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Cyclisation of 2-(2-aminophenyl)quinazolin-4(3H)-ones on to N3 and on to N1 leading to 6-alkyl-(8H)-qui-
nazolino[4,3-b]quinazolin-8-one and 6-alkyl-(13H)-quinazolino[3,4-a]quinazolin-13-one, respectively
was described for the first time. The differences in the IR and carbon NMR data of these isomeric fused qui-
nazolinoquinazolinones afford a useful method for distinguishing between the two series.

� 2012 Elsevier Ltd. All rights reserved.
Over the past decade, synthesis of the heterocyclic compounds
has become the cornerstone of synthetic organic chemistry as a re-
sult of wide variety of their application in medicinal and pharma-
ceutical chemistry.1 The exploration of heterocycles as privileged
structures in drug discovery is the important major area in medic-
inal chemistry.2 Among them, quinazoline ring system is an ubiqui-
tous structural unit and important pharmacophore found in a
number of alkaloids and many biologically active compounds.3

The synthesis of quinazolin-4(3H)-ones has been extensively inves-
tigated,4 as some of the members, for example, 4-anilinoquinazo-
lines, are shown to possess EGFR (epidermal growth factor
receptor) tyrosine kinase inhibitory effects, useful to inhibit tumour
growth.5 For example, Iressa� and Tarceva� are the two selective
EGFR-TK inhibitors approved by the FDA in 2004 for locally ad-
vanced or metastatic non-small cell lung cancer (NSCLC) therapy
and are currently under clinical trials. (8H)-Quinazolino[4,3-b]qui-
nazolin-8-ones (1) and (13H)-quinazolino[3,4-a]quinazolin-13-
ones (2) are two isomeric angularly fused quinazolinoquinazoli-
nones. Although there are a few synthetic methods6–9 reported
for the synthesis of 1, there are only two articles10,11 in the litera-
ture for 2. Ozaki and co-workers10a employed a benzoxazine as
the key intermediate, whereas Marinho et al.10b used o-aminoben-
zonitrile as the starting material. In view of the important biological
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activities of the fused quinazolinones, we have investigated the
synthesis and spectroscopic differentiation of the two systems 1
and 2, and herein we present our results.

Cyclisation of 2-(2-aminophenyl)quinazolin-4(3H)-one (3) with
triethyl orthoformate12 and auto-redox based cyclisation of
2-(2-nitrophenyl)quinazolin-4(3H)-one with tin(II) chloride in
the presence of alcohols13 on to N3-nitrogen to give (8H)-quinazo-
lino[4,3-b]quinazolin-8-ones (1) and 5,6-dihydro-quinazolino[4,3-
b]quinazolin-8-ones, respectively, via path a, are well established.
However, the cyclisation of 3 through path b, that is, on to the
N1-nitrogen for the generation of 2 is not reported in the literature
(Scheme 1). The selective formation of 1 from 3, via path a, is sur-
prising, and prompted us to re-examine the reaction employing
different reagents and conditions. The required 2-(2-aminophe-
nyl)quinazolin-4(3H)-one 3 was obtained from 2-aminobenzamide
and 2-nitrobenzoic acid in three steps.13,14 Compound 3 was then
treated with various reagents and the results are summarised in
Table 1.

First, the reaction was examined with one-carbon equivalent
reagents such as dimethylformamide–dimethylacetal (DMF–
DMA), triethyl orthoformate, formic acid and ethyl formate, which
resulted in the formation of only compound 1 (Table 1, entries 1–7)
as reported earlier.12 The structure of 1 has been established from
the spectroscopic data and confirmed by comparing with that de-
scribed in the literature.8 In a similar manner, reaction with the
two-carbon equivalent reagent such as triethyl orthoacetate, pro-
ceeded selectively through path a, and resulted in compound 1 in
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Table 1
Reaction of 3 with various reagentsa

Entry Reagent Solvent/catalyst Conditions Yieldb (%)

1 2

1 DMF–DMA Toluene/AcOH rt, 30 min 91 —
2 DMF–DMA Toluene/AcOH Reflux, 10 min 86 —
3 CH(OEt)3 Toluene/AcOH rt, 24 h 50 —
4 CH(OEt)3 Toluene/AcOH Reflux, 2 h 90 —
5 HCOOH Toluene rt, 24 h — —
6 HCOOH HCOOH Reflux, 30 min 82
7 HCOOEt HCOOEt Reflux, 24 h 86 —
8 H3CC(OEt)3 Toluene/AcOH rt, 1.5 h 91 —
9 H3CC(OEt)3 Toluene/AcOH Reflux, 15 min 91 —
10 AcOH AcOH rt, 16 h — —
11 AcOH AcOH Reflux, 4 h — —
12 Ac2O Ac2O Reflux, 2 h 49 32
13 Ac2O Ac2O/pyridine Reflux, 2 h 50 29
14 (C2H5CO)2O (C2H5CO)2O Reflux, 2 h 55 23

a All the reactions were performed with 3 (10 mmol), reagent (20 mmol) and
optionally acid or base.

b Isolated yields.
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Scheme 1. Cyclisation of 3 via paths a and b.

2644 S. Venkateswarlu et al. / Tetrahedron Letters 53 (2012) 2643–2646
91% yield (entries 8, 9), although no product was formed with ace-
tic acid (entries 10, 11). Contrary to these results, we were pleased
to observe that with acetic anhydride, the reaction proceeded to
give both the compounds 1 and 2 in good yield (entries 12, 13).15

Similarly with three-carbon equivalent reagent such as propionic
anhydride also gave two isomeric fused quinazolinoquinazolinones
1 and 2 (entry 14). To the best of our knowledge, this is the first re-
port on the formation of isomeric angular fused quinazolinoqui-
nazolinones 1 and 2 by the competitive cyclisation of 2-(2-
aminophenyl)quinazolin-4(3H)-one 3.

Encouraged by these results, generality of the reaction was
investigated with various 2-(2-aminophenyl)quinazolin-4(3H)-
ones (3) with acetic anhydride as the reagent. The substituted
derivatives of 3 were prepared from the corresponding 2-aminob-
enzamides and 2-nitrobenzoic acids as depicted in Scheme 2.

Thus, the reaction of 2-aminobenzamides with 2-nitrobenzoyl
chlorides in the presence of triethylamine gave 2-[(2-nitro-
phenyl)carbonylamino]benzamides 4. Ring closure of the com-
pounds 4 using aqueous potassium hydroxide in ethanol provided
2-(2-nitrophenyl)quinazolin-4(3H)-ones 513,14 in good yields. The
nitro functionality was then reduced using iron powder to generate
the key intermediates 3. Refluxing a solution of the compounds 3 in
acetic anhydride furnished a mixture of the isomeric angularly
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fused quinazolinoquinazolinones 1a–f and 2a–f, which were sepa-
rated by column chromatography on silica gel. The yield of com-
pounds 1a–f is found to be more (49–56%) than the
corresponding isomeric compounds 2a–f (20–32%) indicating that
the cyclisation on to N3-nitrogen is more favourable, which might
be due to better stability of system 1 (having complete p-conjuga-
tion from the carbonyl group to the carbon-6, which is absent in 2).
All the products have been characterized by their analytical and
spectroscopic data.16 The carbonyl absorptions in IR spectra of the
isomeric fused quinazolinoquinazolinones 1 and 2 are presented
in Table 2. It was found that the two compounds can easily be dif-
ferentiated by the carbonyl absorption band in IR spectra; the value
of 1 is between 1699 and 1709 cm�1 and 2 is between 1647 and
1660 cm�1. Similarly, the chemical shift of the carbonyl carbon in
the 13C NMR spectrum (Table 3) was also found to be diagnostic.
The value of 1 is in the range of d 160.2–161.6 ppm and the corre-
sponding carbon in 2 is in the range of d 166.0–167.5 ppm.

A tentative mechanism is given in Scheme 3. First step is the
formation of RNHCOCH3 derivative 6. Intramolecular nucleophilic
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Scheme 3. Probable mechanism for the formation of 1 and 2.

Table 2
C@O absorption band of the compounds 1 and 2

Compd No. C@O (mmax/cm�1)

1 2

a 1701 1660
b 1699 1651
c 1700 1647
d 1709 1651
e 1701 1655
f 1709 1658

Table 3
13C NMR data of isomeric fused quinazolinones

Compd No. C@O (d ppm)

1 2

a 161.4 167.3
b 160.5 167.0
c 161.6 167.4
d 160.8 166.5
e 160.2 166.0
f 161.4 167.5
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addition of either nitrogen N3 or N1 in 6 on to the amide, followed
by the loss of water molecule generates 1 or 2, respectively.

In summary, we have described an approach for the synthesis of
isomeric angularly fused quinazolinoquinazolinones 1 and 2. With
acid anhydrides, 2-(2-aminophenyl)quinazolin-4(3H)-ones 3 were
competitively cyclised to generate 6-alkyl-(8H)-quinazolino[4,3-
b]quinazolin-8-ones 1 and 6-alkyl-(13H)-quinazolino[3,4-a]qui-
nazolin-13-ones 2, via intramolecular nucleophilic addition of
either N3-nitrogen or N1-nitrogen, respectively. The methodology
provides an entry for the isomeric angularly fused quinazolinones
from a common intermediate and can be useful for the creation of
libraries in a short time. The two series of compounds were found
to be easily distinguishable from their IR and 13C NMR data. The
carbonyl absorptions in IR spectra of 1 are at higher value (be-
tween 1699 and 1709 cm�1) than those of 2 (between 1647 and
1660 cm�1). The carbonyl absorption in carbon NMR spectra of 1
appeared at higher field and the value is lower than that of 2 (ca.
5–6 ppm).
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(1H, d, J = 8.0 Hz), 7.80 (1H, t, J = 7.4 Hz), 7.76 (1H, s), 7.68 (1H, d, J = 8.0 Hz),
7.56 (1H, t, J = 7.6 Hz), 7.15 (1H, s), 4.04 (3H, s), 4.03 (3H, s), 3.02 (3H, s); 13C
NMR (100 MHz, CDCl3): d 167.0, 152.5, 152.4, 149.6, 147.6, 143.1, 134.5, 131.7,
128.0, 126.6, 126.2, 119.9, 117.1, 108.0, 103.2, 56.5, 56.5, 26.4; LC–MS (positive
ion mode): m/z 322 (M+H)+; HRMS-(EI) (m/z) (M+H)+ calcd for C18H16N3O3

322.1192, found 322.1190.
Compound 1c: Off-white color solid (50%), mp 238–240 �C. IR (KBr) mmax 1700,
1631, 1601, 1392, 1288, 1253, 1230, 1157, 1022, 864, 771 cm�1; 1H NMR
(400 MHz, CDCl3): d 8.29 (1H, d, J = 8.0 Hz), 8.05 (1H, s), 7.80 (1H, t, J = 7.4 Hz),
7.74 (1H, d, J = 8.0 Hz), 7.43 (1H, t, J = 7.4 Hz), 7.08 (1H, s), 4.09 (3H, s), 4.01 (3H,
s), 3.10 (3H, s); 13C NMR (100 MHz, CDCl3): d 161.6, 154.4, 149.7, 149.3, 147.1,
146.1, 138.3, 135.2, 127.5, 126.7, 125.6, 120.1, 114.8, 108.0, 105.8, 56.4, 56.3,
27.3; LC–MS (positive ion mode): m/z 322 (M+H)+; HRMS-(EI) (m/z) (M+Na)
calcd for C18H15N3O3Na 344.1011, found 344.1012.
Compound 2c: Pale brown color solid (23%), mp 292–294 �C. IR (KBr) mmax

1647, 1601, 1334, 1265, 1238, 1203, 1018, 979, 756 cm�1; 1H NMR (400 MHz,
CDCl3): d 8.40 (1H, d, J = 8.0 Hz), 8.04 (1H, s), 7.71–7.77 (2H, m), 7.61–7.65 (1H,
m), 7.11 (1H, s), 4.05 (3H, s), 4.04 (3H, s), 3.00 (3H, s); 13C NMR (100 MHz,
CDCl3): d 167.4, 155.9, 152.8, 150.0, 147.2, 140.1, 136.8, 131.7, 128.4, 128.0,
123.1, 120.4, 113.3, 107.0, 105.9, 56.7, 56.4, 26.1; LC–MS (positive ion mode):
m/z 322 (M+H)+. HRMS-(EI) (m/z) (M+Na) calcd for C18H15N3O3Na 344.1011,
found 344.1009.
Compound 1d: Colorless solid (52%), mp 192–194 �C. IR (KBr) mmax 1709, 1624,
1593, 1338, 1246, 1207, 1105, 925, 779 cm�1; 1H NMR (400 MHz, CDCl3): d
8.64 (1H, d, J = 8.0 Hz), 8.21 (1H, d, J = 8.4 Hz), 7.70–7.74 (2H, m), 7.63 (1H, d,
J = 8.0 Hz), 7.52 (1H, t, J = 7.6 Hz), 7.38 (1H, d, J = 8.0 Hz), 3.08 (3H, s); 13C NMR
(100 MHz, CDCl3): d 160.8, 150.1, 147.6, 147.3, 142.4, 141.7, 133.8, 128.9,
128.0, 127.0, 126.9, 126.5, 126.2, 121.2, 119.0, 27.3; LC–MS (positive ion
mode): m/z 296, 298 (M+H)+; HRMS-(EI) (m/z) (M+H)+ calcd for C16H11ClN3O
296.0591, found 296.0591.
Compound 2d: Off-white color solid (20%), mp 216–218 �C. IR (KBr) mmax 1651,
1585, 1261, 1068, 1022, 771 cm�1; 1H NMR (400 MHz, CDCl3): d 8.68 (1H, d,
J = 8.0 Hz), 8.33 (1H, d, J = 8.4 Hz), 7.84 (1H, t, J = 7.4 Hz), 7.76 (1H, br s), 7.70
(1H, d, J = 8.0 Hz), 7.56–7.62 (2H, m), 3.00 (3H, s); 13C NMR (100 MHz, CDCl3): d
166.5, 153.6, 147.7, 143.3, 138.5, 137.6, 135.2, 130.0, 128.7, 128.3, 126.9, 126.4,
121.5, 120.4, 119.7, 26.0; LC–MS (positive ion mode): m/z 296, 298 (M+H)+;
HRMS-(EI) (m/z) (M+H)+ calcd for C16H11ClN3O 296.0591, found 296.0594.
Compound 1e: Colorless solid (56%), mp 190–192 �C. IR (KBr) mmax 1701, 1624,
1334, 1253, 1141, 771 cm�1; 1H NMR (400 MHz, CDCl3): d 8.70 (1H, d,
J = 8.0 Hz), 8.45 (1H, d, J = 1.6 Hz), 7.88 (1H, dd, J = 8.4, 1.6 Hz), 7.74 (1H, t,
J = 7.2 Hz), 7.64–7.67 (2H, m), 7.55 (1H, t, J = 7.4 Hz), 3.10 (3H, s); 13C NMR
(100 MHz, CDCl3): d 160.2, 150.0, 146.5, 145.5, 142.2, 138.4, 133.6, 129.9,
128.8, 128.1, 127.0, 126.1, 121.9, 121.3, 119.6, 27.2; LC–MS (positive ion
mode): m/z 340, 342 (M+H)+; HRMS-(EI) (m/z) (M+H)+ calcd for C16H11BrN3O
340.0085, found 340.0082.
Compound 2e: Off-white color solid (21%), mp 288–290 �C. IR (KBr) mmax 1655,
1608, 1342, 1269, 1207, 1072, 771 cm�1; 1H NMR (400 MHz, CDCl3): d 8.71
(1H, d, J = 8.0 Hz), 8.55 (1H, d, J = 1.6 Hz), 7.82–7.86 (2H, m), 7.72 (1H, d,
J = 8.0 Hz), 7.57–7.65 (2H, m), 2.98 (3H, s); 13C NMR (100 MHz, CDCl3): d 166.0,
153.5, 147.7, 143.5, 135.7, 135.2, 135.0, 131.1, 128.4, 126.9, 126.4, 124.5, 122.2,
122.0, 119.7, 26.0; LC–MS (positive ion mode): m/z 340, 342 (M+H)+; HRMS-
(EI) (m/z) (M+H)+ calcd for C16H11BrN3O 340.0085, found 340.0087.
Compound 1f: Colorless solid (55%), mp 162–164 �C (Lit.12 mp 156–157 oC). IR
(KBr) mmax 1709, 1620, 1597, 1558, 1334, 1238, 1080, 763 cm�1; 1H NMR
(400 MHz, CDCl3): d 8.73 (1H, d, J = 8.0 Hz), 8.34 (1H, d, J = 7.6 Hz), 7.77–7.84
(2H, m), 7.68–7.74 (2H, m), 7.54 (1H, t, J = 6.8 Hz), 7.48 (1H, t, J = 7.0 Hz), 3.51
(2H, q, J = 7.2 Hz), 1.42 (3H, t, J = 7.2 Hz); 13C NMR (100 MHz, CDCl3): d 161.4,
154.7, 146.8, 146.4, 142.3, 135.3, 133.4, 127.9, 127.5, 127.2, 127.0, 126.3, 126.1,
121.5, 120.9, 31.9, 12.4; LC–MS (positive ion mode): m/z 276 (M+H)+.
Compound 2f: Colorless solid (23%), mp 188–190 �C. IR (KBr) mmax 1658, 1620,
1593, 1342, 1240, 1188, 760 cm�1; 1H NMR (400 MHz, CDCl3): d 8.71 (1H, d,
J = 8.0 Hz), 8.39 (1H, d, J = 7.6 Hz), 7.83 (1H, t, J = 7.4 Hz), 7.69–7.75 (3H, m),
7.64 (1H, t, J = 7.2 Hz), 7.57 (1H, t, J = 7.4 Hz), 3.27 (2H, q, J = 7.2 Hz), 1.45 (3H, t,
J = 7.2 Hz); 13C NMR (100 MHz, CDCl3): d 167.5, 153.4, 153.0, 143.7, 136.8,
134.8, 131.8, 128.4, 128.1, 128.0, 126.8, 126.6, 123.3, 120.4, 119.9, 30.7, 13.0;
LC–MS (positive ion mode): m/z 276 (M+H)+; HRMS-(EI) (m/z) (M+Na) calcd for
C17H13N3ONa 298.0956, found 298.0957.
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