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a b s t r a c t

This Letter describes for the first time the synthesis of pyrido[20 ,30:4,5]furo[3,2-d]pyrimidines substituted
by a primary or secondary amino group on position 4 of the pyrimidine ring. Application of microwave
irradiation technology allowed fast and convenient procedures.

� 2011 Elsevier Ltd. All rights reserved.
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The main interests of our research groups include the synthesis of
C,N,S- or C,N,O-containing heterocyclic precursors of bioactive mol-
ecules able to modulate the role of kinases in signal transduction.1,2

Recent synthesis of 3-amino-6-bromofuro[3,2-b]pyridine-2-carbo-
nitrile3 prompted us to use similar novel poly-functionalized het-
erocyclic precursors for the preparation of 4-amino-substituted
pyrido[20,30:4,5]furo[3,2-d]pyrimidines (1 in Scheme 1). A literature
survey revealed that pyrido[20,30:4,5]furo[3,2-d]pyrimidines were
only once described in a recent patent in which this original hetero-
cyclic ring was introduced into more complex molecules that were
able to inhibit the activity of HCV (Hepatitis C Virus) protease, and
then, can be useful for the treatment of C hepatitis.4 In contrast, syn-
thetic routes and biological activity of some pyrido[30,20:4,5]
furo[3,2-d]pyrimidine isosters (see 2 in Scheme 1) were more exten-
sively described in the literature. Various 4-morpholino-substituted
derivatives were considered as potential anti-cancer agents because
of their capacity to inhibit phosphatidylinositol 3-kinase (PI3K), a
specific target in cancer treatment.5

We decided that it would be an interesting challenge to start
from a 3-aminofuro[3,2-b]pyridine-2-carbonitrile precursor (3 in
Scheme 1) and to explore the possibilities offered by the ther-
mal-sensitive Dimroth rearrangement.6,7

For these reasons, the use of microwave heating may allow effi-
cient synthesis of target pyrido[20,30:4,5]furo[3,2-d]pyrimidines (1)
where traditional thermal procedures may require forcing condi-
tions and prolonged reaction times. This paper describes the devel-
ll rights reserved.
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opment of a reliable and simple method that allows the
preparation of a library of these compounds which can serve as
precursors to various bioactive molecules.

The target compounds we studied were pyrido[20,30:4,5]
furo[3,2-d]pyrimidines (1) which are substituted by an aromatic
amine in position 4 of the pyrimidine moiety. Two routes were
envisioned and are described in the retro-synthetic pathways pre-
sented in Scheme 2. The multi-step synthetic pathway usually de-
scribed for the synthesis of bicyclic or tricyclic fused pyrimidines8

suggests the use of a 3-amino-2-enoic acid or its corresponding es-
ter as starting material (route A, Scheme 2). Thermal cyclization in
the presence of formamide in a Niementowski reaction gives pyr-
imidin-4-ones which can react with thionyl chloride, phosphoryl
chloride or oxalyl chloride, yielding unstable 4-chloropyrimidines.
In the final step, nucleophilic substitution, using various aromatic
or aliphatic amines, will lead to the expected products.

The second route is shorter, starting from an enaminonitrile
analog (route B, Scheme 2). Generally in this reaction the starting
1 2 3

Scheme 1. Structure of target pyrido[20 ,30:4,5]furo[3,2-d]pyrimidines (1) and
precursor (3).
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Scheme 2. Synthetic routes envisaged for an access to the target products.
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cyanoenamine derivative is first transformed into its correspond-
ing formamidine. Subsequent nucleophilic attack by an amine
and cyclization yield 3-substituted pyrimidine derivatives in which
exocyclic and endocyclic nitrogen atoms can switch place via a
Dimroth rearrangement.6,7 The thermodynamically stable product
obtained is then substituted on position 4 of the pyrimidine
moiety.

Taking into account that thermal effects usually observed in
microwave experiments may favor the appearance of thermody-
namic products,9 we decided to prepare the target pyr-
ido[20,30:4,5]furo[3,2-d]pyrimidines (1) via the second route. It
involved starting the synthesis from the novel 3-aminofuro[3,2-
b]pyridine-2-carbonitrile (3), itself obtained by the strategy previ-
ously described for its 6-bromo-substituted analog.3 The synthetic
route used for preparation of the starting enaminonitrile (3) is out-
lined in Scheme 3.

Selective iodination in position 2 of the pyridine ring was car-
ried out by the action of iodine in the presence of sodium carbon-
ate in water at room temperature.3 Subsequent alkylation of the 2-
iodo-3-hydroxypyridine (5) was obtained in good yield by forma-
tion of the potassium salt using potassium carbonate, followed
by its reaction with bromoacetonitrile at room temperature.10

The corresponding nitrile (7) was synthesized by heating [(2-iodo-
pyridin-3-yl)oxy]acetonitrile (6) at 100 �C with copper cyanide
(CuCN) in pyridine. Finally, heteroannulation of (7) under basic
conditions produced 3-aminofuro[3,2-b]pyridine-2-carbonitrile
(3). The use of potassium carbonate as a base in DMF instead of so-
dium hydride allowed increasing the cyclization yield from 41 to
68%.
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Scheme 3. Synthesis of 3-aminofuro
With starting compound (3) now available, the second step in
our synthesis consisted of the formation of N0-(2-cyanofuro[3,2-
b]pyridin-3-yl)-N,N-dimethylformimidamide intermediate (8). It
was realized by the reaction of the cyanoenamine (3) with N,N-
dimethylformamide dimethylacetal (DMF–DMA). After various at-
tempts to optimize the reaction parameters (time, temperature
and microwave power applied), the expected product (8) was ob-
tained in quantitative yields after 15 min of irradiation (800 W)
at 90 �C (Scheme 4). Note that microwave heating was realized at
atmospheric pressure in a controlled multimode cavity11 and not
in pressurized vials in order to avoid the appearance of methanol
and formamide by thermal decomposition of excess DMF–DMA.
This reaction can generate a high pressure level and may lead to
explosion of the reaction vessel. Irradiation wattage at 800 W
was the best compromise between on one hand, a lower power
which involved longer reaction times (because of its lack of effi-
ciency to heat the flask in a convenient period) and on the other
hand a too high power (we were able to reach 1200 W) which gen-
erated problems, mainly in the control of temperature. It should be
noted that such a process allows scale-up of the reaction to a mul-
ti-gram scale.

Before introducing a substituted amino group on the skeleton of
the targeted products, synthesis of the non-alkylated 4-aminopyri-
do[20,30:4,5]furo[3,2-d]pyrimidine (9) was realized in good yield by
strong heating of compound (8) in the presence of formamide which
played the dual role of solvent and reactant. Its temperature depen-
dent ability to generate ammonia, synthon, and its intrinsic proper-
ties of heating under microwave irradiation (its loss dissipation
factor, tan d, is greater than 0.5) were combined in a comfortable
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Table 1
Synthesis of 4-aminosubstituted pyrido[20 ,30:4,5]furo[3,2-d]pyrimidines (1a–h)a

Ar Product Time (min) Yieldb (%)

1a 5 84

OMe
1b 5 78

OMe

OMe

1c 5 77

OMe

OMe

1d 5 83

OMe

OMe

OMe

1e 5 83

O

O
1f 10 84

O

O

1g 10 82

F

Cl

1h 15 80

BrF
1i 60 97

a Reactions were performed under microwave (800 W) on a 0.5 mmol scale from
8 with 1 equiv of aniline derivative (Start S™ from Milestone S.r.l, Italy).

b Yield of isolated product.
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Scheme 4. Synthesis of pyrido[20 ,30:4,5]furo[3,2-d]pyrimidines (1a–h and 9); for reaction times and yields see Table 1; microwave irradiation: 800 W at atmospheric
pressure.
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process constituting a safe alternative to the extreme conditions
usually described in the literature.12

According to various procedures previously described for the
synthesis of quinazolines,13 the next step consisted of heating the
formimidamide derivative (8) with 1 equiv of various anilines in
the presence of acetic acid. For this reaction, other solvents (e.g.,
acetonitrile or NMP) have already been tried in our group but their
main drawback was a more difficult work-up. The starting mixture
was irradiated at 400 W in a multimode cavity. After 3 min., the
temperature at which the solvent could be refluxed (118 �C) was
reached. This time is not added to the reaction time described in
Table 1. A library of nine original pyrido[20,30:4,5]furo[3,2-d]pyrim-
idines was prepared using similar experimental conditions.14

Obviously the time and yield of the reaction depended on the nucle-
ophilicity of starting aniline, as well as the presence of electron-
attracting groups on the benzene ring. Steric hindrance due to the
position of the substituents may also play a role and caused an
increase in the reaction time (e.g., 1i in Table 1). To obtain good
yields, the irradiation time was prolonged for those reactions that
were affected by the steric and electronic effects mentioned above.

In conclusion, we described for the first time the synthesis of
new pyrido[20,30:4,5]furo[3,2-d]pyrimidines substituted by a pri-
mary or secondary amino group in position 4 of the pyrimidine
ring. The fast and convenient procedure described in this Letter
is explored for a general use to access to pyrimidine-condensed
heterocyclic scaffolds which can be useful in the design of novel
bioactive compounds.
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