanes) of the residue provided **21** (0.045 g, 64%) as a yellow oil. ¹H NMR: δ =7.47 (5H, m), 6.37 (1H, m), 5.51 (1H, m), 5.43 (1H, m), 3.22 ppm (2H, m); ¹³C NMR: δ = 204.5, 170.6, 143.6, 133.4, 133.3, 130.1, 128.9 (2C), 128.4 (2C), 113.8, 41.5 ppm; IR (film): $\tilde{\nu}$ =1721, 1695, 1610 cm⁻¹ (w); HRMS (ESI): *m*/z calcd for C₁₂H₁₀ONa⁺: 193.0624; found: 193.0628. ¹H NMR data match the literature.^[18]

(3aR*,7aS*)-3a,4,5,6,7,7a-Hexahydro-7a-hydroxy-3-methyl-1H-inden-1one (23): TFA (0.20 mL, 2.6 mmol) was added to a solution of AVK 12 (0.080 g, 0.54 mmol) in CH_2Cl_2 (55 mL) at -78 °C and this mixture was stirred for 30 min. The mixture was poured into a separatory funnel containing a saturated solution of sodium bicarbonate, the organic layer was removed and the aqueous layer was extracted with additional CH_2Cl_2 (× 2). The organic layers were combined, dried over Na₂SO₄ and concentrated under vacuum. The crude product was then subjected to column chromatography (Al₂O₃, basic, activated, 20% EtOAc in hexanes then MeOH), which provided 20 (0.009 g, 10%) and 23 (0.052 g, 58%) as yellow oils. For **20**: ¹H NMR: $\delta = 5.24$ (1H, s), 5.11 (1H, s), 2.98 (2H, s), 2.45 (2H, m), 2.26 (2H, m), 1.76 (2H, m), 1.70 ppm (2H, m); ¹³C NMR: δ = 204.9, 165.7, 143.9, 143.1, 107.1, 40.1, 23.1, 22.0, 21.8, 20.6 ppm; IR (film): $\tilde{\nu} = 1704$, 1641 cm⁻¹; HRMS (ESI): m/z calcd for C₁₀H₁₂ONa⁺: 171.0780; found: 171.0785. For **23**: ¹H NMR: $\delta = 5.94$ (1H, m), 2.76 (1H, m), 2.64 (1H, brs), 2.10 (3H, t, J=1.3 Hz), 1.89 (1H, m), 1.72 (1H, m), 1.61 (4 H, m), 1.46 (1 H, m), 1.27 ppm (1 H, m); ${}^{13}C$ NMR: $\delta = 210.9$, 179.1, 126.9, 78.1, 50.3, 32.3, 22.9, 20.7, 18.8, 17.7 ppm; IR (film): $\tilde{\nu} =$ 3437, 1695, 1610 cm⁻¹; HRMS (ESI): m/z calcd for $C_{10}H_{14}O_2Na^+$: 189.0886; found: 189.0884.

(3aR*,7aS*)-3a,4,5,6,7,7a-Hexahydro-3-methyl-1-oxo -1H-inden-7a-yl-3,5-dinitrobenzoate (23a): Triethylamine (1 mL, 7.2 mmol) and then 3,5dinitrobenzoylchloride (0.48, 2.1 mmol) were added to a solution of 23 (0.17 g, 1.0 mmol) and 4-(dimethylamino)pyridine (0.13 g, 1.1 mmol) in CH2Cl2 (25 mL) at RT. The solution was stirred for 18 h, diluted with ethyl acetate and washed successively with aqueous solutions of HCl (1M), NaOH (10%), saturated NaHCO3 and brine. The solution was dried over Na₂SO₄ and concentrated under vacuum. Flash column chromatography (10-25% EtOAc in hexanes) of the residue provided 23a (0.24 g, 67%) as a peach-coloured solid. M.p. 176-179°C (CH₂Cl₂); ¹H NMR: $\delta = 9.24$ (1 H, m), 9.12 (2 H, m), 6.14 (1 H, s), 3.39 (1 H, m), 2.18 (3H, s), 2.14 (1H, m), 1.87 (2H, m), 1.70 (4H, m), 1.42 ppm (1H, m); 13 C NMR: $\delta = 203.3$, 176.1, 161.4, 148.8, 133.8, 129.8 (2C), 128.3, 122.8, 85.6, 47.0, 30.0, 22.4, 20.5, 18.8, 17.7 ppm; IR (film): $\tilde{\nu} = 1720$, 1619 cm⁻¹; HRMS (ESI): m/z calcd for $C_{17}H_{16}N_2O_7Na^+$: 383.0850; found: 383.0847.

(E)-1-(3,4-Dimethyl-6-methylenecyclohex-3-enyl)-3-phenylprop-2-en-1-

one (27): BF₃·OEt₂ (1.1 equiv) was added to a solution of AVK 10 (0.070 g, 0.41 mmol) and 2,3-dimethylbutadiene (0.25 mL, 2.2 mol) in CH₂Cl₂ (40 mL) at -78 °C. The solution was stirred for 1 h and poured into a separatory funnel containing a saturated solution of sodium bicarbonate. The aqueous layer was extracted thoroughly with CH₂Cl₂. The combined organic solutions were dried over Na₂SO₄ and concentrated under vacuum. Flash column chromatography of the residue (2.5% EtOAc in hexanes) yielded 27 (0.051 g, 51%) as an off-white solid. M.p. 71–74°C (CH₂Cl₂/pentane); ¹H NMR: δ =7.63 (1H, d, *J*=16 Hz), 7.55 (2H, m), 7.38 (3H, m), 6.97 (1H, d, *J*=16 Hz), 4.98 (1H, m), 4.86 (1H,

m), 3.57 (1H, t, J=5.7 Hz), 2.74 (1H, d, J=19 Hz), 2.69 (1H, d, J=19 Hz), 2.63 (1H, brd, J=19 Hz), 1.65 (1H, brd, J=19 Hz), 1.68 (3H, s), 1.62 ppm (3H, s); ¹³C NMR: $\delta=199.4$, 144.8, 142.6, 134.9, 130.6, 129.1 (2C), 128.6 (2C), 124.8, 124.3, 124.1, 110.9, 54.2, 39.6, 34.4, 19.0, 18.9 ppm; IR (film): $\tilde{\nu}=1695$, 1614 cm⁻¹; HRMS (ESI): m/z calcd for $C_{18}H_{20}ONa^+$: 275.1406; found: 275.1403.

(1R*,6S*,8S*)-1,3,4-Trimethyl-7-methylene-8-phenylbicyclo[4.2.1]non-3en-9-one (28): BF₃·OEt₂ (1.1 equiv) was added to a solution of AVK 11 (0.10 g, 0.54 mmol) and 2,3-dimethylbutadiene (0.30 mL, 2.7 mol) in CH₂Cl₂ (55 mL) at -78 °C. The solution was stirred for 10 min and poured into a separatory funnel containing a saturated solution of sodium bicarbonate. The aqueous layer was extracted thoroughly with CH2Cl2. The combined organic solutions were dried over Na2SO4 and concentrated under vacuum. Flash column chromatography (2.5% EtOAc in hexanes) of the residue yielded 28 (0.11 g, 79%) as a colourless oil. ¹H NMR: $\delta = 7.22$ (2H, m), 7.17 (1H, m), 6.92 (2H, m), 5.11 (1H, t, J=1.9 Hz), 4.87 (1H, t, J=1.9 Hz), 3.63 (1H, m), 3.24 (1H, m), 2.54 (1 H, brd, J=16 Hz), 2.42 (1H, dd, J=16, 7.7 Hz), 2.25 (1 H, d, J= 16 Hz), 2.18 (1 H, d, J=16 Hz), 1.81 (3 H, s), 1.72 (3 H, s), 0.68 ppm (3 H, s); ¹³C NMR: $\delta = 222.9$, 152.1, 144.5, 129.1, 128.6, 128.1, 126.7, 126.5, 111.1, 57.9, 54.9, 53.4, 50.6, 41.7, 24.6, 23.9, 20.3 ppm; IR (film): $\tilde{v} = 1743$, 1597 cm⁻¹; HRMS (ESI): m/z calcd for C₁₉H₂₂ONa⁺: 289.1563; found: 289.1556.

Acknowledgements

The Natural Sciences and Engineering Research Council of Canada, the Killam Trusts and Dalhousie University are thanked for providing the financial support for this work. We are grateful to Dr. T. Stanley Cameron for the X-ray crystal structure of **23a**, Dr. M. Lumsden for assistance with nuclear magnetic resonance experiments and Mr. Xiao Feng for the collection of mass spectrometry data.

- a) K. L. Habermas, S. E. Denmark, T. K. Jones, Organic Reactions, Vol. 45 (Ed.: L. A. Paquette), Wiley, New York, **1994**, pp. 1–158;
 b) H. Pellissier, Tetrahedron **2005**, 61, 6479–6517;
 c) A. J. Frontier, C. Collison, Tetrahedron **2005**, 61, 7577–7606;
 d) M. A. Tius, Eur. J. Org. Chem. **2005**, 2193–2206;
 e) W. Nakanishi, F. G. West, Curr. Opin. Drug Discovery Dev. **2009**, 12, 732–751.
- [2] For a review on the interrupted Nazarov reaction, see: T. N. Grant, C. J. Rieder, F. G. West, *Chem. Commun.* 2009, 5676–5688.
- [3] a) W. He, X. Sun, A. J. Frontier, J. Am. Chem. Soc. 2003, 125, 14278-14279; b) W. He, I. R. Herrick, T. A. Atesin, P. A. Caruana, C. A. Kellenberger, A. J. Frontier, J. Am. Chem. Soc. 2008, 130, 1003-1011.
- [4] a) M. A. Tius, Acc. Chem. Res. 2003, 36, 284–290, and references therein; for recent examples, see: b) N. Shimada, B. O. Ashburn, A. K. Basak, W. F. Bow, D. A. Vicic, M. A. Tius, Chem. Commun. 2010, 46, 3774–3775; c) W. F. Bow, A. K. Basak, A. Jolit, D. A. Vicic, M. A. Tius, Org. Lett. 2010, 12, 440–443; d) A. K. Basak, N. Shimada, W. F. Bow, D. A. Vicic, M. A. Tius, J. Am. Chem. Soc. 2010, 132, 8266–8267.
- [5] a) A. Stephen, K. Hashmi, J. W. Bats, J. H. Choi, L. Schwarz, *Tetra-hedron Lett.* **1998**, *39*, 7491–7494; b) P. Cao, X.-L. Sun, B.-H. Zhu, Q. Shen, Z. Xie, Y. Tang, *Org. Lett.* **2009**, *11*, 3048–3051.
- [6] a) V. M. Marx, D. J. Burnell, Org. Lett. 2009, 11, 1229–1231;
 b) V. M. Marx, T. S. Cameron, D. J. Burnell, Tetrahedron Lett. 2009, 50, 7213–7216;
 c) V. M. Marx, D. J. Burnell, J. Am. Chem. Soc. 2010, 132, 1685–1689;
 d) V. M. Marx, F. M. Le Fort, D. J. Burnell, Adv. Synth. Catal. 2011, 353, 64–68.
- [7] a) R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford, **1990**; b) C. F. Matta, R. J. Boyd in The Quantum Theory of Atoms in Molecules (Eds.: C. F. Matta, R. J. Boyd), Wiley-VCH, Weinheim, **2007**, pp. 1–34; c) J. Hernández-Trujillo, F. Cortes-Guzman, G. Cuevas in The Quantum Theory of

www.chemeurj.org

Atoms in Molecules (Eds.: C.F. Matta, R.J. Boyd), Wiley-VCH, Weinheim, 2007, pp. 375–397.

- [8] C. F. Matta, J. Hernández-Trujillo, J. Phys. Chem. A 2003, 107, 7496-7504.
- [9] a) M. Feyereisen, G. Fitzgerald, A. Komornicki, *Chem. Phys. Lett.* 1993, 208, 359–363; b) F. Weigend, M. Haser, *Theor. Chem. Acc.* 1997, 97, 331–340; c) R. A. Distasio, Jr., P. Steele, Y. M. Rhee, Y. Shao, M. Head-Gordon, *J. Comput. Chem.* 2007, 28, 839–856.
- [10] B. Alcaide, P. Almendros, C. Aragoncillo, Chem. Eur. J. 2002, 8, 1719–1729.
- [11] J. A. Marshall, G. M. Schaaf, J. Org. Chem. 2001, 66, 7825-7831.
- [12] CCDC-803794 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/cif.

- [13] For a recent review, see: M. Harmata, Chem. Commun. 2010, 46, 8886-8903.
- [14] The stereochemical assignment is in accord with NOE measurements.
- [15] The regiochemical outcome was confirmed through detailed analysis of 2D NMR spectra (COSY, HSQC and HMBC) of the products.
- [16] X. Ma, J.-X. Wang, S. Li, K.-H. Wang, D. Huang, *Tetrahedron* 2009, 65, 8683–8689.
- [17] M. L. Maddess, M. Lautens, Org. Lett. 2005, 7, 3557-3560.
- [18] R. Aumann, H. J. Weidenhaupt, Chem. Ber. 1987, 120, 23-27.

Received: February 16, 2011 Published online: June 7, 2011