ACS Medicinal Chemistry Letters

Letter

Subscriber access provided by READING UNIV

The Discovery of 3,3'-spiro[azetidine]-2-oxo-indoline Derivatives as Fusion Inhibitors for Treatment of RSV Infection

Weihua Shi, Zhigan Jiang, Haiying He, Fubiao Xiao, Fusen Lin, Ya Sun, Lijuan Hou, Liang Shen, Lixia Han, Minggao Zeng, Kunmin Lai, Zhengxian Gu, Xinsheng Chen, Tao Zhao, Li Guo, Chun Yang, Jian Li, and Shuhui Chen

ACS Med. Chem. Lett., Just Accepted Manuscript • DOI: 10.1021/acsmedchemlett.7b00418 • Publication Date (Web): 10 Jan 2018 Downloaded from http://pubs.acs.org on January 11, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

ACS Medicinal Chemistry Letters is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties. 1

2 3

4 5 6

7

8 9

10

11 12

13

14

15

16

17 18 19

20

21

22

23

24

25

26 27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

The Discovery of 3,3'-spiro[azetidine]-2-oxo-indoline Derivatives as Fusion Inhibitors for Treatment of RSV Infection

Weihua Shi¹, Zhigan Jiang¹, Haiying He^{1*}, Fubiao Xiao¹, Fusen Lin¹, Ya Sun¹, Lijuan Hou¹, Liang Shen¹, Lixia Han¹, Minggao Zeng¹, Kunmin Lai¹, Zhengxian Gu¹, Xinsheng Chen¹, Tao Zhao², Li Guo², Chun Yang², Jian Li¹, Shuhui Chen¹.

¹ WuXi AppTec (Shanghai) Co., Ltd, 288 FuTe Zhong Road, Shanghai 200131, P. R. China

² Buchang Pharmaceutical, 50 Gaoxin Road, Gaoxin District, Xi'an 710075, Shanxi Province, P. R. China

KEYWORDS RSV, Fusion inhibitor, Benzimidazole

ABSTRACT: A new series of 3,3'-spirocyclic-2-oxo-indoline derivatives were synthesized and evaluated against Respiratory Syncytial Virus (RSV) in the cell-based assay and animal model. Extensive structure-activity relationship study led to a lead compound **14h**, which exhibited excellent *in vitro* potency with an EC50 value of 0.8 nM and demonstrated 71% oral bioavailability in mice. In a mouse challenge model of RVS infection, **14h** demonstrated superior efficacy with a 3.9log RSV virus load reduction in the lung following an oral dose of 50 mg/kg.

Introduction

Respiratory syncytial virus (RSV) is a major cause of pneumonia and bronchiolitis in young children, immunocompromised adults and the elderly, resulting in ~125,000 hospitalizations annually in the United States^{1,2}. However, the treatment of RSV lower respiratory tract infection (LRTI) is limited³. Synagis (Palivizumab), a marketed humanized monoclonal antibody targeting fusion glycoprotein (F protein) of RSV, was licensed for passive prophylaxis intervention in high-risk infants. However, its high cost of treatment and relatively low protection to highrisk children limit its usage. An aerosol formulation of Ribavirin (Virazole) is the only chemotherapeutic agent on the market. Virazole is not a specific protection for young children and is rarely used due to its variable efficacy and toxicity.

Clearly, there is an unmet need for a new drug to prevent and treat RSV infection. In the past two decades, several chemical series of RSV fusion protein inhibitors have been reported, including the most advanced compound GS-5806 which is currently in Phase 2 study^{4,5}. Another Phase 2 compound is MDT-637 (formerly VP-14637) and is being developed as a dry powder inhaled product due to its low oral bioavailability. Both BMS-433771⁶ and TMC-3531217 were progressed into late preclinical / early clinical development but discontinued, mainly due to the unfavorable pharmaceutical properties or early safety findings. The two RSV F protein inhibitors contain the same benzimidazole heterocycle. Therefore, we intend to address the drug-like properties of benzimidazole RSV fusion inhibitors especially improving activity in vitro, pharmacokinetics, and pharmacodynamics. Herein we describe the identification of a promising candidate isopropyl 1'-((5-bromo-1-(4-hydroxybutyl)-1Hbenzo[d]imidazol-2-yl)methyl)-2'-oxospiro[azetidine-3,3'indoline]-1-carboxylate (14h) that was effective in a mouse challenge model of RSV infection. Meanwhile, the extensive structure-activity relationship (SAR) of this 3,3'spirocyclic-2-oxo-indoline derivatives was revealed herein. Figure 1. RSV inhibitors explored in early stage clinical studies

In order to investigate a strategy of pyridinoimidazolone replacements on BMS-433771, a small library containing nineteen scaffold hopping derivatives were designed and synthesized (**Scheme 1**). The key intermediate **4** was prepared from starting material **1** via displacement reaction, hydrogenation reaction followed by cyclization reaction with excellent overall yields (68.4%). The target compounds **5a-s** were obtained by alkylation reaction of intermediate **4** in the presence of K₂CO₃ in CH₃CN or NaH in DMF.

Scheme 1. General synthesis of pyridinoimidazolone replacements analogs

Reagents and conditions: (i) 4-aminobutan-1-ol, Et₃N, dioxane, 90%; (ii) Pd/C, H₂, MeOH, 95%; (iii) 2-chloroacetic acid, 4N HCI, 80°C, ~60%; (iv) for 5a-g, 5j-p, K₂CO₃, MeCN, 70°C or NaH, DMF, 20°C; for 5h/i, K₂CO₃, then Pd(OH)2; for 5q-s, K₂CO₃, then TFA

Cyclopropyl indolin-2-one **5a** was first recorded in ReViral ltd's patent for RSV treatment, but no antiviral activity was reported⁸. Hoffmann-La Roche discolsed spiro azain-

dolin-2-one analogs, however only spirocylicpropanes were introduced⁹⁻¹¹. In order to perform pyridinoimidazolone replacement strategy, 5a-c were synthesized and evaluated by the CPE assay. The antiviral activities were listed in Table 1. The importance of carbonyl group for the activities against RSV was demonstrated when its replacement with a hydrogen (5e and 5f, with EC_{50} of 0.20 and 0.18 µM, respectively) resulted in a moderate activity in comparison to BMS-433771. The presence of small aliphatic substituent at ortho-position of carbonyl was also found to be desirable (5g-j). Attempt to replace the fused phenyl ring with saturated ring resulted in a 100-fold less active compound 5k with an EC₅₀ of 12 μ M versus 5f. Other pyridinoimidazolone replacements (5m-s) showed negative impact on activities. In summary, though the SAR for pyridinoimidazolone replacement strategy is kind of rigid, the ring system 3,3'-spiro[cyclopropane]-2-oxoindoline (5a-c) was identified to gain a superior level of activity.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

26

27

28

29

30

31

32

33

34

35

36

37

38

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

Table 1 Antiviral activity of a small library of pyridinoimidazolone replacements

			N	_R			
			5a-s	~	OH		
cpd.	R	EC ₅₀ (uM) ^a	CC ₅₀ (uM) ^b	cpd.	R	EC ₅₀ (uM)	CC ₅₀ (uM)
BMS- 433771		0.020	>100	5j	N N-C	1.8	>100
5a		N 0.015	>100	5k		12	>100
5b		0.016	>100	51	Me ^{"ś:} N N=	26	>100
5c	0, , N	0.037	>100	5m	F ₃ C N	1.7	>100
5d	0, ,,N-	F 0.13	>100	5n	S N N N	0.47	>100
5e	NC N-C	0.20	>100	50		0.11	>100
5f	Me N N	0.18	>100	5р	O=N-	0.11	>100
5g	0_0 N	0.35	>100	5q	HN NO	5.0	>100
5h	N-C-N) 1.0	>100	5r		0.48	>100
5i	N N N	N 2.2	>100	5s		>50	>100

^aRSV CPE assay in Hep-2 cells, data was generated from two or more determinations. ${}^{b}CC_{50}$ was performed on the same cells and method.

As a new chemical starting point, chloride (**6a**) and methyl group (**6b**) were introduced at 5-position of the corresponding benzimidazole moiety following Feng's work on imidazolepyrimidines^{12,13}. Unfortunately, both of these two compounds did not boost the antiviral activities, demonstrating 10 nM and 16 nM respectively versus 15 nM of **5a**. In the meantime, an entire attrition was observed on 5-cyclohexyl substituent (6c) possibly due to increased steric bulk, electronic withdrawing groups 5-CN (6e) and 5-CF3 (6f) attenuated the activities by more than 10-fold. Single-digital nanomolar activity was obtained when bromine was introduced and 6h demonstrated 7-fold potency improvement in comparison to 5a. Given that the introduction of 5-bromo had a significant impact on anti-RSV activity, we decided to pursue 5bromobenzimidazole moiety for further SAR optimizations.

Table 2 Antiviral activity of compound 6a-i

∽ [™] OH _{6a-h}							
cpd.	RE	EC ₅₀ (nM) ^a	CC ₅₀ (uM) ^b	cpd.	R	EC ₅₀ (nM)	CC ₅₀ (uM)
5a	5-H	15	>100	6e	5-CN	190	>100
6a	5-Cl	10	>100	6f	5-CF ₃	210	>100
6b	5-Me	16	>100	6g	5-CH ₂ NH ₂	7.0	>100
6c	5-cyclohexyl	>10 000	>100	6h	5-Br	2.3	>100
6d	5-F	13	>100	6i	5-1	21	>100

^aRSV CPE assay in Hep-2 cells, data was generated from two or more determinations. ${}^{b}CC_{50}$ was performed on the same cells and method.

Furthermore, 3,3'-spirocylic-2-oxo-indolines are found in compounds that exert a range of pharmacological activities. Analog 3,3'-spiro[succinimide]-2-oxo-indoline antagonized chemoattractant receptor-homologous expressed on Th2 lymphocytes (CRTH2 or DP2)¹⁴, and 3,3'spiro[piperidine]-2-oxo-indolines were in development for cathepsin K inhibitors¹⁵. Therefore, the following study focused on optimizing 3,3'-spirocylic-2-oxo-indoline moiety of **6h**.

Scheme 2. Synthetic route to produce key intermediate 12

In order to explore more potent 3,3-spirocylic-2-oxoindoline derivatives, a small library of spiro hetero cyclic analogs were successfully designed and synthesized. The synthesis of intermediate 12, as shown in **Scheme 2**, was generally commenced with commercially available 2bromo aniline, which was condensed with the acid 8 via T_3P to generate the amide 9, followed by alkylation with PBMCl to yield intermediates 10. This intermediate was then subjected to an intramolecular palladium-catalyzed α -arylation reaction¹⁶. After removal of PMB via in CAN or TfOH acid conditions, intermediate 12 was generated in moderate to good yield (30-75%). As shown in Table 3, 14a and 14b displayed good potency, with EC₅₀ of 6 nM and 8 nM. Sulfide 14c, sulfone 14d exhibited 5 nM and 21 nM antiviral activities, respectively. Encouraged by the tolerances of hetero atoms, nitrogen was introduced. 5-Membered analogs 14e, 14f and 14g attenuated 4-5 fold anti-RSV activities compared with 6h. However, 4- membered azetidine spiro analogs, isopropyl carbamate 14h, improved the antiviral activity into subnanomolar level of o.8 nM, 3 fold more potent compared to that of 6h, and isobutyl amide 14i and methanesulfonyl amide 14j exhibited comparable activities of 3 nM. Other approaches of aliphatic amine (14k-l) and steric bulky 6 membered spiro rings (14m-p) attenuated the activities.

Table 3 Antiviral activity of 3,3-spirocyclic-2-oxoindoline derivatives 14a-p

^aRSV CPE assay in Hep-2 cells, data was generated from two or more determinations. ${}^{b}CC_{50}$ was performed on the same cells and method.

PK Results and Discussion

Plasma pharmacokinetics after 1 mg/kg intravenous and 10 mg/kg oral administration of compound **14h** and BMS433771⁶ to female balb/c mice were characterized. PK parameters were listed in **table 4**, indicating that compound **14h** showed lower clearance and volume of distribution (Vd), but higher AUC with similar half-life (T1/2). However, compound **14h** had much better oral profile than that of BMS433771, as evidenced by oral exposure (8076 nM*h versus 1170 nM*h) and absolute oral bioavailability (71% versus 13%).

Table 4 Pharmacokinetic parameters after single intravenous and oral administration of 14h and BMS433771 to female Balb/c mice.

cpd.	14h	BMS-433771
<i>i.v.</i> @1mpk		
CL (mL/min/kg)	28	67
T _{1/2} (h)	1.4	1.7
V _d (L/kg)	1.6	2.4
AUC _{0-inf} (nM*h)	1130	920
<i>p.o.</i> @10mpk		
C _{max} (nM)	3319	2098
T _{max} (h)	0.25	0.25
AUC _{0-inf} (nM*h)	8076	1170
%F	71	13

(A) Data reported are mean values from the dosing cohorts (Female Balb/c-Mouse, fasted, n = 3/dose). (B) Dosages are 1 mg/kg *i.v.* (1 mg/mL in DMSO: PEG400: water = 5:40:55, clear solution) and 10 mg/kg *p.o.* (2 mg/mL in DMSO: PEG400: water = 5:40:55, clear solution). (C) CL stands for plasma clearance. $T_{1/2}$ is the plasma half-life of the compounds. V_d means volume of distribution. C_{max} represents the highest observed plasma concentration and T_{max} is time to reach C_{max}. AUC is the area under the plasma concentration-time curve. %F represents absolute oral bioavailability.

Pharmacology Results and Discussion

The *in vivo* efficacy was evaluated in the Balb/c mouse RSV infection model. As shown in **table 5**, compound **14h** showed a clear dose-dependent effect on virus load reduction from 5 mg/kg to 50 mg/kg. In addition, the 5 mg/kg group of **14h** reduced the lung tissue virus load Δ log10 to 1.6 which was superior to BMS-433771 1.2 Δ log10 at 50 mg/kg dose. Moreover, the 50 mg/kg group of **14h** reduced virus load of all the experimental animals to below the detection limit, which demonstrated that compound **14h** exhibited excellent anti-RSV efficacy and significantly superior to BMS433771 in this RSV mouse challenge model.

Table 5 *In vivo* antiviral activity in a mouse model of RSV infection

Group (n=7)	Viral load in lung (Log10 pfu/g lung)	Vial load reduction in lung (\triangle log10)
Vehicle	3.91±0.10	_
BMS433771-50mpk	2.75±0.20	1.16±0.24
14h -5mpk	2.27±0.24	1.64±0.26
14h -15mpk	1.86±0.31	2.05±0.31
14h -50mpk	0.00±0.00	3.91

Conclusion

In summary, we have explored a series of 3,3'spiro[azetidine]-2-oxo-indoline derivatives proved to be potent inhibitors of RSV in the CPE assay. The investigation led to the identification of **14h** as a compound demonstrating additional efficacy in the Balb/c mouse model of RSV infection after oral dosing. Further safety assessment will be conducted in due course.

ASSOCIATED CONTENT

Supporting Information

Synthetic procedures, analytical data, assay protocol are available free of charge on the ACS Publications website.

AUTHOR INFORMATION

Corresponding Author

* E-mail: he_haiying@wuxiapptec.com

ABBREVIATIONS

PK, pharmacokinetics; PO, per oral; Cmax, peak concentration; Tmax, time to peak; CL, clearance; T1/2, half-life; Vd, volume of distribution; AUC, area under curve; mpk, mg/kg;; %F, oral bioavailability.

REFERENCES

- 1. Shane, S. Respiratory syncytial virus market. *Nat. Rev. Drug. Discov.* **2010**, 9(1), 15-16.
- Hall, C. B.; Weinberg, G. A.; Iwane, M. K.; Blumkin, A. K.; Edwards, K. M.; Staat, M. A.; Auinger, P.; Griffin, M. R.; Poehling, K. A.; Erdman, D.; Grijalva, C. G.; Zhu, Y.; Szilagyi, P. The Burden of Respiratory Syncytial Virus Infection in Young Children. New. Engl. J. Med. 2009, 360(6), 588-598.
- Nair, H.; Nokes, D. J. Gessner, B. D.; Dherani, M.; Madhi, S. A.; Singleton, R. J.; O'Brien, K. L.; Roca, A.; Wright, P. F.; Bruce, N.; Chandran, A.; Theodoratou, E.; Sutanto, A.; Sedyaningsih, E. R.; Ngama, M.; Munywoki, P. K.; Kartasasmita, C.; Simôes, E. A.; Rudan, I.; Weber, M. W.; Campbell, H. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet. 2010, 375(9725), 1545-1555.
- Mackman, R. L.; Sangi, M.; Sperandio, D.; Parrish, J. P.; Eisenberg, E.; Perron, M.; Hui. H.; Zhang, L.; Siegel, D.; Yang, H.; Saunders, O.; Boojamra, C.; Lee, G.; Samuel, D.; Babaoglu, K.; Carey, A.; Gilbert, B. E.; Piedra, P. A.; Strickley, R.; Iwata, Q.; Hayes, J.; Stray, K.; Kinkade, A.; Theodore, D.; Jordan, R.; Desai, M.; Cihlar, T. Discovery of an oral respiratory syncytial virus (RSV) fusion inhibitor (GS-5806) and clinical proof of concept in a human RSV challenge study. J. Med. Chem. 2015, 58(4), 1630-1643.
- DeVincenzo, J. P.; Whitley, R. J.; Machman, R. L.; Weinlich, C. S.; Harrison, L.; Farrell, E.; McBride, S.; Williams, R. L.; Jordan, R.; Xin, Y.; Ramanathan, S.; O'Riordan, T.; Lewis, S. A.; Li, X.; Toback, S. L.; Lin, S. L.; Chien, J. W. Oral GS-

Table of Contents

5806 activity in a respiratory syncytial virus challenge study. New. Engl. J. Med. 2014, 371(8), 711-722.

- Yu, K. L.; Sin, N.; Civiello, R. L.; Wang, X. A.; Combrink, K. D.; Gulgeze, H. B.; Venables, B. L.; Wright, J. J.; Dalterio, R. A.; Zadjura, L.; Marino, A.; Dando, S.; D'Arienzo, C.; Kadow, K. F.; Cianci, C. W.; Li, Z.; Clarke, J.; Genovesi, E. V.; Medina, I.; Lamb, L.; Colonno, R. J.; Yang, Z.; Krystal, M.; Meanwell, N. A. Respiratory syncytial virus fusion inhibitors. Part 4: optimization for oral bioavailability. Bioorg. Med. Chem. Lett. 2007, 17(4), 895-901.
- Bonfanti, J. F.; Meyer, C.; Doublet, F.; Fortin, J.; Muller, P.; Queguiner, L.; Gevers, T.; Janssens, P.; Szel, H.; Willebrords, R.; Timmerman, P.; Wuyts, K.; Remoortere, P. V.; Janssens, F.; Wigerinck, P.; Andries, K. Selection of a respiratory syncytial virus fusion inhibitor clinical candidate.
 Discovery of a morpholinopropylaminobenzimidazole derivative (TMC353121). J. Med. Chem. 2008, 51(4), 875-896.
- 8. Cockerill, S; Pilkington, C; Lumley, J; Angell, R; Mathews, N. Pharmaceutical compounds. WO2013/68769;
- 9. Feng, S; Gao, L; Guo, L; Huang, M; Liang, C; Wang, B; Wang, L; Wu, G; Yun, H; Zhang, W; Zheng, X; Zhu, W. Aza-oxo-indoles for the treatment and prophylaxis of respiratory syncytial virus infection. WO2014/184163;
- Gao, L; Guo, L; Liang, C; Wang, B; Wang, L; Yun, H; Zhang, W; Zheng, X. Novel aza-oxo-indoles for the treatment and prophylaxis of respiratory syncytial virus infection. WO2015/22263
- Wang, L; Yun, H; Zhang, W; Zheng, X. Novel aza-oxoindoles for the treatment and prophylaxis of respiratory syncytial virus infection. WO2015/22301;
- Feng, S; Hong, D; Wang, B; Zheng, X; Miao, K; Wang, L; Yun, H; Gao, L; Zhao, S; Shen, H. C. Discovery of imidazopyridine derivatives as highly potent respiratory syncytial virus fusion inhibitors. ACS Med Chem Lett. 2015, 6(3), 359-362.
- Feng, S; Li, C; Chen, D; Zheng, X; Yun, H; Gao, L; Shen, H. C. Discovery of methylsulfonyl indazoles as potent and orally active respiratory syncytial Virus(RSV) fusion inhibitors. Eur J Med Chem. 2017, 138, 1147-1157.
- Crosignani, S.; Page, P.; Missotten, M.; Colovray, V.; Cleva, C.; Arrighi, J. F.; Atherall, J.; Macritchie, J.; Martin, T.; Humbert, Y.; Gaudet, M.; Pupowicz, D.; Maio, M.; Pittet, P. A.; Golzio, L.; Giachetti, C.; Rocha, C.; Bernardinelli, G.; Filinchuk, Y.; Scheer, A.; Schwarz, M. K.; Chollet, A. Discovery of a New Class of Potent, Selective, and Orally Bioavailable CRTH2 (DP2) Receptor Antagonists for the Treatment of Allergic Inflammatory Diseases. J. Med. Chem. 2008, 51(7), 2227-2243.
- Teno, N.; Masuya, K.; Ehara, T.; Kosaka, T.; Miyake, T.; Irie, O.; Hitomi, Y.; Matsuura, N.; Umemura, I.; Iwasaki, G.; Fukaya, H.; Toriyama, K.; Uchiyama, N.; Nonomura, K.; Sugiyama, I.; Kometani, M. Effect of Cathepsin K Inhibitors on Bone Resorption. J. Med. Chem. 2008, 51(17), 5459-5462.
- Pfefferkorn, J. A; Choi, C. Convenient synthesis of 1,1'-H-spiro[indoline-3,30-piperidine]. *Tetrahedron Lett.* 2008, 49(28), 4372-4373.

59

60

ACS Medicinal Chemistry Letters

