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There are several reactions for the asymmetric construction of
C�S bonds, often with excellent results in terms of efficiency
and selectivity.[1, 2] Among them, the Michael reaction, that is,
the conjugate addition of nucleophiles to electron-deficient
olefins,[3] has received special attention. This approach is very
attractive not only because of the availability of a broad range
of Michael acceptors and the suitability of the simultaneous
formation of both a new C�S bond and a stereocenter, but
also because the conjugate addition step provides a reactive
species that may be trapped by electrophiles leading to
tandem processes of significant synthetic value. Several
approaches have been documented for diastereo-[4] and
enantiocontrol[5, 6] in the conjugate addition of sulfur-based
nucleophiles to Michael acceptors. To the best of our knowl-
edge, however, construction of quaternary C�S systems[7]
through this reaction remains essentially unexplored within
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the asymmetric endeavor.[8] There are three conceptual
restraints that may be invoked for this omission: a) the
attenuated reactivity of b,b-disubstituted Michael accep-
tors;[9] b) the inherent difficulty in controlling p-facial dia-
stereo- and enantioselectivity in these substrates;[8] and
c) virtual thermodynamic equilibration of the stereoisomeric
products through an addition–elimination mechanism,[10]

which makes kinetic stereocontrol rather challenging. Yet,
the asymmetric construction of quaternary stereocenters,
particularly from b,b-disubstituted Michael acceptors, is a
very difficult synthetic task.[11, 12]

Our hypothesis was that the above restraints might be
counterbalanced if an intramolecular version of the Michael-
type approach could be implemented (Figure 1). In this

instance, the favorable entropy usually associated with an
intramolecular process might help to solve the reactivity
problem, whilst at the same time, a sufficiently high p-facial
discrimination could also be exerted because of the intra-
molecular nature of the chirality transfer.
To validate this hypothesis, we have formulated the

approach outlined in Scheme 1 on the basis of previous

observations made in our laboratory.[13,14] Accordingly, sev-
eral b,b-disubstituted N-enoyl oxazolidine-2-thiones, 3, were
prepared from 1 and 2, and their intramolecular reaction in
the presence of Lewis acids[15] examined, whereby the chiral
oxazolidine-2-thione moiety was expected to act not only as
the controller of the reaction stereochemistry but also as the
sulfur transfer reagent. We were pleased to find that tertiary
thiols 4 were indeed formed with good to excellent yields and,
most significantly, with high diastereoselectivity under the
action of an appropriate Lewis acid. The most satisfactory
results in terms of both reactivity and stereoselectivity were
obtained with BF3·Et2O. Among the Lewis acids tested,

[16]

SnCl4 also led to a clean reaction, but longer reaction times
and in general lower diastereoselectivities were obtained. For
a variety of substrates examined (Table 1) the diastereose-
lectivity of the reactions carried out at �30 8C ranged from

very high to essentially perfect, while even at 25 8C diaster-
eoselectivity remained high in some instances (compounds
3c,d). Curiously, whilst the b-4-methoxyphenyl substituted
enoyl derivative 3e brought about almost no diastereoselec-
tion, the enoyl compound 3 f bearing the 3-methoxyphenyl
substituent showed quite good diastereoselectivity. On the
other hand, from comparison of the results with substrates 3a,
3 i, and 3j, it appears that the size of the “small” substituent at
the b position does not influence selectivity very much and
high d.r. values are regularly observed.
The assigned configuration for the adducts was estab-

lished by a single-crystal X-ray crystallographic analysis of the
p-nitrobenzoyl derivative 5,[17] and by assuming a uniform
reaction mechanism. In this respect, the sense of the
asymmetric induction can be explained by assuming a
preferential attack of sulfur on the Si face of the enoyl b
carbon atom with no interference of the iPr group (modelA),
Figure 2.
In an effort to add some insight into the reaction

mechanism, several substrates with variable E/Z composi-

Figure 1. Intermolecular and intramolecular variants of the Michael-
type addition of sulfur nucleophiles to enoyl systems as a route to C�S
bonds with a quaternary stereocenter.

Scheme 1. Preparation of Michael acceptors 3 and their intramolecular
reaction leading to tertiary thiols 4. Conditions: a) NaH, THF, �78 8C.
b) BF3·Et2O then H2O.

Table 1: BF3·Et2O-promoted intramolecular Michael-type addition of
sulfur in b,b-disubstituted enoyl systems 3 leading to tertiary thiols 4.[a]

Compound R1 R2 T [8C] t [h] d.r.[b] Yield [%][c]

3a Me Ph �78 13 n.d. <40
�30 9 >99:1 80

25 52 86:14 n.d.
3b 4-MeC6H4 �30 7 97:3 77

25 5 73:27 89[d]

3c 4-ClC6H4 �30 9 92:8 72
25 5 90:10 90[d]

3d 4-BrC6H4 �30 72 98:2 76
25 24 96:4 42

3e 4-MeOC6H4 �30 7 52:48 65
3 f 3-MeOC6H4 �30 120 93:7 83
3g 4-CNC6H4 �30 36 92:8 73[e]

3h 4-NO2C6H4 �30 12 91:9 70
3 i Et Ph �30 10 98:2 77
3 j nBu Ph �30 15 96:4 68

[a] Reactions conducted at 0.5 mmol scale and 0.1m substrate concen-
tration. Ratio of 3 :BF3·OEt2 1:2. For details, see Supporting Information.
[b] Determined by 1H and/or 13C NMR spectroscopy. [c] Yields of isolated
compound after purification by column chromatography. [d] Yield of
crude product. [e] Reaction performed at 0.2 mmol scale.

Figure 2. The attacking trajectories of sulfur onto (A) the Si face and
(B) the Re face of the enoyl b-carbon, showing the distal and proximal
alignments, respectively, of iPr group and (R1R2C=C) moiety, and struc-
ture of 5.
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tions were prepared[18] and the outcomes of their reactions
were examined. Strikingly, it was found that the reaction
diastereoselectivity was essentially the same regardless of the
E/Z composition of the starting enoyl substrate 3,[19] Table 2.

The same behavior was also observed for substrate 6
(Figure 3), which bears a structurally different oxazolidine-
2-thione auxiliary.[20] These results show that products with
very high diastereomeric purity may be accessible from

configurationally nonhomogeneous b,b-disubstitutedMichael
acceptors, a feature that is of practical interest.[21]

Although at the present time we do not have a rational
explanation for the above observations,[22] the excellent
diastereoselectivity attained in these reactions is also of
particular interest, since treatment of the thiol adducts such as
4b and 4d with Sm(OTf)3 (Tf= trifluromethanesulfonyl) in
MeOH[23] provides the b,b-disubstituted b-sulfanyl carboxylic
esters 8 and 9, respectively. Likewise, treatment of 4a and 4b
with NaBH4

[24] leads to the corresponding 1,3-hydroxythiols
10[25] and 11. In each case, the oxazolidinone 12 is produced
and can be transformed into the oxazolidine-2-thione 2 for
reuse by treatment with LawesonEs reagent (Scheme 2).
In conclusion, it has been shown that b,b-disubstituted N-

enoyl oxazolidine-2-thiones react upon the action of Lewis
acids through a highly stereoselective intramolecular
Michael-type process. This transformation allows for the
construction of C�S bonds with a quaternary stereocenter and
results in the formation of functionalized tertiary sulfanyls in
very high enantioselectivity. Further studies are underway to
clarify the mechanism of this reaction.

Experimental Section
General Procedure: BF3·Et2O (1.0 mmol, 0.127 mL) was added
dropwise by syringe to a solution of the corresponding N-enoyl
oxazolidine-2-thione (3 ; 0.5 mmol) in methylene chloride (8 mL)
under a nitrogen atmosphere at �30 8C (bath temperature) or at the
corresponding temperature (see Table 1). The resulting mixture was
stirred at the same temperature until signals corresponding to starting
material were no longer visible in the 1H NMR spectra of the
extracted samples. The mixture was then poured into a saturated
solution of sodium bicarbonate (20 mL) and the layers were
separated. The organic layer was washed with brine (50 mL), dried
over MgSO4, and the solvent evaporated under reduced pressure. The
crude material was purified by silica gel chromatography by using a
mixture of ethyl acetate and hexane (10:90) as eluent.
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