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Carbocyclization reactions[1] constitute an important class of
chemical transformations as there are many naturally occur-
ring substances that contain a carbocyclic backbone.[2] New
and efficient methods concerning carbocyclizations are
greatly needed by the synthetic community. When construct-
ing these new ring systems it is often desirable to generate
appropriate chemical handles where subsequent chemical
transformations can be achieved in a selective manner.
Organoboronate compounds are versatile chemical handles
and these functional groups can be used to create new
valuable C�C bonds, for example through Suzuki–Miyaura
cross-coupling procedures.[3] Formation of C�B bonds can be
achieved through a variety of different routes,[4] a few of the
more recognized approaches being the Brown hydrobora-
tion[5] and the palladium-catalyzed Miyaura borylation.[6] In
addition there is a range of related and highly efficient
transition-metal-catalyzed C�H borylation[7] processes based
on palladium[8] and iridium.[9]

Oxidative C�C bond-forming reactions have recently
attracted attention[10–12] and our research group has previously
been involved in the development of various oxidative
palladium-catalyzed carbocyclizations of ene- and diene-
allenes.[12] In many of these carbocyclizations new C�C
bonds are formed selectively using molecular oxygen as the
terminal oxidant, thereby making the transformations more
environmentally friendly.[13] Palladium-catalyzed carbocycli-
zation in combination with borylation has so far attracted
rather limited attention. The group of C�rdenas recently
demonstrated an elegant non-oxidative palladium-catalyzed
borylative cyclization of enynes and enallenes employing
bis(pinacolato)diboron (B2pin2) as the borylating agent. In
this case alkylboronate derivatives were obtained with high
selectivity in good to high yields.[14]

Inspired by these results we envisioned a palladium-
catalyzed oxidative carbocyclization/borylation procedure.
Herein, we report that enallenes 1 undergo a stereoselective

oxidative borylative carbocyclization to give products 2
(Scheme 1). In preliminary experiments we observed that
treatment of 1a with 5 mol% of Pd(OAc)2, 1 equivalent of

B2pin2, and 1.5 equivalent of BQ in THF gave 40% yield
(based on 1H NMR analysis, with anisole as the internal
standard) of the borylated carbocycle 2a together with 8 % of
the side product 3a, where b-hydride elimination from the s-
alkylpalladium intermediate had occurred (Scheme 2).[12e]

Encouraged by these results we set out to investigate the
role of the solvent. These results clearly demonstrated that
the solvent is crucial for the selectivity between 2a and 3a.
Toluene is by far the most effective solvent for this trans-
formation, resulting in 70 % of 2a and only 5% of 3a.[15]

Other solvents such as acetone and acetonitrile showed
overall poor selectivities between 2a and 3a. Once toluene
was established as the most effective solvent we briefly
studied the influence of the palladium(II) source. Thus,
Pd(OAc)2 proved to be superior to Pd(OOCCF3)2 and most
other PdII salts (e.g. [PdCl2(CH3CN)2] or [Pd(acac)2]) showed
none or little activity.

The amount of catalyst could be lowered to as little as
1 mol% without any loss in yield or selectivity simply by

Scheme 1. Oxidative borylative carbocyclization of enallene
compounds. Yield of isolated product is shown.

Scheme 2. Cleavage of the Pd�C bond by a boron-containing reagent
vs. b elimination.
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extending the reaction time to 10 hours. In an attempt to
further suppress the formation of the b-elimination product
(3a) the reaction was conducted at different temperatures
with 1 mol% of Pd(OAc)2 in toluene. At 80 8C, a mixture of
2a/3a was obtained in a 1:1 ratio. Lower temperatures
produced significantly less 3a but at room temperature the
reaction was too slow and it proved difficult to obtain full
conversion. Finally, 40 8C was found to be the optimal
temperature both with respect to by-product formation and
conversion (Scheme 1).

During the course of our optimization we consistently
used 1 equivalent of B2pin2 as this must be considered a
relatively valuable reactant.[15] Addition of excess BQ
(1.5 equiv) did not improve the reaction as the yields were
slightly lower or comparable to when 1.2 equivalent was used.
In a final attempt to improve the reaction, 1 equivalent of
various additives were introduced: NaOAc, HOAc, and H2O.
Of these additives only water resulted in a minor increase of
the reaction rate, whereas the other additives did not have any
significant effect on the transformation. This outcome also
demonstrates that the reaction is relatively robust, thus
allowing it to be carried out without tedious exclusion of air
and/or moisture.[16]

Once suitable reaction conditions were found we inves-
tigated the scope of the reaction (Table 1). Enallenes 1a–1k
were prepared according to literature procedures[12b,e] and
subjected to the optimal conditions: 1 mol % of Pd(OAc)2,
1.2 equivalent of BQ and 1.0 equivalent of B2pin2 in toluene
at 40 8C for 10 hours. In most cases the reactions proceeded
smoothly. However, introduction of a second substituent on
the olefin (1 f) had a negative effect on the reaction outcome
and only around 25% conversion was achieved after 36 hours
and the b-elimination product (3 f, see the Supporting
Information) was obtained as the major product. Also,
despite our best efforts we were unable to purify the desired
product (2 f) by column chromatography on silica gel.

Importantly, we did not detect any side products arising
from palladium(0) catalysis;[17] such processes have been
reported previously by the research groups of Morken[18] and
C�rdenas.[14] Cyclic enallenes 1a, 1 i, 1j, and 1k afforded
products with stereospecific cis addition of the elements of
carbon and boron to the alkene bond (Table 1, entries 1, 9–
11). The stereochemistry of these compounds was established
by coupling-constant analysis in combination with NOE
interactions. The structure of 2a was also confirmed by X-
ray crystallographic analysis and the structure is illustrated in
Figure 1.[19] Substrates containing monosubstituted olefins
(1b–1d) gave primary alkylboronates (2b–2d) in fair to good
yields. When the two alkyl groups on the allene are different
(e.g. 1d) there is a moderate selectivity in the formation of the
conjugated diene (3:1 for 2d, entry 4) owing to the low
regioselectivity in the activation of the allene. Notably, the
procedure appears to be most effective with olefins having a
substituent at the internal carbon atom. For example, enallene
1g cyclized to produce carbocyclic alkylboronate 2g with one
new quaternary carbon atom in 86% yield (entry 7). This
result is easily rationalized by the fact that the s-palladium(II)
intermediate lacks the presence of a b-hydrogen atom, hence
transmetalation can proceed smoothly without this competing

Table 1: Palladium-catalyzed oxidative borylative carbocyclization.[a]

Entry Enallene Product Yield [%][b]

1 1a 2a 77

2 1b 2b 78

3 1c 2c 68

4 1d

2d[c]

60[d]

2d’

5 1e 2e 58

6 1 f 2 f 5[e,f ]

7 1g 2g 86

8 1h 2h 64[g]

9 1 i 2 i 89

10 1 j 2 j 63[h]

11 1k 2k 62[h]

12 5a 6a 71[i]

13 5b 6b 60[i]

[a] Reaction conditions: Pd(OAc)2 (1 mol%), B2pin2 (1.0 equiv), BQ
(1.2 equiv), toluene (0.1 mmolmL�1), 40 8C, 10 h. [b] Yield of isolated
product after column chromatography on silica gel. [c] E/Z= 10:1.
[d] 2d/2d’= 3:1. [e] Full conversion could not be achieved within 36 h.
[f ] Determined by 1H NMR analysis of the crude reaction mixture. [g] 1h
consists of an inseparable mixture of allene/alkyne (1:1.6) where the
alkyne does not react during catalysis. [h] 20 h reaction time. [i] For
reaction parameters see Scheme 4. Ts = 4-toluenesulfonyl.
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pathway. Enallenes substituted at the end (E) of the olefin
(entries 5 and 8) also gave a stereospecific cis carboborylation
of the double bond. Increasing the ring sizes of the olefin did
seem to have a slightly negative effect on the yield (entries 10
and 11). The seven- and eight-membered ring, 1j and 1k,
resulted in borylated products in 63% and 62% yield,
respectively. Also, we again observed that 2j formed as the
trans-5,7-fused bicyclic ring. This outcome is consistent with
our previous findings.[12e, 20]

In most cases studied, the borylated carbocycles 2a–2k
(with the exception of 2 f) were isolated using standard
chromatography techniques without any substantial (if any)
degradation.[22]

Finally, to further increase the scope of this
novel transformation we attempted to adapt
this reaction to include aza-enallenes,[23] a
substrate class previously used in effective
oxidative carbocyclizations.[12a] Indeed these
substrates also proved suitable for a borylative
carbocylization (entries 12 and 13).

Treatment of 5a with 5 mol% of Pd(OAc)2

together with 1.1 equivalents of B2pin2 and
1.05 equivalents of BQ at room temperature
gave the cyclized hydropyrrole 6a in 71 %
yield (entry 12 and Scheme 3). When this
reaction was run under the standard condi-
tions outlined in Table 1 large amounts of

Diels–Alder product (7, see the Supporting information) was
formed between 6a and unreacted BQ. By lowering the
temperature of the reaction and decreasing the amount of BQ
to 1.1 equivalent this side product could be depressed and 6a
was isolated in 71 % yield. In the same manner aza-allene 5b
afforded 6b (entry 13).

To demonstrate the usefulness of alkylboronate com-
pounds we conducted an oxidation of 2a to give the free
alcohol 4, which was isolated in 84 % yield (Scheme 4).[14a]

Another interesting application would be to conduct a
Suzuki–Miyaura coupling reaction that would tolerate alkyl-
boronates as the coupling partner.[24]

Mechanistically we can speculate about two possible
pathways. Previously suggested mechanisms would account
for the transformation of A into B through allene attack on
palladium and subsequent cis insertion of the alkene into the
generated vinylpalladium bond (Scheme 5, additional ligands
are omitted for clarity).[12a,b,e] The most likely pathway from B
into C would be transmetalation with B2pin2, in which one
boron atom replaces the acetate group on palladium and the
other boron atom forms pinBOAc. One referee suggested
that transmetalation might occur already at intermediate A,
thus avoiding transmetalation of a s-palladium(II) intermedi-
ate B, which is prone to undergo syn b-hydride elimination.
We consider this pathway less likely because of the lower
electrophilicity of (pin)BPdOAc compared to Pd(OAc)2,
which would lead to a very slow allene attack. Previous
studies indicate that allene attack on Pd(OAc)2 is fast.[12c,25]

Subsequent reductive elimination of C (with retention of
configuration) would give the desired product E (2a) and Pd0.
The latter is reoxidized by p-benzoquinone. Formation of the
known side product F would be explained by syn b-hydride
elimination from intermediate B. There is also another
possible pathway involving oxidative addition of B2pin2 to
the s-palladium(II) intermediate B resulting in a palladi-

Figure 1. DIAMOND drawing of 2a.[21] The thermal ellipsoids are
drawn at 30 % probability and hydrogen atoms are omitted for clarity.

Scheme 3. Borylative carbocyclization of aza-enallene compounds.
Yield of isolated product is shown.

Scheme 4. Formation and oxidative cleavage of alkylboronate
compounds. Yield of isolated product is shown.

Scheme 5. Palladium(II)-catalyzed oxidative carboborylation.
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um(IV) intermediate D, which would undergo fast reductive
elimination to give E.[26] The pinBPdOAc formed would then
eliminate pinBOAc with formation of Pd0. Although we favor
the pathway via PdII/Pd0 we cannot rule out a PdIV/PdII

pathway at present.[27]

In conclusion, we have developed a palladium(II)-cata-
lyzed oxidative borylative carbocyclization of enallene com-
pounds. The protocol gives alkylboronates in good yields and
requires only minimal amounts of reactants. Formally this
reaction constitutes a 1,2-carboborylation of olefins under
oxidative conditions and it occurs with cis addition to the
olefin. We believe that this approach can be applied to other
similar palladium(II)-catalyzed oxidation processes. Current
studies are focused on extending the use of diboronates in
palladium-catalyzed oxidations with the purpose to quench
organopalladium intermediates.

Experimental Section
Catalytic oxidative carboborylation: Pd(OAc)2 (0.45 mg, 0.002 mmol,
1 mol%), B2pin2 (51 mg, 0.20 mmol), and BQ (26 mg, 0.24 mmol)
were added to a solution of enallene 1a (0.1m, 56 mg, 0.20 mmol) in
toluene. The reaction mixture was then heated at 40 8C for 10 h. The
solvent was evaporated and the residue was purified by flash column
chromatography on silica gel (eluent: pentane/diethyl ether (v/v)
50:1) to give the alkylboronate 2a as a white solid (62 mg, 77%).
1H NMR (CDCl3, 400 MHz): d = 5.60 (d, J = 2.6 Hz, 1H), 4.92 (m,
1H), 4.87 (brs, 1H), 3.70 (s, 3H), 3.67 (s, 3H), 3.54 (ddd, J = 7.1, 6.3,
2.6 Hz, 1H), 3.03 (m, 1H), 1.91 (s, 3H), 1.62 (m, 2H), 1.45–1.26 (m,
5H), 1.17 (s, 6H), 1.16 ppm (s, 6H). 13C NMR (CDCl3, 100 MHz): d =

170.8, 170.3, 151.8, 140.7, 123.6, 114.1, 82.8 (2C), 68.5, 52.5, 52.0, 46.1,
43.7, 24.8 (2C), 24.6 (2C), 23.2, 23.0, 22.8, 22.3 ppm. HRMS (ESI): m/
z calcd for C22H33BO6Na [M+Na] + : 427.2262; found: 427.2267.

Oxidation of borylated carbocycle 2a : H2O2 (35% aq, 0.64 mmol,
56 mL), and NaOH (3m aq, 0.39 mmol, 0.13 mL) were added to a
solution of alkylboronate 2a (52 mg, 0.13 mmol) in THF (3 mL). The
reaction mixture was stirred at RT for 3 h and was subsequently
extracted with CH2Cl2 (3 � 15 mL). The organic layer was washed by
brine, dried over MgSO4, and concentrated. The residue was purified
by flash column chromatography on silica gel (eluent: pentane/ethyl
acetate (v/v) 5:1) to give the product 4 as a white solid (32 mg, 84%).
1H NMR (CDCl3, 400 MHz): d = 5.85 (brs, 1H), 5.14 (brs, 1H), 5.10
(brs, 1H), 4.15 (brs, 1H), 3.76 (s, 3H), 3.74 (s, 3H), 3.22 (m, 1H), 3.12
(dd, J = 8.5, 4.0 Hz, 1H), 2.46 (d, J = 5.0 Hz, 1H), 1.96 (s, 3H), 1.99–
1.92 (m, 1H), 1.87–1.83 (m, 1H), 1.74–1.65 (m, 1H), 1.46–1.36 (m,
2H), 1.34–1.28 ppm (m, 1H). 13C NMR (CDCl3, 100 MHz): d = 172.4,
171.0, 149.1, 137.7, 127.0, 115.7, 68.2, 65.2, 52.9 (2C), 48.2, 41.2, 30.6,
23.1, 20.8, 15.6 ppm. HRMS (ESI): m/z calcd for C16H22O5Na
[M+Na]+: 317.1359; found: 317.1358.
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