ORIGINAL ARTICLE

Synthesis and anticholinesterase activity of novel non-hepatotoxic naphthyridine-11-amine derivatives

Belma Zengin Kurt¹

Received: 14 September 2018 / Accepted: 20 November 2018 © Springer Nature Switzerland AG 2018

Abstract

In the present study, 14 novel naphthyridine-11-amine derivatives were synthesized and their inhibitory effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) were evaluated. 12-(4-Fluorophenyl)-1,2,3,4,7,8,9,10-octahydrodibenzo[b,g][1, 8]naphthyridin-11-amine (**4a**) was found to be the most potent AChE inhibitor with IC₅₀ value of 0.091 μ M, and 12-(2,3-dimethoxyphenyl)-1,2,3,4,7,8,9,10-octahydrodibenzo[b,g][1,8]naphthyridin-11-amine (**4h**) exhibited the strongest inhibition against BuChE with IC₅₀ value of 0.182 μ M. Additionally, hepatocellular carcinoma (HepG2) cell cytotoxicity assay for the synthesized compounds was investigated and the results showed negligible cell death. Log *P* values of the synthesized compounds were also calculated using ChemSketch program. Moreover, the blood–brain barrier (BBB) permeability of the potent AChE inhibitor (**4a**) was assessed by the widely used parallel artificial membrane permeability assay (PAMPA-BBB). The results showed that **4a** is capable of crossing the BBB.

Graphical abstract

Keywords Naphthyridine · Anticholinesterase activity · Cell cytotoxicity · Blood-brain barrier permeability

Introduction

Alzheimer's disease (AD) is a progressive nervous affecting disease with a high incidence in elderly people, leading to

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s11030-018-9897-1) contains supplementary material, which is available to authorized users.

Belma Zengin Kurt bzengin@bezmialem.edu.tr

Published online: 04 December 2018

both physical and mental retardation and eventually death [1]. According to health organization reports, it is estimated that the number of people with the AD and other dementia and similar diseases is 47 million, and it is assumed that this number will triple by 2050 [2]. Pathologically, the AD is characterized by loss of cholinergic neurons, formation of hyperphosphorylated tau protein in intracellular neurofib-rillary tangles (NFT) [3], abnormal processing of amyloid precursor protein (APP) and extracellular accumulation of β -amyloid protein [4, 5]. Today, one approach to explain at least several aspects of the pathology of the AD is characterized by the cholinergic hypothesis [6]. The AD is characterized by the loss of cholinergic neurotransmitters, particularly

¹ Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Istanbul, Turkey

acetylcholine, in both cortical and hippocampal regions. Cholinergic neurons play an important role in learning and memory by performing acetylcholine (ACh) synthesis [7]. In particular, the reduction in neurotransmitter acetylcholine (ACh) concentration is considered to be a fundamental factor for progressive cognitive impairment [7]. For this reason, the primary treatment strategy for the symptomatic treatment of AD is the use of cholinesterase inhibitors. The inhibition of these enzymes can prevent the reduction in the ACh level, which can compensate for the deficit in cholinergic neurons [8]. Acetylcholinesterase (AChE) is an enzyme of the class of cool hydrolases, a drug target for Alzheimer's disease [9]. AChE, which provides acetylcholine hydrolysed to choline and acetic acid, thus controls the level of ACh and regulates the acetylcholine effect. This enzyme is widely deployed along the body and is the most common cholinesterase in the human brain [10]. AChE is a membrane-bound enzyme, found mostly in cholinergic neurons in the body and also in the brain and muscles. Butyrylcholinesterase (BuChE) is expressed in the neuroglia, although it is not in the brain and cholinergic neurons, and is found in the liver, heart, intestine, serum, kidney and lung [11].

Tacrine is well known and used as the first synthetic cholinesterase inhibitor (ChEI), and other ones such as galantamine, donepezil and rivastigmine (Fig. 1) have been started to be used later for AD therapy [12]. The use of these drugs is restricted due to gastrointestinal problems and side effects such as hepatotoxicity [13]. For this purpose, many new ChEIs have been isolated from natural sources [14] or synthesized new active compounds [15]. Despite its ability to function as a very good inhibitor, the tacrine molecule cannot be used therapeutically due to hepatotoxicity. The adverse side effects of ChEIs present a major research area for researchers to synthesize novel non-toxic synthetic cholinesterase inhibitor drugs [16]. Tacrine, 9amino-1,2,3,4-tetrahydroaminoacridine, which is licensed as the cholinesterase inhibitor by the US Food and Drug Administration for the treatment of Alzheimer's disease is the first drug [17]. The hepatotoxicity of the tacrine is due to the elevation of the serum alanine aminotransferase level [18], which causes the tacrine to be used in limited clinical practice. Consequently, the pharmaceutical market was withdrawn shortly after tacrine approval [19]. However, the tacrine with the high cholinesterase inhibitor feature has not been overlooked and has been used extensively and successfully in medical chemistry using it in hybrid [20] or multitarget compounds [21]. To combine tacrine's AChE inhibition with other pharmacological properties and to enhance its efficacy, tacrine is coupled to covalent bonds to other pharmacophores such as CB1 receptor antagonists and an M1 agonist [22, 23]. In this context, the development of tacrine analogues [24] is of great interest due to its inhibitory nature at low micromolar concentrations, mainly through the interaction of π - π stacking with Trp84 residues [25]. Various investigations have shown that tacrine-induced oxidative stress can be treated with radical scavengers such as hepatocytes, vitamin E or other dithioles. It is also known that some NO donors play a beneficial role in preventing hepatotoxicity. Tacrine hybrids containing radical scavengers, anti-oxidative properties and anti-amyloid aggregation can help prevent oxidative stress and fibril accumulation [26]. It is known to use different heterocyclic structures instead of the benzene ring of the tacrine to reduce toxicity and provide high anticholinesterase activity and selective peripheral attachment [27].

In this study, novel naphthyridine-11-amine, which is Nheterocyclic ring condensed tacrine, derivatives (4a-k and

Fig. 1 Synthetic cholinesterase inhibitors

Rivastigmine

Galantamine

Scheme 1 Synthesis of new naphthyridine-11-amine derivatives. Reaction conditions: (i) malononitrile, EtOH, piperidine, 1 h, 80 °C; (ii) cyclohexanone, NH₄OAc, benzene, 10 h, 100 °C; (iii) cyclohexanone, ZnCl₂, 4 h, 140 °C

8a–c) were synthesized and their anticholinesterase activities and hepatotoxicity were investigated. The octanol/water partition coefficient (log P), which plays an important role in the development of new drugs, has also been calculated. Moreover, the blood–brain barrier (BBB) permeability of the novel compounds was assessed by the widely used parallel artificial membrane permeability assay (PAMPA-BBB).

Result and discussion

Chemistry

The synthetic procedures are shown in Scheme 1. 2a–k and 6a–c were synthesized from aldehyde derivatives (1a–k and 5a–c) and malononitrile [28]. The nitrile derivatives were reacted with cyclohexanone and ammonium acetate to get aminocyanopyridine derivatives (3a–k and 7a–c) [29]. The aminocyanopyridines were reacted with cyclohexanone using ZnCl₂ as a catalyst to obtain the final products (4a–k and 8a–c) [30].

All new compounds (except the compounds 4a, 4c and 4g, [31]) were characterized by spectroscopic methods such as ¹H NMR, ¹³C NMR, IR, MS and elemental analysis. MS

spectra of the synthesized compounds are given in the Supporting Information. In the infrared spectra of the synthesized compounds, the NH stretch of the NH₂ group present in the final products shows an absorbance between 3480 and 3280 cm^{-1} , while the CN moiety stretch of the intermediate product shows the absorbance between 2200 and $2220 \,\mathrm{cm}^{-1}$. Tacrine was synthesized by different groups in the ZnCl₂ catalyst as before. Yang et al. [31] observed both tacrine and highly rearranged product by using ZnCl₂. However, in the study of Mao et al. [30], tacrine molecule was obtained as a single product. As can be seen in Fig. 2, NH₂ group gave a singlet signal at 5 ppm at ¹H NMR spectrum of **3b**, whereas it shifted to 4 ppm at ¹H NMR spectrum of **4b**. In addition, the number of aliphatic protons showed an increase in ¹H NMR spectrum of 4b. Consequently, our results are consistent with the structure proposed by Mao et al. From the ¹H NMR spectra, the signals of the NH2 protons in the aminocyanopyridine derivatives were observed between 5.00 and 5.40 ppm, while the NH₂ protons of the naphthyridine-11-amine derivatives were observed between 4.00 and 4.20 ppm. The signals of aromatic and aliphatic hydrogens were observed between 6.10 and 8.90 ppm and 1.65 and 3.40, respectively. From the ¹³C NMR spectra, the signals of aromatic carbons can

also be seen between 105 and 164 ppm. Signals of aliphatic carbons were also recorded between 15 and 55 ppm.

Biological activity

Cholinesterase inhibitory activity

The inhibitory effects of compounds on the acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) were evaluated using Ellman's protocol [32]. Tacrine, galantamine and donepezil were used as reference compounds. As shown in Table 1, the synthesized compounds exhibited low micromolar inhibitory potencies against AChE and BuChE with the IC₅₀ values ranging from 0.091 to $1.197 \,\mu$ M and from 0.182 to 4.881 µM, respectively. Among them, 4a exhibited the strongest inhibition against AChE with an IC₅₀ value of 0.091 μ M, which is 11-fold more than that of galantamine (IC₅₀ = $1.054 \,\mu$ M). Furthermore, **4a** has similar AChE inhibitory activity compared to that of donepezil (IC_{50}) $=0.101 \ \mu$ M), which is well known as AChE inhibitor, and it has similar inhibition with standard molecule tacrine (IC₅₀) =0.055 μ M). **4h** exhibited the strongest inhibition against BuChE with an IC₅₀ value of 0.182 μ M, which is 100-fold more than that of galantamine (IC₅₀ = 18.13 μ M) and 14fold more than that of donepezil (IC₅₀ = 2.680μ M), but it showed less activity with the tacrine (IC₅₀ = 0.032μ M).

The following results of the structure–activity relationship should be noted regarding the cholinesterase inhibitory data of Table 1: (i) All the synthesized compounds showed higher inhibitory activity against AChE in comparison with BuChE. (ii) Electron-withdrawing group (nitro) at the paraposition of the phenyl ring exhibited higher inhibitory activity than electron-donating groups (methoxy and methyl) for both ChEs [compared **4k** (R=4-NO₂, IC₅₀ = 0.165 μ M for AChE, IC₅₀ = 0.443 μ M for BuChE), with **4g** (R=4-OCH₃, IC₅₀ = 0.352 μ M for AChE, IC₅₀ = 1.822 μ M for BuChE) and **4i** (R=4-CH₃, IC₅₀ = 0.350 μ M for AChE, IC₅₀ = 0.866 μ M for BuChE)]. (iii) Moving the bromine atom at the phenyl ring from the meta-position to the paraposition led to a significant increase in the AChE and BuChE inhibition [compared 4e (R=3-Br, IC₅₀ = 0.307 μ M and 2.219 µM for AChE and BuChE, respectively) with 4f (R=4-Br, IC₅₀ = 0.274 μ M and 1.443 μ M for AChE and BuChE, respectively)]. (iv) The presence of chlorine atom at the meta-position or para-position or both positions of the phenyl ring did not change the AChE activity (compared **4b** (R=3-Cl, IC₅₀ = 0.248 μ M) with **4c** (R=4-Cl, $IC_{50} = 0.250 \,\mu\text{M}$) and **4d** (R = 3,4-diCl, $IC_{50} = 0.222 \,\mu\text{M}$). On the other hand, moving the chlorine atom at the phenyl ring from the meta-position to the para-position dramatically decreased the BuChE activity (compared 4b (R = 3-Cl, $IC_{50} = 0.640 \ \mu M$) with **4c** (R=4-Cl, $IC_{50} = 4.881 \ \mu M$) and 4d (R = 3,4-diCl, IC₅₀ = 4.796 μ M)). (v) The increase in the number of methoxy groups at the phenyl ring led to a decrease in the AChE inhibitory activity, whereas it caused a significant increase in the BuChE activity [compared 4g (R = 4-OCH₃, IC₅₀ = $0.352 \,\mu$ M and $1.822 \,\mu$ M for AChE and BuChE, respectively) with 4h (R = 2,3- diOCH₃, $IC_{50} = 0.510 \ \mu M$ and $0.182 \ \mu M$ for AChE and BuChE, respectively)]. (vi) Growing size and polarizability of the halogens at the *para*-position of the phenyl ring decreased the AChE inhibition [for size and polarizability, Br>Cl>F, for inhibitory activity, **4a** (R = 4-F, IC₅₀ = 0.091μ M)>**4c** (R = 4- Cl, $IC_{50} = 0.250 \,\mu\text{M}$ >4f (R = 4-Br, $IC_{50} = 0.274 \,\mu\text{M}$)].

Cell toxicity

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cytotoxicity method was applied for cell viability test [33]. The per cent inhibitions of the synthesized compounds at different concentrations against the HepG2 cell line are summarized in Table 2. All tested compounds were compared with tacrine, and their inhibition values were lower than or equal to the tacrine (Table 2). In the presence of **4a** and **4h** did not significantly change the viability percentage of HepG2 cells at a concentration of 100 μ M, and this value decreased to 54.52% in the presence of tacrine at the same concentration. If the values given in Table 2 are examined, it **Table 1** In vitro inhibition IC_{50} values (μM) of **4a–4k** and**8a–8c** for AChE and BuChE

	R	 NH ₂	
Compound	R	$AChE\left(IC_{50},\mu M\right)^{a}$	BuChE (IC50, µM) ^a
4 a	4-F-phenyl	0.091 ± 0.022	0.773 ± 0.201
4b	3-Cl-phenyl	0.248 ± 0.102	0.640 ± 0.044
4c	4-Cl-phenyl	0.250 ± 0.111	4.881 ± 0.112
4d	3,4-diCl-phenyl	0.222 ± 0.021	4.796 ± 0.124
4e	3-Br-phenyl	0.307 ± 0.033	2.219 ± 0.142
4f	4-Br-phenyl	0.274 ± 0.054	1.443 ± 0.077
4g	4-OCH ₃ -phenyl	0.352 ± 0.031	1.822 ± 0.085
4h	2,3-diOCH ₃ -phenyl	0.510 ± 0.032	0.182 ± 0.012
4i	4-CH ₃ -phenyl	0.350 ± 0.103	0.866 ± 0.052
4j	Phenyl	1.197 ± 0.046	1.679 ± 0.035
4k	4-NO ₂ -phenyl	0.165 ± 0.055	0.443 ± 0.026
8a	3-Pyridinyl	0.358 ± 0.063	0.836 ± 0.045
8b	3-Benzo[b]thiophenyl	0.298 ± 0.041	1.656 ± 0.051
8c	2-(5-Methylfuranyl)	0.533 ± 0.074	0.521 ± 0.105
Tacrine	-	0.055 ± 0.002	0.032 ± 0.002
Galantamine	_	1.054 ± 0.022	18.130 ± 1.003
Donepezil	-	0.101 ± 0.052	2.680 ± 0.376

N___N

^aIC₅₀ values represent the mean \pm SEM of three parallel measurements (p < 0.05)

Table 2 Effect of the synthesized compound	s on the viability of HepG2	cell line at different concentrations
---	-----------------------------	---------------------------------------

Compound	Viability (%) of HepG2 cells							
	100 µM	50 µ M	30 µ M	20 µ M	10 µ M	5 μΜ	3 μΜ	1 μΜ
4a	$84.38 \pm 1.2*$	94.96 ± 1.3	97.30 ± 1.1	98.66 ± 1.4	99.59 ± 0.2	99.75 ± 0.6	99.06 ± 1.6	99.13 ± 1.9
4b	39.54 ± 2.1	73.11 ± 0.5	90.13 ± 1.5	91.60 ± 0.9	94.67 ± 0.6	96.60 ± 0.7	98.29 ± 0.9	99.29 ± 0.8
4c	55.18 ± 0.7	68.74 ± 0.8	86.45 ± 2.0	87.60 ± 0.9	88.76 ± 0.7	92.66 ± 0.7	94.45 ± 0.5	96.44 ± 0.8
4d	37.01 ± 1.1	58.17 ± 1.2	77.25 ± 1.4	80.93 ± 1.4	89.82 ± 0.6	90.44 ± 0.5	91.60 ± 0.8	95.22 ± 0.6
4e	65.06 ± 1.3	84.22 ± 1.1	84.38 ± 0.7	86.38 ± 1.3	88.29 ± 0.4	89.20 ± 0.8	92.06 ± 1.2	94.59 ± 1.5
4f	48.74 ± 0.8	64.83 ± 1.4	84.61 ± 0.4	86.14 ± 0.5	87.05 ± 0.8	91.83 ± 1.2	95.65 ± 1.1	97.03 ± 1.7
4 g	52.19 ± 0.8	72.42 ± 0.4	73.80 ± 0.8	77.02 ± 1.1	81.39 ± 0.4	84.61 ± 2.1	88.52 ± 1.6	87.14 ± 0.8
4 h	74.03 ± 0.4	79.78 ± 0.8	84.99 ± 1.1	85.61 ± 1.0	86.68 ± 0.8	86.22 ± 2.0	89.90 ± 0.5	93.12 ± 1.8
4i	53.34 ± 1.3	62.30 ± 1.2	78.17 ± 1.3	80.47 ± 1.2	87.60 ± 1.0	87.37 ± 1.8	91.74 ± 0.4	95.42 ± 1.1
4j	88.75 ± 1.2	91.97 ± 1.8	91.51 ± 0.6	91.51 ± 0.7	91.90 ± 1.1	91.11 ± 1.4	91.28 ± 0.7	91.97 ± 0.4
4 k	86.91 ± 1.3	87.47 ± 0.9	88.51 ± 0.6	90.76 ± 0.2	90.68 ± 1.3	91.81 ± 1.3	93.67 ± 1.8	99.33 ± 2.0
8a	74.03 ± 1.1	81.16 ± 2.1	85.53 ± 0.9	87.60 ± 0.4	88.85 ± 0.9	90.13 ± 1.2	92.43 ± 2.0	96.80 ± 1.4
8b	49.66 ± 1.4	60.46 ± 1.0	73.11 ± 0.8	74.03 ± 1.1	78.63 ± 0.5	78.63 ± 1.0	79.32 ± 0.4	81.62 ± 0.7
8c	60.46 ± 0.5	79.31 ± 2.0	82.09 ± 1.6	82.15 ± 0.3	84.31 ± 0.5	89.36 ± 0.8	90.44 ± 0.5	94.50 ± 0.8
Tacrine	54.52 ± 0.6	66.83 ± 0.8	77.28 ± 0.9	81.49 ± 0.6	93.35 ± 0.4	94.62 ± 0.5	95.76 ± 0.7	97.35 ± 0.7

 $\mbox{Mean}\pm\mbox{SEM}$ of triplicates from at least three different cultures

*p < 0.05, as compared to the control cultures (one-way ANOVA)

 Table 3
 Log P values of the synthesized

 naphthyridine-11-amine
 derivatives

Compound	Log P ^a
4a	5.75 ± 0.64
4b	6.38 ± 0.54
4c	6.38 ± 0.54
4d	6.83 ± 0.56
4e	6.49 ± 0.63
4f	6.72 ± 0.62
4 g	5.63 ± 0.55
4 h	5.15 ± 0.56
4i	6.27 ± 0.53
4j	5.81 ± 0.53
4 k	5.43 ± 0.55
8a	4.50 ± 0.54
8b	7.98 ± 0.58
8c	5.47 ± 0.63
Tacrine	3.32 ± 0.25

ketch ACD labs 2012

will be seen that the selected compounds showed less toxicity on HepG2 cells compared to tacrine.

The log *P* value, known as the octanol/water partition coefficient, is one of the most important physicochemical parameters applied, especially when new drugs are developed. Log *P* is one of the "5 rules" defined by Lipinski for drug-like molecules and is therefore used as a physicochemical parameter in drug discovery studies related to the bioavailability of chemical compounds [34]. The ACD/ChemSketch software (ACD/ChemSketch 4.0) estimates physicochemical properties using atomic or group differences in chemical structure [35]. The log *P* values of the synthesized compounds and tacrine were calculated using the ACD/ChemSketch program. The results are given in Table 3. According to these results, the distribution coefficients of the synthesized compounds are better than tacrine.

In vitro blood-brain barrier permeability using PAMPA-BBB

A good penetration across the blood–brain barrier is the necessary condition for the central nervous system (CNS) drugs [36]. Brain permeations of **4a**, the most potent compound in this study, and the well-known AChE inhibitors (tacrine, donepezil and rivastigmine) were determined through the parallel artificial membrane permeation assay (PAMPA), described by Di et al. [37]. This assay measures the passive diffusion of a compound into an acceptor chamber filled with phosphate buffer (pH 7.4) through a lipid barrier separating a donor compartment. The concentrations of the compound in both partitions were then determined to obtain an effective permeability ratio (P_e). It is known that compounds with P_e values of 4×10^{-6} cm s⁻¹ can easily pass through the

Table 4 Prediction of blood–brain barrier penetration of drugs expressed as $P_e \pm \text{SEM}$ (n = 4-6)

Compound	BBB penetration estimation		
	$P_{\rm e} \ (10^{-6} \ {\rm cm \ s^{-1}})$	CNS (+/-)	
4a	5.42 ± 0.54	CNS (+)	
Tacrine	4.51 ± 0.32	CNS (+)	
Donepezil	6.80 ± 0.66	CNS (+)	
Rivastigmine	5.78 ± 0.85	CNS (+)	

'CNS(+)'—high BBB permeation predicted; $P_e (10^{-6} \text{ cm s}^{-1}) > 4.0$ 'CNS(-)'—low BBB permeation predicted; $P_e (10^{-6} \text{ cm s}^{-1}) < 2.0$ 'CNS(+/-)'—BBB permeation uncertain; $P_e (10^{-6} \text{ cm s}^{-1})$ from 4.0 to 2.0

CNS (CNS+) and compounds with a P_e value below 2×10^{-6} cm s⁻¹ cannot pass through the CNS (CNS-). In compounds with permeability values between these boundaries, it is not easy to predict whether they pass through the BBB (CNS +/-) [38, 39]. **4a** has a permeability value above the boundary with $P_e = 5.42 \times 10^{-6}$ cm s⁻¹ and indicates that it will pass through BBB with passive diffusion (Table 4). Donepezil ($P_e = 6.80 \times 10^{-6}$ cm s⁻¹) showed a higher P_e than **4a**; the P_e of Rivastigmine ($P_e = 5.78 \times 10^{-6}$ cm s⁻¹) was fairly close to 4a, while the P_e of tacrine ($P_e = 4.51 \times 10^{-6}$ cm s⁻¹) showed a less P_e than **4a**.

Conclusions

A series of 14 novel tacrine-based naphthyridine-11-amine derivatives (4a-4k and 8a-8c) were synthesized, and their inhibitory activities on AChE and BuChE were evaluated. Most of the compounds showed potent activity against cholinesterase enzyme. Among them, compound 4a showed the strongest inhibition against AChE with an IC₅₀ value of 0.091 μ M and **4h** showed the strongest inhibition against BuChE with an IC₅₀ value of 0.138 μ M being more potent than reference drug tacrine. Furthermore, 4a showed less cytotoxicity on HepG2 cells compared to tacrine. The structure-activity relationship (SAR) for the synthesized compounds is indicated by comparing the effects of different groups and atoms on the naphthyridine skeleton. The SAR study revealed that electron-withdrawing and electronreleasing groups at different positions could increase the cholinesterase inhibition. According to the results of parallel artificial membrane permeability test (PAMPA-BBB), the permeability value of 4a ($P_e = 5.42 \times 10^{-6} \text{ cm s}^{-1}$) is higher than the border, and this molecule is thought to pass through BBB with passive diffusion. In general, the activity of these compounds can be enhanced by applying more appropriate substitution patterns and presented as novel precursor compounds for the development of new ChEs inhibitors for the treatment of AD.

Experimental

Material and method

All solvents, reagents and starting materials were obtained from commercial sources unless otherwise indicated. Melting points were measured on a Stuart SMP40. IR spectra were registered on a Bruker Alpha infrared spectrometer. ¹H and ¹³C NMR spectra were registered on a Varian Infinity Plus spectrometer at 300 and at 75 Hz, respectively. ¹H and ¹³C chemical shifts are referenced to the internal deuterated solvent. Mass spectra were obtained using Zivak Technologies LC-MS spectrometry. The elemental analyses were carried out with a Leco CHNS-932 instrument. Spectrophotometric analyses were performed by a BioTek Power Wave XS (BioTek, USA). The electric eel acetylcholinesterase (AChE, Type-VI-S, EC 3.1.1.7, 425.84 U/mg, Sigma) and horse serum butyrylcholinesterase (BuChE, EC 3.1.1.8, 11.4 U/mg, Sigma) were purchased from Sigma (Steinheim, Germany). The other chemicals and solvents were purchased from Fluka Chemie, Merck, Alfa Aesar and Sigma-Aldrich.

General procedures of synthesis and spectral data

Synthesis of malononitrile derivatives (2a-k and 6a-c) A mixture of aldehyde (0.01 mmol) and malononitrile (0.01 mmol) in ethanol (15 mL) in the presence of piperidine (0.5 eq) was warmed at 80 °C until complete precipitation (reaction times 1 h). The solid obtained was collected by filtration and recrystallized from ethanol and dried, to give compounds in good yield.

2-(4-Fluorobenzylidene)malononitrile (2a) Yellow powder, 62% yield; IR: 3032, 2224, 1580, 1553, 1485, 1406, 1214, 1093, 935, 826, 627 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ /ppm: 7.20–7.26 (2H, m), 7.75 (1H, s), 7.93–7.98 (2H, m); ¹³C NMR (CDCl₃, 75 MHz) δ /ppm: 82.2, 112.7 (2C), 113.8, 117.6 (2C) (d, *Jo*_{C,F} = 22.3 Hz), 127.6 (d, *Jp*_{C,F} = 3.2 Hz), 133.6(2C)(d, *Jm*_{C,F} = 9.5 Hz), 164.6, 168.0.

2-(3-Chlorobenzylidene)malononitrile (2b) White powder, 78% yield; IR: 3030, 2220, 1582, 1555, 1485, 1406, 1210, 1083, 936, 825, 625 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ/ppm: 7.46–7.52 (1H, m), 7.58–7.61 (1H, m), 7.72 (1H, s), 7.82–7.85 (2H, m); ¹³C NMR (CDCl₃, 75 MHz) δ/ppm: 84.4, 112.2 (2C), 113.4, 128.5, 131.1, 132.5, 134.6, 136.0, 158.4.

2-(4-Chlorobenzylidene)malononitrile (**2c**) Yellow powder, 80% yield; IR: 3032, 2224, 1582, 1555, 1485, 1406, 1210, 1094, 935, 825, 627 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ/ppm: 7.52 (2H, d, *J*=8.7 Hz), 7.83 (1H, s), 7.86 (2H, d, *J*=8.7 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ/ppm: 83.5, 112.5 (2C), 129.4 (2C), 130.3 (2C), 132.0, 141.4, 158.5.

2-(3,4-Dichlorobenzylidene)malononitrile (2d) Cream powder, 76% yield; IR: 3034, 2223, 1581, 1550, 1484, 1403, 1208, 1090, 933, 822, 625 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ/ppm: 7.62 (1H, d, *J*=8.4 Hz), 7.69 (1H, s), 7.7.79–7.82 (1H, m), 7.93 (1H, s); ¹³C NMR (CDCl₃, 75 MHz) δ/ppm: 85.0, 112.1(2C), 129.2, 130.6, 131.9, 132.5, 134.5, 139.4, 157.2.

2-(3-Bromobenzylidene)malononitrile (2e) Cream powder, 62% yield; IR: 3040, 2198, 1592, 1432, 1212, 1076, 1041, 876,752 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ/ppm: 7.54–7.59 (1H, m), 7.86–7.94 (2H, m), 8.07 (1H, s), 8.51 (1H, s); ¹³C NMR (CDCl₃, 75 MHz) δ/ppm: 84.2, 113.5 (2C), 123.0, 129.6, 132.7, 133.5, 134.0, 137.2, 160.5.

2-(4-Bromobenzylidene)malononitrile (2*f*) Yellow powder, 78% yield; IR: 3038, 2200, 1590, 1432, 1210, 1076, 1041, 876, 752 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ /ppm: 7.86 (4H, s), 8.53 (1H, s); ¹³C NMR (CDCl₃, 75 MHz) δ /ppm: 82.9, 113.7 (2C), 114.7, 129.0 (2C), 131.0 (2C), 132.8, 133.3, 160.9.

2-(4-Methoxybenzylidene)malononitrile (2g) Yellow powder, 80% yield; IR: 3030, 2219, 1603, 1555, 1509, 1367, 1275, 1176, 1019, 832 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ/ppm: 3.90 (3H, s), 7.00 (2H, d, *J*=9.0 Hz), 7.65 (1H, s), 7.91 (2H, d, *J*=9.0 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ/ppm: 56.0, 78.6, 113.6 (2C), 114.7 (2C), 124.2, 133.7 (2C), 159.1, 165.0.

2-(2,3-Dimethoxybenzylidene)malononitrile (**2h**) Yellow powder, 82% yield; IR: 3030, 2220, 1603, 1555, 1509, 1367, 1275, 1176, 1019, 832 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ/ppm: 3.90 (3H, s), 3.93 (3H, s), 7.15–7.17 (2H, m), 7.78–7.81 (1H, m), 8.25 (1H, s); ¹³C NMR (CDCl₃, 75 MHz) δ/ppm: 56.2, 62.3, 83.0, 112.9 (2C), 114.4, 118.6, 119.8, 124.8, 149.8, 152.9, 155.0.

2-(4-Methylbenzylidene)malononitrile (2i) White powder, 80% yield; IR: 3035, 2220, 1603, 1584, 1367, 1217, 938, 812 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ/ppm: 2.38 (3H, s), 7.40 (2H, d, *J*=8.2 Hz), 7.83 (2H, d, *J*=8.2 Hz), 8.44 (1H, s); ¹³C NMR (CDCl₃, 75 MHz) δ/ppm: 22.1, 80.5, 114.1 (2C), 115.1 (2C), 129.4 (2C), 130.8, 131.3, 161.9.

2-Benzylidenemalononitrile (2j) Cream powder, 78% yield; IR: 3038, 2222, 1605, 1584, 1367, 1218, 938, 812 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ/ppm: 7.51–7.66 (3H, m), 7.78 (1H, s), 7.90 (2H, d, *J*=7.6 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ/ppm: 83.0, 112.8 (2C), 113.9, 129.8 (2C), 131.0 (2C), 131.1, 160.2.

2-(4-Nitrobenzylidene)malononitrile (2k) Light brown, 72% yield; IR: 3040, 2219, 1603, 1558, 1509, 1367, 1275, 1176, 1019, 832 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ/ppm: 8.12 (2H, d, *J*=8.4 Hz), 8.41 (2H, d, *J*=8.2 Hz), 8.70 (1H, s); ¹³C NMR (CDCl₃, 75 MHz) δ/ppm: 86.6, 113.2 (2C), 125.0 (2C), 132.1 (2C), 137.3, 150.3, 159.9.

2-(Pyridin-3-yl-methylene)malononitrile (6a) Brown powder, 76% yield; IR: 3038, 2220, 1605, 1584, 1510, 1367, 1280, 1218, 938, 812 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ/ppm: 7.62–7.67 (1H, m), 8.36 (1H, d, *J*=8.2 Hz), 8.61 (1H, s), 8.78 (1H, d, *J*=6.1 Hz), 8.96 (1H, s); ¹³C NMR (CDCl₃, 75 MHz) δ/ppm: 84.7, 113.5 (2C), 125.0, 128.2, 136.9, 152.2, 154.7, 159.6.

2-(Benzo[b]thiophen-3-yl-methylene)malononitrile (6b) Yellow powder, 84% yield; IR: 3040, 2218, 1603, 1558, 1509, 1367, 1280, 1174, 1032, 837 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ/ppm: 7.34–7.44 (2H, m), 7.77–7.82 (2H, m), 8.00 (1H, s), 8.77 (1H, s); ¹³C NMR (CDCl₃, 75 MHz) δ/ppm: 81.1, 113.8 (2C), 120.9, 123.2, 126.2, 126.4, 127.7, 136.1, 137.2, 139.1, 149.1.

2-((5-Methylfuran-2-yl)methylene)malononitrile (6*c*) Brown powder, 80% yield; IR: 3036, 2219, 1605, 1558, 1509, 1367, 1280, 1174, 1090, 837 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ/ppm: 2.42 (3H, s), 6.59 (1H, d, *J*=3.8 Hz), 7.37 (1H, d, *J*=3.5 Hz), 8.13 (1H, s); ¹³C NMR (CDCl₃, 75 MHz) δ/ppm: 14.7, 72.8, 112.9, 114.3, 115.6, 128.8, 144.1, 147.7, 162.9.

Synthesis of aminocyanopyridine derivatives (3a-k and 7a-c) Compounds 2a-k and 6a-c (5.0 mmol) were suspended in benzene (60 mL), and ammonium acetate (7.5 mmol) and cycloalkane 4 (5.0 mmol) were added. The flask was fitted with a reflux condenser and a water separator. The mixture was refluxed for 10 h. Then, the solvent was evaporated, and the mixture was redissolved in dichloromethane (150 mL) and washed with water (2 × 50 mL). Then, the organic phase was dried with NaSO₄, filtered off and recrystallized from ethanol. All aminocyanopyridines (3a-k and 7a-c) were prepared by this procedure.

2-Amino-4-(4-fluorophenyl)-5,6,7,8-tetrahydroquinoline-3-carbonitrile (3a) Yellow powder, 78% yield; IR: 3423, 3301, 3137, 2939, 2212, 1642, 1555, 1508, 1249, 1157, 844 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ /ppm: 1.62–1.69 (2H, m), 1.78–1.86 (2H, m), 2.30 (2H, t, *J*=6.1 Hz), 2.80 (2H, t, *J*=6.4 Hz), 5.20 (2H, s), 7.09–7.25 (4H, m); ¹³C NMR (CDCl₃, 75 MHz) δ /ppm: 22.6, 22.7, 26.7, 33.5, 90.2, 115.9 116.9(d, *Jo*_{C,F} = 46.8 Hz), 121.0, 130.3 (d, *Jm*_{C,F} = 8.3 Hz), 132.2 (d, *Jp*_{C,F} = 3.3 Hz), 153.7, 157.3, 161.4, 161.8.

2-Amino-4-(3-chlorophenyl)-5,6,7,8-tetrahydroquinoline-3-carbonitrile (3b) Yellow powder, 70% yield; IR: 3419, 3301, 3141, 2926, 2209, 1639, 1553, 1455, 1420, 1246, 1171, 1084, 772 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ/ppm: 1.64–1.71 (2H, m), 1.79–1.87 (2H, m), 2.30 (2H, t, *J*=6.4 Hz), 2.80 (2H, t, *J*=6.4 Hz), 5.13 (2H, s), 7.12–7.15 (1H, m), 7.25 (1H, s), 7.40–7.42 (2H, m); ¹³C NMR (CDCl₃, 75 MHz) δ/ppm: 22.6, 22.9, 26.6, 33.5, 89.9, 116.6, 120.8, 126.5, 128.3, 129.3, 130.4, 134.8, 138.0, 153.0, 157.2, 162.0.

2-Amino-4-(4-chlorophenyl)-5,6,7,8-tetrahydroquinoline-3-carbonitrile (3c) Yellow powder, 78% yield; IR: 3420, 3301, 3141, 2926, 2212, 1639, 1553, 1455, 1420, 1246, 1171, 1080, 772 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ/ppm: 1.64–1.70 (2H, m), 1.78–1.84 (2H, m), 2.30 (2H, t, *J*=6.1 Hz), 2.80 (2H, t, *J*=6.1 Hz), 5.11 (2H, s), 7.19 (2H, d, *J*=8.2 Hz), 7.45 (2H, d, *J*=8.2 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ/ppm: 22.5, 22.8, 26.4, 33.3, 89.3, 116.8, 120.1, 128.9, 129.7, 134.7, 134.8, 153.0, 157.5, 161.7.

2-Amino-4-(3,4-dichlorophenyl)-5,6,7,8-

tetrahydroquinoline-3-carbonitrile (3d) Yellow powder, 80% yield; IR: 3410, 3303, 3140, 2936, 2102, 1630, 1555, 1455, 1419, 1248, 1170, 1079, 775 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ/ppm: 1.48–1.51 (2H, m), 1.61–1.69 (2H, m), 2.13 (2H, t, *J*=6.4 Hz), 2.62 (2H, t, *J*=6.4 Hz), 5.35 (2H, s), 6.96 (1H, d, *J*=8.2 Hz), 7.25 (1H, s), 7.40 (1H, d, *J*=8.2 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ/ppm: 22.4, 22.8, 26.4, 33.4, 89.1, 116.5, 120.1, 127.8, 130.2, 131.0, 132.9, 133.1, 136.3, 151.6, 157.5, 162.2.

2-Amino-4-(3-bromophenyl)-5,6,7,8-tetrahydroquinoline-3-carbonitrile (3e) Brown powder, 70% yield; IR: 3416, 3302, 3138, 2924, 2198, 1640, 1553, 1456, 1420, 1248, 1180, 1080, 772 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) 8/ppm: 1.64–1.72 (2H, m), 1.78–1.86 (2H, m), 2.27–2.34 (2H, m), 2.80 (2H, t, *J*=6.4 Hz), 5.18 (2H, s), 7.18 (1H, d, *J*=8.2 Hz), 7.32–7.39 (2H, s), 7.57 (1H, d, *J*=8.2 Hz); ¹³C NMR (CDCl₃, 75 MHz) 8/ppm: 22.6, 22.9, 26.6, 33.4, 89.9, 116.5, 120.7, 122.9, 127.0, 130.6, 131.1, 132.1, 138.3, 152.9, 157.4, 162.0.

2-Amino-4-(4-bromophenyl)-5,6,7,8-tetrahydroquinoline-3-carbonitrile (3f) Yellow powder, 74% yield; IR: 3422, 3303, 3142, 2918, 2186, 1640, 1555, 1455, 1420, 1240, 1179, 1080, 776 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ/ppm: 1.64–1.71 (2H, m), 1.79–1.85 (2H, m), 2.31 (2H, t, *J*=6.4 Hz), 2.81 (2H, t, *J*=6.4 Hz), 5.09 (2H, s), 7.14 (2H, d, *J*=8.4 Hz), 7.62 (2H, d, *J*=8.4 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ/ppm: 22.7, 23.0, 26.6, 33.5, 89.8, 116.7, 120.8, 123.5, 130.0, 131.0, 132.2, 132.7, 135.1, 153.3, 157.2, 162.0.

2-Amino-4-(4-methoxyphenyl)-5,6,7,8-

tetrahydroquinoline-3-carbonitrile (*3g*) White powder, 64% yield; IR: 3449, 3410, 3154, 2934, 2212, 1637, 1555,

1422, 1259, 1069, 1001, 743 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ /ppm: 1.63–1.69 (2H, m), 1.79–1.84 (2H, m), 2.35 (2H, t, *J*=6.4 Hz), 2.79 (2H, t, *J*=6.1 Hz), 3.84 (3H, s), 5.11 (2H, s), 6.98 (2H, d, *J*=8.2 Hz), 7.19 (2H, d, *J*=8.2 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ /ppm: 22.8, 23.1, 26.8, 33.5, 55.5, 90.4, 114.2, 115.3, 117.2, 121.3, 128.4, 129.8, 133.7, 154.5, 157.3, 160.1, 161.5.

2-Amino-4-(2,3-dimethoxyphenyl)-5,6,7,8-

tetrahydroquinoline-3-carbonitrile (3h) Yellow powder, 60% yield; IR: 3452, 3408, 3150, 2930, 2210, 1635, 1555, 1420, 1259, 1079, 1001, 745 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ/ppm: 1.60–1.69 (2H, m), 1.77–1.85 (2H, m), 2.14–2.22 (1H, m), 2.31–2.38 (1H, m), 2.77–2.82 (2H, m), 3.69 (3H, s), 3.90 (3H, s), 5.11 (2H, s), 6.67 (1H, d, *J*=7.6 Hz), 6.98 (1H, d, *J*=8.2 Hz), 7.14 (1H, t, *J*=8.4 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ/ppm: 22.7, 22.8, 25.3, 33.5, 55.9, 61.3, 90.4, 113.1, 116.9, 121.0, 122.3, 124.8, 130.7, 145.8, 152.1, 153.1, 157.0, 161.2.

2-Amino-4-(p-tolyl)-5,6,7,8-tetrahydroquinoline-3-

carbonitrile (*3i*) Yellow powder, 76% yield; IR: 3427, 3292, 3140, 2936, 2209, 1638, 1552, 1513, 1455, 1423, 1250, 1168, 801, 774 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ /ppm: 1.63–1.68 (2H, m), 1.78–1.89 (2H, m), 2.34 (2H, t, *J*=6.4 Hz), 2.40 (3H, s), 2.79 (2H, t, *J*=6.4 Hz), 5.18 (2H, s), 7.13 (2H, d, *J*=7.9 Hz), 7.26 (2H, d, *J*=8.2 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ /ppm: 21.6, 22.7, 23.0, 26.7, 33.5, 90.3, 117.1, 121.1, 128.2, 129.6, 133.3, 139.0, 154.9, 157.3, 161.5.

2-Amino-4-phenyl-5,6,7,8-tetrahydroquinoline-3-

carbonitrile (3j) Yellow powder, 72% yield; IR: 3420, 3300, 3140, 2930, 2214, 1638, 1552, 1510, 1450, 1422, 1250, 1168, 803, 775 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ /ppm: 1.63–1.69 (2H, m), 1.78–1.86 (2H, m), 2.32 (2H, t, *J*=6.4 Hz), 2.80 (2H, t, *J*=6.1 Hz), 5.17 (2H, s), 7.22–7.25 (2H, m), 7.42–7.49 (3H, m); ¹³C NMR (CDCl₃, 75 MHz) δ /ppm: 22.7, 23.0, 26.7, 33.5, 90.2, 116.9, 121.0, 128.3, 128.9, 129.0, 136.3, 154.7, 157.3, 161.6.

2-Amino-4-(4-nitrophenyl)-5,6,7,8-tetrahydroquinoline-

3-carbonitrile (*3k*) Brown powder, 66% yield; IR: 3422, 3400, 3150, 2928, 2210, 1640, 1555, 1510, 1450, 1250, 1168, 873 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ/ppm: 1.65–1.69 (2H, m), 1.79–1.89 (2H, m), 2.24 (2H, t, *J*=6.4 Hz), 2.76 (2H, t, *J*=6.4 Hz), 5.35 (2H, s), 7.26 (2H, d, *J*=8.4 Hz), 8.16 (2H, d, *J*=8.2 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ/ppm: 24.3, 26.4, 33.4, 35.8, 88.7, 112.6, 124.0, 124.2, 129.6, 130.7, 140.8, 143.1, 148.0, 151.8.

2-Amino-4-(pyridin-3-yl)-5,6,7,8-tetrahydroquinoline-3-

carbonitrile (*7a*) Yellow powder, 60% yield; IR: 3418, 3336, 3142, 2938, 2210, 1639, 1554, 1420, 1240, 1168, 801, 729 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ/ppm: 1.55–1.62

(2H, m), 1.70–1.79 (2H, m), 2.18 (2H, t, J=6.1 Hz), 2.69 (2H, t, J=6.1 Hz), 6.65 (2H, s), 7.39–7.43 (1H, m), 7.76–7.81 (1H, m), 8.57 (1H, s), 8.64–8.66 (1H, m); ¹³C NMR (CDCl₃, 75 MHz) δ /ppm: 22.6, 23.0, 26.4, 33.5, 88.6, 114.5, 117.1, 119.1, 124.2, 132.9, 137.7, 149.8, 151.1, 158.6, 162.0.

2-Amino-4-(benzo[b]thiophen-3-yl)-5,6,7,8-

tetrahydroquinoline-3-carbonitrile (*7b*) Cream powder, 70% yield; IR: 3420, 3300, 3140, 2940, 2212, 1642, 1552, 1419, 1218, 1168, 829, 729 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ/ppm: 1.59–1.66 (2H, m), 1.80–1.86 (2H, m), 2.25–2.29 (2H, m), 2.83–2.88 (2H, m), 5.23 (2H, s), 7.34–7.44 (1H, m), 7.92–7.94 (4H, m); ¹³C NMR (CDCl₃, 75 MHz) δ/ppm: 22.7, 22.8, 26.1, 33.4, 91.2, 116.5, 122.5, 122.6, 123.2, 124.9, 125.1, 126.1, 131.7, 137.2, 140.3, 149.1, 157.3, 161.6.

2-Amino-4-(5-methylfuran-2-yl)-5,6,7,8-

tetrahydroquinoline-3-carbonitrile (7*c*) Red powder, 40% yield; IR: 3418, 3360, 3141, 2946, 2210, 1638, 1550, 1422, 1212, 1160, 825 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ/ppm: 1.68–1.80 (2H, m), 1.82–1.87 (2H, m), 2.39 (3H, s), 2.68 (2H, t, *J*=6.1 Hz), 2.78 (2H, t, *J*=6.4 Hz), 5.16 (2H, s), 6.15 (1H, d, *J*=5.4 Hz),6.75 (1H, d, *J*=5.5 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ/ppm: 13.9, 22.5, 23.0, 27.2, 33.7, 86.8, 108.1, 115.8, 117.8, 120.0, 141.6, 146.4, 154.5, 158.0, 161.7.

General procedure for the of compounds 4a-k and 8a-c The 2-amino-4-phenyl-5,6,7,8-tetrahydroquinoline-3carbonitrile derivatives (1.0 eq) and ZnCl₂ (1.5 eq) and cyclohexanone (12 eq) were mixed. The reaction mixture was heated at 140 °C for 4 h. When the reaction was complete, the reaction mixture was diluted with a solution of dichloromethane/water (1/1) and treated with an aqueous solution of sodium hydroxide (10%) until pH 11–12. After stirring for 30 min, the mixture was extracted with CH₂Cl₂, dried over anhydrous sodium sulphate, filtered and the solvent was evaporated. The solid obtained washed with ether and filtered gives the pure product.

12-(4-Fluorophenyl)-1,2,3,4,7,8,9,10-

octahydrodibenzo[b,g][1,8]naphthyridin-11-amine (*4a*) Light brown powder, 50% yield; mp. 170–172 °C; IR: 3490, 3410, 2931, 2864, 1614, 1562, 1543, 1505, 1427, 1328, 1218, 1093, 854 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ /ppm: 1.70–1.72 (2H, m), 1.85 (6H, s, br), 2.28–2.30 (4H, m), 2.99 (2H, s, br), 3.09–3.13 (2H, m), 4.10 (2H, s), 7.19–7.26 (4H, m); ¹³C NMR (CDCl₃, 75 MHz) δ /ppm: 22.8, 23.0, 23.3, 23.9, 27.8, 34.3, 108.1, 111.0, 116.6 (d, *Jo*_F = 21.4 Hz), 127.5, 130.4(d, *Jm*_{C,F} = 7.8 Hz), 135.5(d, *Jp*_{C,F} = 3.8 Hz), 144.1, 148.2, 153.6, 160.7, 160.8, 164.4. LC–MS (m/z): 348.1 [MH] ⁺. Anal. Calcd. for C₂₂H₂₂FN₃: C, 76.05; H, 6.38; N, 12.09; found: C, 76.12; H, 6.42; N, 12.25. octahydrodibenzo[b,g][1,8]naphthyridin-11-amine (4b) Cream powder, 60% yield; mp. 225–227 °C; IR: 3440, 3380, 2937, 2857, 1638, 1561, 1542, 1431, 1302, 1146, 1078, 800, 673 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ /ppm: 1.73–1.77 (2H, m), 1.85–1.89 (6H, m), 2.32–2.39 (4H, m), 3.01 (2H, t, J=6.1 Hz), 3.12 (2H, t, J=6.4 Hz), 4.10 (2H, s), 7.20 (1H, t, J=4.1 Hz), 7.30 (1H, s), 7.47 (2H, d, J=4.6 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ /ppm: 22.8, 23.0, 23.3, 23.9, 27.8, 34.3, 107.8, 111.1, 126.8, 127.1, 128.7, 130.9, 135.6, 141.6, 143.5, 148.1, 153.6, 160.9. LC–MS (m/z): 364.1 [MH]⁺. Anal. Calcd. for C₂₂H₂₂ClN₃: C, 72.62; H, 6.09; N, 11.55; found: C, 72.50; H, 6.00; N, 11.78.

12-(4-Chlorophenyl)-1,2,3,4,7,8,9,10-

octahydrodibenzo[b,g][1,8]naphthyridin-11-amine (4c) Light brown powder, 67% yield; mp. 142–145 °C; IR: 3430, 3400, 2930, 2857, 1625, 1563, 1541, 1491, 1428, 1304, 1088, 1015, 863 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ /ppm: 1.64–1.74 (2H, m), 1.80–2.01 (6H, m), 2.28–2.32 (4H, m), 2.99 (2H, t, *J*=5.8 Hz), 3.10 (2H, t, *J*=6.4 Hz), 4.13 (2H, s), 7.23 (2H, d, *J*=8.2 Hz), 7.50 (2H, d, *J*=7.9 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ /ppm: 22.8, 23.0, 23.3, 23.9, 25.2, 27.8, 34.3, 42.2, 107.9, 111.0, 123.8, 127.3, 129.8, 130.1, 134.8, 136.0, 138.1, 143.8, 148.2, 153.5, 160.7, 160.9. LC–MS (m/z): 364.0 [MH]⁺. Anal. Calcd. for C₂₂H₂₂ClN₃: C, 72.62; H, 6.09; N, 11.55; found: C, 72.70; H, 6.12; N, 11.65.

12-(3,4-Dichlorophenyl)-1,2,3,4,7,8,9,10-

octahydrodibenzo[b,g][1,8]naphthyridin-11-amine (4d) Brown powder, 67% yield; mp. 201–203 °C; IR: 3470, 3380, 2931, 2857, 1632, 1563, 1541, 1433, 1315, 1135, 1031, 938, 822 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ /ppm: 1.71–1.77 (2H, m), 1.85–1.88 (6H, m), 2.26–2.39 (4H, m), 3.01 (2H, t, J=5.8 Hz), 3.11 (2H, t, J=6.1 Hz), 4.14 (2H, s), 7.17 (1H, dd, J=8.7, 1.7 Hz), 7.40 (1H, s), 7.61 (1H, d, J=8.2 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ /ppm: 22.7, 22.9, 23.2, 23.9, 27.8, 34.2, 34.3, 107.7, 111.3, 127.3, 128.1, 130.6, 131.6, 133.2, 134.0, 139.6, 142.4, 148.0, 153.4, 160.9, 161.0. LC–MS (m/z): 398.0 [MH] ⁺. Anal. Calcd. for C₂₂H₂₁Cl₂N₃: C, 66.34; H, 5.31; N, 10.55; found: C, 66.42 H, 5.55; N, 10.62.

12-(3-Bromophenyl)-1,2,3,4,7,8,9,10-

octahydrodibenzo[b,g][1,8]naphthyridin-11-amine (*4e*) Light brown powder, 57% yield; mp. 174–176 °C; IR: 3420, 3380, 2932, 2858, 1618, 1563, 1543, 1431, 1326, 1169, 1143, 1071, 967, 693 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ /ppm: 1.61–1.74 (4H, m), 1.85–2.13 (6H, m), 2.30–2.35 (4H, m), 3.04–3.09 (2H, m), 4.58 (2H, s), 7.19–7.25 (1H, m), 7.40–7.45 (2H, m), 7.64 (1H, d, *J*=7.9 Hz); ¹³C NMR $\begin{array}{l} (CDCl_3, 75 \ MHz) \ \&/ppm: 22.3, 22.6, 23.1, 23.7, 27.7, 32.6, \\ 34.2, 107.4, 111.1, 123.9, 127.1, 128.1, 131.4, 132.2, 140.9, \\ 144.0, 150.2, 151.5, 159.0, 162.1. \ LC-MS \ (m/z): 408.1 \\ [MH]^+. \ Anal. \ Calcd. \ for \ C_{22}H_{22}BrN_3: \ C, 64.71; \ H, 5.43; \ N, \\ 10.29; \ found: \ C, 64.88; \ H, 5.56; \ N, 10.34. \end{array}$

12-(4-Bromophenyl)-1,2,3,4,7,8,9,10-

octahydrodibenzo[b,g][1,8]naphthyridin-11-amine (4f) Light brown powder, 40% yield; mp. 227–229 °C; IR: 3480, 3410, 2930, 2860, 1698, 1608, 1565, 1542, 1426, 1313, 1069, 1011, 929, 834 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ /ppm: 1.69–1.77 (2H, m), 1.84–1.91 (6H, m), 2.30–2.34 (4H, m), 3.01 (2H, t, *J*=5.8 Hz), 3.12 (2H, t, *J*=6.4 Hz), 4.15 (2H, s), 7.20 (2H, d, *J*=8.4 Hz), 7.67 (2H, d, *J*=8.4 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ /ppm: 22.8, 23.0, 23.3, 23.9, 27.8, 34.2, 34.3, 107.8, 111.0, 122.9, 127.2, 130.3, 132.8, 138.5, 143.9, 148.2, 153.4, 160.7, 160.9. LC–MS (m/z): 408.1 [MH]⁺. Anal. Calcd. for C₂₂H₂₂BrN₃: C, 64.71; H, 5.43; N, 10.29; found: C, 64.82; H, 5.60; N, 10.40.

12-(4-Methoxyphenyl)-1,2,3,4,7,8,9,10-

octahydrodibenzo[b,g][1,8]naphthyridin-11-amine (4g) Yellow powder, 86% yield; mp. 209–211 °C; IR: 3460, 3400, 2928, 2857, 1633, 1563, 1541, 1510, 1435, 1284, 1243, 1177, 1030, 930, 835 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ /ppm: 1.67–1.75 (2H, m), 1.82–1.84 (6H, m), 2.31–2.35 (4H, m), 2.98 (2H, s, br), 3.09 (2H, t, *J*=6.4 Hz), 3.86 (3H, s), 4.26 (2H, s), 7.03 (2H, d, *J*=8.7 Hz), 7.16 (2H, d, *J*=8.4 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ /ppm: 22.8, 23.0, 23.4, 23.8, 27.7, 34.1, 34.3, 55.5, 108.4, 110.7, 115.0, 127.9, 129.7, 131.3, 145.1, 148.7, 153.5, 159.7, 160.4, 160.8. LC–MS (m/z): 360.2 [MH]⁺. Anal. Calcd. for C₂₃H₂₅N₃O: C, 76.85; H, 7.01; N, 11.69; found: C, 77.00; H, 7.21; N, 11.52.

12-(2,3-Dimethoxyphenyl)-1,2,3,4,7,8,9,10-

octahydrodibenzo[b,g][1,8]naphthyridin-11-amine(4h) Light brown powder, 72% yield; mp. 162–164 °C; IR: 3480, 3410, 2938, 2856, 1622, 1558, 1540, 1512, 1436, 1284,, 1277, 1030, 930, 837 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ /ppm: 1.67–1.76 (2H, m), 1.80–1.84 (6H, m), 2.24–2.38 (4H, m), 2.99 (2H, s, br), 3.10 (2H, t, *J*=6.4 Hz), 3.59 (3H, s), 3.92 (3H, s), 4.32 (2H, s), 6.68 (1H, d, *J*=7.9 Hz), 7.08 (2H, d, *J*=7.9 Hz), 7.18 (1H, t, *J*=8.2 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ /ppm: 22.8, 22.9, 23.0, 23.3, 23.9, 27.2, 27.4, 34.3, 56.0, 60.0, 108.5, 110.7, 112.9, 121.1, 125.3, 127.7, 133.7, 141.7, 145.8, 148.5, 153.6, 160.4, 160.8. LC–MS (m/z): 390.2 [MH]⁺. Anal. Calcd. for C₂₄H₂₇N₃O₂: C, 74.01; H, 6.99; N, 10.79; found: C, 74.66; H, 7.20; N, 11.00.

12-(p-Tolyl)-1,2,3,4,7,8,9,10-octahydrodibenzo[b,g][1,8]

naphthyridin-11-amine (*4i*) Light brown powder, 64% yield; mp. 193–195 °C; IR: 3490, 3280, 2929, 2857, 1633, 1567, 1541, 1512, 1430, 1314, 1138, 1110, 930, 813 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ /ppm: 1.63–1.76 (2H, m), 1.83–2.01 (6H, m), 2.22–2.39 (4H, m), 2.43 (3H, s), 2.99–3.01 (2H, m), 3.11 (2H, t, *J*=6.4 Hz), 4.17 (2H, s), 7.14 (2H, d, *J*=7.6 Hz), 7.31 (2H, d, *J*=7.3 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ /ppm: 21.5, 22.6, 23.1, 23.4, 23.9, 27.7, 32.0, 34.3, 108.3, 110.6, 127.4, 128.4, 130.2, 136.6, 138.5, 145.3, 148.6, 153.6, 160.5, 160.7. LC–MS (m/z): 344.1 [MH]⁺. Anal. Calcd. for C₂₃H₂₅N₃: C, 80.43; H, 7.34; N, 12.23; found: C, 80.62; H, 7.40; N, 12.36.

12-Phenyl-1,2,3,4,7,8,9,10-octahydrodibenzo[b,g][1,8]

naphthyridin-11-amine (*4j*) Light brown powder, 47% yield; mp. 146–148 °C; IR: 3440, 3280, 2929, 2858, 1619, 1564, 1544, 1433, 1325, 1217, 1138, 1119, 702 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ /ppm: 1.62–1.76 (2H, m), 1.85–2.00 (6H, m), 2.22–2.33(4H, m), 2.99–3.01 (2H, m), 3.10–3.12 (2H, m), 4.17 (2H, s), 7.25–7.37 (2H, m), 7.45–7.54 (3H, m); ¹³C NMR (CDCl₃, 75 MHz) δ /ppm: 22.7, 23.0, 23.4, 23.8, 27.7, 32.0, 34.3, 108.0, 111.6, 123.7, 127.3, 128.1, 131.2, 136.6, 138.5, 145.3, 153.7, 160.1, 160.8. LC–MS (m/z): 330.2 [MH]⁺. Anal. Calcd. for C₂₂H₂₃N₃: C, 80.21; H, 7.04; N, 12.76; found: C, 80.36; H, 7.20; N, 12.80.

12-(4-Nitrophenyl)-1,2,3,4,7,8,9,10-

octahydrodibenzo[b,g][1,8]naphthyridin-11-amine(4k)

Light brown powder, 62% yield; mp. 170–171 °C; IR: 3438, 3282, 2934, 2860, 1622, 1584, 1516, 1439, 1344, 1217, 1138, 1107, 847 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ /ppm: 1.65–1.74 (2H, m), 1.80–1.87 (6H, m), 2.24–2.39 (4H, m), 2.99–3.01 (2H, m), 3.04 (2H, t, *J*=6.4 Hz), 4.20 (2H, s), 7.73 (2H, d, *J*=8.7 Hz), 8.47 (2H, d, *J*=8.7 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ /ppm: 22.6, 23.1, 23.4, 23.8, 27.8, 32.0, 34.3, 106.7, 111.3, 125.6, 127.3, 130.7, 136.6, 138.5, 144.2, 148.6, 153.7, 160.1, 160.8. LC–MS (m/z): 375.2 [MH]⁺. Anal. Calcd. for C₂₂H₂₂N₄O₂: C, 70.57; H, 5.92; N, 14.96; found: C, 71.60; H, 6.22; N, 15.14.

12-(Pyridin-3-yl)-1,2,3,4,7,8,9,10-

octahydrodibenzo[b,g][1,8]naphthyridin-11-amine (*8a*) Red powder, 52% yield; mp. 171–173 °C; IR: 3460, 3400, 2932, 2860, 1606, 1566, 1544, 1483, 1427, 1316, 1251, 1093, 930, 711 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ/ppm: 1.66–1.75 (2H, m), 1.83–1.89 (6H, m), 2.24–2.35 (4H, m), 2.97–2.99 (2H, m), 3.11 (2H, t, *J*=3.4 Hz),4.00 (2H, s), 7.44–7.49 (1H, m), 7.63–7.67 (1H, m), 8.55–8.56 (1H, m), 8.73 (1H, dd, *J*=4.6, 1.4 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ/ppm: 22.7, 22.9, 23.2, 23.9, 28.1, 34.2, 34.3, 108.1, 111.4, 124.1, 127.7, 135.6, 136.4, 141.2, 148.0, 149.2, 150.0, 153.4, 161.0. LC–MS (m/z): 331.1 [MH] ⁺. Anal. Calcd. for C₂₁H₂₂N₄: C, 76.33; H, 6.71; N, 16.96; found: C, 76.52; H, 6.82; N, 16.90.

12-(Benzo[b]thiophen-3-yl)-1,2,3,4,7,8,9,10-

octahydrodibenzo[b,g][1,8]naphthyridin-11-amine (*8b*) Yellow powder, 83% yield; mp. 167–169 °C; IR: 3420, 3360, 2933, 2859, 1605, 1587, 1566, 1430, 1344, 1269, 1170, 1077, 1045, 830, 767 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ /ppm: 1.58–1.72 (2H, m), 1.82–2.00 (6H, m), 2.07–2.86 (4H, m), 3.10 (2H, t, *J*=5.8 Hz), 3.21 (2H, s, br), 4.20 (2H, s), 7.14 (1H, d, *J*=7.9 Hz), 7.30–7.48 (3H, m), 7.96 (1H, d, *J*=7.9 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ /ppm: 22.5, 22.7, 23.5, 26.1, 26.7, 29.7, 32.0, 34.1, 107.9, 111.2, 122.4, 123.4, 125.7, 126.1, 131.9, 136.6, 140.5, 148.0, 149.1, 154.4, 155.0, 161.7, 164.3. LC–MS (m/z): 386.1 [MH]⁺. Anal. Calcd. for C₂₄H₂₃N₃S: C, 74.77; H, 6.01; N, 10.90; found: C, 75.22; H, 6.42; N, 11.33.

12-(5-Methylfuran-2-yl)-1,2,3,4,7,8,9,10-

octahydrodibenzo[b,g][1,8]naphthyridin-11-amine (8c) Red powder, 70% yield; mp. 99–101 °C; IR: 3430, 3340, 2929, 2859, 1633, 1588, 1434, 1372, 1207, 1022, 793 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ /ppm: 1.60–1.72 (2H, m), 1.82–2.30 (6H, m), 2.32 (3H, s), 2.34–2.86 (4H, m), 2.90–3.00 (2H, m), 3.20 (2H, s, br), 3.80 (2H, s), 6.17 (1H, s), 6.47 (1H, s); ¹³C NMR (CDCl₃, 75 MHz) δ /ppm: 13.8, 22.4, 22.8, 23.1, 23.8, 28.3, 34.2, 34.3, 108.1, 111.7, 144.0, 133.6, 135.9, 143.6, 145.8, 152.6, 155.5, 156.3, 165.3. LC–MS (m/z): 334.1 [MH]⁺. Anal. Calcd. for C₂₁H₂₃N₃O: C, 75.65; H, 6.95; N, 12.60; found: C, 75.90; H, 7.34; N, 12.85.

Biological activities

Anticholinesterase activity assays

Acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities of the synthesized compounds were determined according to Ellman's method. The IC_{50} was determined by constructing an absorbance and/or inhibition (%) curve and examining the effect of five different concentrations. IC50 values were calculated for a given antagonist by determining the concentration needed to inhibit half of the maximum biological response of the agonist. The substrates of the reaction were acetylthiocholine iodide and butyrylthiocholine iodide. 5,5'-Dithiobis(2-nitrobenzoic) acid (DTNB) was used to measure anticholinesterase activity. Aliquots of 150 µL of 100 mM phosphate buffer (pH 8.0), 10 µL of sample solution and 20 µL AChE (2.476 × 10⁻⁴ U/µL) (or 3.1813×10^{-4} U/µL BuChE) solution were mixed and incubated for 15 min at 25 °C. 10 µL of DTNB solution was prepared by adding 2.0 mL of pH 7.0 and 4.0 mL of pH 8.0 phosphate buffers to a mixture of 1.0 mL of 16 mg/mL DTNB and 7.5 mg/mL NaHCO₃ in pH 7.0 phosphate buffers. The reaction was initiated by the addition of 10 μ L (7.1 mM) acetylthiocholine iodide (or 0.79 mM butyrylthiocholine iodide). In this method, the activity was measured by following the yellow colour produced as a result of the thiol anion produced by reacting the enzymatic hydrolysis of the substrate with DTNB. Also, methanol was used as a control solvent. The hydrolysis of the substrates was monitored using a BioTek Power Wave XS at 412 nm.

Cell cytotoxicity

The cytotoxicity effect of test compound on hepatocellular carcinoma (HepG2) cells was evaluated by MTT (3-(4,5 dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide) assay according to described methods. Briefly, cells line were seeded in a flat-bottomed 96-well plate at a density of 5×10^4 cells/well in DMEM/RPMI containing 10% FBS. The plate was incubated at 37 °C with 5% CO₂ for 24 h, and then compounds were prepared and added to make a final concentration of 10, 5, 2.5, 1.25, 0.625, 0.312, 0.156 and 0.078 µM, respectively, in serum-free DMEM/RPMI. Cells were further incubated for 24 h at 37 °C with 5% CO₂; then, the medium was replaced with DMEM/RPMI containing 10% FBS. 10 µL of filter-sterilized MTT solution (5 mg/mL in PBS) was added to each well and further incubated at 37 °C with 5% CO2 for 4 h. At the end of incubation, media was aspirated from the wells, and 100 μ L of DMSO was added to dissolve insoluble Formosan crystals formed. The absorbance was measured at 570 nm using a microtiter plate reader. The relative % cell viability was calculated from the following equation: Relative per cent cell viability = $(A_{\text{test}}/A_{\text{control}}) \times 100\%$. (A_{test} is the absorbance of the sample treated cells, and A_{control} is the absorbance of the untreated cells. Each absorbance was taken to be the mean of triplicate measurements.) The cell viability was represented as a percentage relative to untreated cells as a control.

In vitro blood-brain barrier permeation assay

The Corning Gentest Pre-coated PAMPA Plate System (Cat. No. 353015) was used to perform permeability assays for novel compounds. In summary, the 96-well filter plate, pre-coated with lipids, was used as the permeation acceptor, and a matching 96-well receiver plate was used as the permeation donor. Compound solutions were prepared by diluting 10 mM DMSO stock solutions in PBS. (In most cases, we used a final concentration of 200 μ M.) The compound solutions were added to the wells (300 μ L/well) of the receiver plate, and PBS was added to the wells (200 μ L/well) of the pre-coated filter plate. The filter plate was then coupled with the receiver plate, and the plate assembly was incubated at room temperature without agitation for five hours. At the end

of the incubation, the plates were separated and 150 μ L solution from each well of the filter plate and the receiver plate was transferred to UV transparent plates. The final concentrations of compounds in both donor wells and acceptor wells were analysed by a UV plate reader Synergy H1 (BioTek, USA). The concentration of the compound was calculated from the standard curve and expressed as permeability (P_e) by the following formula:

Permeability (cm/s) : $P_{e} = \{-\ln[1 - C_{A}(t)/C_{eq}]\}/$ [A * (1/V_D + 1/V_A) * t]

A = filter area (0.3 cm²), V_D = donor well volume (0.3 mL), V_A = acceptor well volume (0.2 mL), t = incubation time, $C_A(t)$ = compound concentration in acceptor well at time t, $C_D(t)$ = compound concentration in donor well at time t, and $C_{eq} = [C_D(t)*V_D + C_A(t)*V_A]/(V_D + V_A)$.

Supporting information summary

¹H NMR, ¹³C NMR and MS spectra of the synthesized compounds are given in the Supporting Information.

Acknowledgements This work was supported by the Bezmialem Research Fund of the Bezmialem Vakif University. Project Number: 3.2018/5.

References

- Mermer A, Demirbas N, Sirin Y, Uslu H, Ozdemir Z, Demirbas A (2018) Conventional and microwave prompted synthesis, antioxidant, anticholinesterase activity screening and molecular docking studies of new quinolone-triazole hybrids. Bioorg Chem 78:236–248. https://doi.org/10.1016/j.bioorg.2018.03.017
- Kumar K, Kumar A, Keegan RM, Deshmukh R (2018) Recent advances in the neurobiology and neuropharmacology of Alzheimer's disease. Biomed Pharmacother 98:297–307. https:// doi.org/10.1016/j.biopha.2017.12.053
- Liu ZK, Fang L, Zhang H, Gou SH, Chen L (2017) Design, synthesis and biological evaluation of multifunctional tacrine-curcumin hybrids as new cholinesterase inhibitors with metal ions-chelating and neuroprotective property. Bioorg Med Chem 25(8):2387–2398. https://doi.org/10.1016/j.bmc.2017.02.049
- Ulus R, Kurt BZ, Gazioglu I, Kaya M (2017) k Microwave assisted synthesis of novel hybrid tacrine-sulfonamide derivatives and investigation of their antioxidant and anticholinesterase activities. Bioorg Chem 70:245–255. https://doi.org/10.1016/j.bioorg. 2017.01.005
- Eghtedari M, Sarrafi Y, Nadri H, Mahdavi M, Moradi A, Moghadam FH, Emami S, Firoozpour L, Asadipour A, Sabzevari O, Foroumadi A (2017) New tacrine-derived AChE/BuChE inhibitors: synthesis and biological evaluation of 5-amino-2phenyl-4H-pyrano[2,3-b] quinoline-3-carboxylates. Eur J Med Chem 128:237–246. https://doi.org/10.1016/j.ejmech.2017.01.042
- Wiemann J, Loesche A, Csuk R (2017) Novel dehydroabietylamine derivatives as potent inhibitors of acetylcholinesterase. Bioorg Chem 74:145–157. https://doi.org/10.1016/j.bioorg.2017.07.013

- Hamulakova S, Imrich J, Janovec L, Kristian P, Danihel I, Holas O, Pohanka M, Bohm S, Kozurkova M, Kuca K (2014) Novel tacrine/acridine anticholinesterase inhibitors with piperazine and thiourea linkers. Int J Biol Macromol 70:435–439. https://doi.org/ 10.1016/j.ijbiomac.2014.06.064
- 8. Oztaskin N, Taslimi P, Maras A, Gulcin I, Goksu S (2017) Novel antioxidant bromophenols with acetylcholinesterase, butyryl-cholinesterase and carbonic anhydrase inhibitory actions. Bioorg Chem 74:104–114. https://doi.org/10.1016/j.bioorg.2017.07.010
- Wiemann J, Karasch J, Loesche A, Heller L, Brandt W, Csuk R (2017) Piperlongumine B and analogs are promising and selective inhibitors for acetylcholinesterase. Eur J Med Chem 139:222–231. https://doi.org/10.1016/j.ejmech.2017.07.081
- Aouani I, Sellami B, Lahbib K, Cavalier JF, Touil S (2017) Efficient synthesis of novel dialkyl-3-cyanopropylphosphate derivatives and evaluation of their anticholinesterase activity. Bioorg Chem 72:301–307. https://doi.org/10.1016/j.bioorg.2017.05.008
- Kurt BZ, Gazioglu I, Sonmez F, Kucukislamoglu M (2015) Synthesis, antioxidant and anticholinesterase activities of novel coumarylthiazole derivatives. Bioorg Chem 59:80–90. https://doi. org/10.1016/j.bioorg.2015.02.002
- Cen J, Guo HY, Hong C, Lv JW, Yang YC, Wang T, Fang D, Luo W, Wang CJ (2018) Development of tacrine-bifendate conjugates with improved cholinesterase inhibitory and pro-cognitive efficacy and reduced hepatotoxicity. Eur J Med Chem 144:128–136. https:// doi.org/10.1016/j.ejmech.2017.12.005
- Chigurupati S, Selvaraj M, Mani V, Selvarajan KK, Mohammad JI, Kaveti B, Bera H, Palanimuthu VR, Teh LK, Salleh MZ (2016) Identification of novel acetylcholinesterase inhibitors: indolopyrazoline derivatives and molecular docking studies. Bioorg Chem 67:9–17. https://doi.org/10.1016/j.bioorg.2016.05.002
- He DD, Wu H, Wei Y, Liu W, Huang F, Shi HT, Zhang BB, Wu XJ, Wang CH (2015) Effects of harmine, an acetylcholinesterase inhibitor, on spatial learning and memory of APP/PS1 transgenic mice and scopolamine-induced memory impairment mice. Eur J Pharmacol 768:96–107. https://doi.org/10.1016/j.ejphar.2015.10. 037
- Topal F, Gulcin I, Dastan A, Guney M (2017) Novel eugenol derivatives: potent acetylcholinesterase and carbonic anhydrase inhibitors. Int J Biol Macromol 94:845–851. https://doi.org/10. 1016/j.ijbiomac.2016.10.096
- Zhou LY, Zhu Y, Jiang YR, Zhao XJ, Guo D (2017) Design, synthesis and biological evaluation of dual acetylcholinesterase and phosphodiesterase 5A inhibitors in treatment for Alzheimer's disease. Bioorg Med Chem Lett 27(17):4180–4184. https://doi.org/ 10.1016/j.bmcl.2017.07.013
- Pourabdi L, Khoobi M, Nadri H, Moradi A, Moghadam FH, Emami S, Mojtahedi MM, Haririan I, Forootanfar H, Ameri A, Foroumadi A, Shafiee A (2016) Synthesis and structure–activity relationship study of tacrine-based pyrano[2,3-c]pyrazoles targeting AChE/BuChE and 15-LOX. Eur J Med Chem 123:298–308. https://doi.org/10.1016/j.ejmech.2016.07.043
- Gao CP, Ding Y, Zhong LF, Jiang LP, Geng CY, Yao XF, Cao J (2014) Tacrine induces apoptosis through lysosome- and mitochondria-dependent pathway in HepG2 cells. Toxicol In Vitro 28(4):667–674. https://doi.org/10.1016/j.tiv.2014.02.001
- Esquivias-Perez M, Maalej E, Romero A, Chabchoub F, Samadi A, Marco-Contelles J, Oset-Gasque MJ (2013) Nontoxic and neuroprotective beta-naphthotacrines for Alzheimer's disease. Chem Res Toxicol 26(6):986–992. https://doi.org/10.1021/tx400138s
- Hiremathad A, Keri RS, Esteves AR, Cardoso SM, Chaves S, Santos MA (2018) Novel tacrine-hydroxyphenylbenzimidazole hybrids as potential multitarget drug candidates for Alzheimer's disease. Eur J Med Chem 148:255–267. https://doi.org/10.1016/j. ejmech.2018.02.023

- Li GL, Hong G, Li XY, Zhang Y, Xu ZP, Mao LN, Feng XZ, Liu TJ (2018) Synthesis and activity towards Alzheimer's disease in vitro: tacrine, phenolic acid and ligustrazine hybrids. Eur J Med Chem 148:238–254. https://doi.org/10.1016/j.ejmech.2018.01.028
- 22. Dgachi Y, Sokolov O, Luzet V, Godyn J, Panek D, Bonet A, Martin H, Iriepa I, Moraleda I, Garcia-Iriepa C, Janockova J, Richert L, Soukup O, Malawska B, Chabchoub F, Marco-Contelles J, Ismaili L (2017) Tetrahydropyranodiquinolin-8-amines as new, non hepatotoxic, antioxidant, and acetylcholinesterase inhibitors for Alzheimer's disease therapy. Eur J Med Chem 126:576–589. https://doi.org/10.1016/j.ejmech.2016.11.050
- 23. Hepnarova V, Korabecny J, Matouskova L, Jost P, Muckova L, Hrabinova M, Vykoukalova N, Kerhartova M, Kucera T, Dolezal R, Nepovimova E, Spilovska K, Mezeiova E, Pham NL, Jun D, Staud F, Kaping D, Kuca K, Soukup O (2018) The concept of hybrid molecules of tacrine and benzyl quinolone carboxylic acid (BQCA) as multifunctional agents for Alzheimer's disease. Eur J Med Chem 150:292–306. https://doi.org/10.1016/j.ejmech.2018. 02.083
- Reddy EK, Remya C, Mantosh K, Sajith AM, Omkumar RV, Sadasivan C, Anwar S (2017) Novel tacrine derivatives exhibiting improved acetylcholinesterase inhibition: design, synthesis and biological evaluation. Eur J Med Chem 139:367–377. https://doi. org/10.1016/j.ejmech.2017.08.013
- 25. Ceschi MA, da Costa JS, Lopes JPB, Camara VS, Campo LF, Borges ACD, Goncalves CAS, de Souza DF, Konrath EL, Karl ALM, Guedes IA, Dardenne LE (2016) Novel series of tacrinetianeptine hybrids: synthesis, cholinesterase inhibitory activity, S10013 secretion and a molecular modeling approach. Eur J Med Chem 121:758–772. https://doi.org/10.1016/j.ejmech.2016.06.025
- Sameem B, Saeedi M, Mahdavi M, Shafiee A (2017) A review on tacrine-based scaffolds as multi-target drugs (MTDLs) for Alzheimer's disease. Eur J Med Chem 128:332–345. https://doi. org/10.1016/j.ejmech.2016.10.060
- 27. Jalili-Baleh L, Nadri H, Moradi A, Bukhari SNA, Shakibaie M, Jafari M, Golshani M, Moghadam FH, Firoozpour L, Asadipour A, Emami S, Khoobi M, Foroumadi A (2017) New racemic annulated pyrazolo[1,2-b]phthalazines as tacrine-like AChE inhibitors with potential use in Alzheimer's disease. Eur J Med Chem 139:280–289. https://doi.org/10.1016/j.ejmech.2017.07.072
- Mantri M, de Graaf O, van Veldhoven J, Goblyos A, von Frijtag Drabbe Kunzel JK, Mulder-Krieger T, Link R, de Vries H, Beukers MW, Brussee J, Ijzerman AP (2008) 2-Amino-6-furan-2yl-4-substituted nicotinonitriles as A2A adenosine receptor antagonists. J Med Chem 51(15):4449–4455. https://doi.org/10.1021/ jm701594y
- Altundas A, Gul B, Cankaya M, Atasever A, Gulcin I (2017) Synthesis of 2-amino-3-cyanopyridine derivatives and investigation of their carbonic anhydrase inhibition effects. J Biochem Mol Toxicol 31(12):e21998. https://doi.org/10.1002/jbt.21998
- 30. Mao F, Li JH, Wei H, Huang L, Li XS (2015) Tacrinepropargylamine derivatives with improved acetylcholinesterase inhibitory activity and lower hepatotoxicity as a potential lead compound for the treatment of Alzheimer's disease. J Enzyme Inhib Med Chem 30(6):995–1001. https://doi.org/10.3109/14756366. 2014.1003212
- 31. Yang LP, Li JR, Chai HX, Lu HY, Zhang Q, Shi DX (2013) A divergent synthesis of 1,8-naphthyridines and hydropyridopyrimidinones by the reactions of o-aminonitriles with ketones. Chinese J Chem 31(4):443–448. https://doi.org/10.1002/cjoc.201201247
- Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95
- 33. Sonmez F, Kurt BZ, Gazioglu I, Basile L, Dag A, Cappello V, Ginex T, Kucukislamoglu M, Guccione S (2017) Design, synthesis and docking study of novel coumarin ligands as potential

selective acetylcholinesterase inhibitors. J Enzym Inhib Med Chem 32(1):285–297. https://doi.org/10.1080/14756366.2016.1250753

- 34. Tetko IV, Varbanov HP, Galanski M, Talmaciu M, Platts JA, Ravera M, Gabano E (2016) Prediction of logP for Pt(II) and Pt(IV) complexes: comparison of statistical and quantum-chemistry based approaches. J Inorg Biochem 156:1–13. https://doi.org/10.1016/j. jinorgbio.2015.12.006
- Osterberg T, Norinder U (2001) Prediction of drug transport processes using simple parameters and PLS statistics—the use of ACD/logP and ACD/ChemSketch descriptors. Eur J Pharm Sci 12(3):327–337. https://doi.org/10.1016/S0928-0987(00)00189-5
- 36. Perez-Areales FJ, Di Pietro O, Espargaro A, Vallverdu-Queralt A, Galdeano C, Ragusa IM, Viayna E, Guillou C, Clos MV, Perez B, Sabate R, Lamuela-Raventos RM, Luque FJ, Munoz-Torrero D (2014) Shogaol-huprine hybrids: dual antioxidant and anticholinesterase agents with beta-amyloid and tau anti-aggregating properties. Bioorg Med Chem 22(19):5298–5307. https://doi.org/ 10.1016/j.bmc.2014.07.053
- Di L, Kerns EH, Fan K, McConnell OJ, Carter GT (2003) High throughput artificial membrane permeability assay for blood-brain barrier. Eur J Med Chem 38(3):223–232. https://doi.org/10.1016/ S0223-5234(03)00012-6
- 38. Nepovimova E, Korabecny J, Dolezal R, Babkova K, Ondrejicek A, Jun D, Sepsova V, Horova A, Hrabinova M, Soukup O, Bukum N, Jost P, Muckova L, Kassa J, Malinak D, Andrs M, Kuca K (2015) Tacrine-trolox hybrids: a novel class of centrally active, nonhepatotoxic multi-target-directed ligands exerting anticholinesterase and antioxidant activities with low in vivo toxicity. J Med Chem 58(22):8985–9003. https://doi.org/10.1021/acs.jmedchem.5b01325
- 39. Chen X, Murawski A, Patel K, Crespi CL, Balimane PV (2008) A novel design of artificial membrane for improving the PAMPA model. Pharm Res 25(7):1511–1520. https://doi.org/10. 1007/s11095-007-9517-8