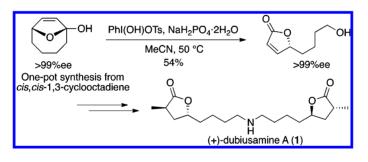
LETTERS 2013 Vol. 15, No. 7 1788–1790

ORGANIC

Concise Entry to Chiral 5-(4-Hydroxybutyl)-2(5*H*)-furanone via HTIB-Mediated Novel Oxidative Fragmentation: Formal Total Synthesis of (+)-Dubiusamine A


Muneo Kawasumi and Yoshiharu Iwabuchi*

Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980-8578

y-iwabuchi@m.tohoku.ac.jp

Received February 25, 2013

ABSTRACT

The concise synthesis of 5-(4-hydroxybutyl)-2(5*H*)furanone has been accomplished from 9-oxabicyclo[4.2.1]non-7-en-1-ol on the basis of HTIB [Phl(OH)OTs, a.k.a. Koser's reagent]-mediated novel oxidative fragmentation. Chiral (-)-(*R*)-5-(4-hydroxy-butyl)-2(5*H*)-furanone (>99% ee) was used for the formal total synthesis of (+)-dubiusamine A (1).

The fertile nature of hypervalent iodine reagents has continuously spurred the sustainable development of synthetic organic chemistry.^{1,2} We have recently reported a concise entry to both enantiomers of 8-oxabicyclo[3.2.1]-oct-3-en-2-one (**3**) via the HTIB [PhI(OH)OTs,³ a.k.a. Koser's reagent]-mediated, novel intramolecular oxidative

etherification of 4-hydroxy-cyclohept-2-enone (2),⁴ which features the direct $\alpha'(C7)$ -functionalization⁵ of 2 (Scheme 1).

During our effort toward expanding the synthetic scope of the HTIB-mediated oxidative etherification reaction, we encountered the unexpected fragmentation of 9-oxabicyclo-[4.2.1]non-7-en-1-ol (**4b**), which is a substantial tautomer of 4-hydroxycyclooct-2-enone (**4a**),⁶ to give 5-(4-hydroxybutyl)-2(5*H*)-furanone (**5**). Herein, we disclose a concise entry to highly enantiomerically enriched 5-(4-hydroxybutyl)-2(5*H*)-furanone (**5**) based on a sequential organocatalytic asymmetric Toste-Kornblum-DeLaMare rearrangement⁶

⁽¹⁾ For leading books, see: (a) Wirth, T., Ed. *Hypervalent Iodine Chemistry: Modern Developments in Organic Synthesis*; Topics in Current Chemistry Series 224; Springer: Berlin, 2003. (b) Varvoglis, A. *Hypervalent Iodine in Organic Synthesis*; Academic Press: San Diego, 1997.

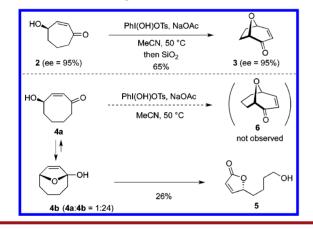
⁽²⁾ For leading reviews, see: (a) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299. (b) Zhdankin, V. V.; Stang, P. Chem. Rev. 2002, 102, 2523. (c) Wirth, T. Angew. Chem., Int. Ed. 2005, 44, 3656. (d) Silva, L. F., Jr.; Oloff, B. Nat. Prod. Rep. 2011, 28, 1722.

^{(3) (}a) Moriary, R. M.; Vaid, R. K.; Koser, G. F. Synlett 1990, 365.
(b) Koser, G. F. Aldrichimica 2001, 34, 89. (c) Nabana, T.; Togo, H. J. Org. Chem. 2002, 67, 4362. (d) Ueno, M.; Nabana, T.; Togo, H. J. Org. Chem. 2003, 68, 6424. (e) Yamamoto, Y.; Togo, H. Synlett 2006, 798. (f) Yamamoto, Y.; Kawano, Y.; Toy, P. H.; Togo, H. Tetrahedron 2007, 63, 4680. (g) Akiike, J.; Yamamoto, Y.; Togo, H. Synlett 2007, 2168.

⁽⁴⁾ Kawasumi, M.; Kanoh, N.; Iwabuchi, Y. Org. Lett. 2011, 13, 3620.

⁽⁵⁾ Merritt, E. A.; Olofsson, B. Synthesis 2011, 517.

⁽⁶⁾ Staben, S. T.; Linghu, X.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 12658.


⁽⁷⁾ Tan, M. A.; Kitajima, M.; Kogure, N.; Nonato, M. G.; Takayama, H. *Tetrahedron* **2010**, *66*, 3353.

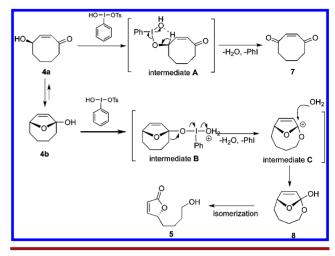
^{(8) (}a) Nonato, M. G.; Takayama, H.; Garson, M. J. Chapter 4 in *The Alkaloids*; Cordell, G. A., Ed.; Academic: New York, 2008; Vol. 66, 215. (b) Lim. T. K. *Edible Medicinal and Non-Medicinal Plants: Vol. 4, Fruits*; Springer: Netherlands, 2012.

and HTIB-mediated oxidative fragmentation. We also demonstrate the synthetic use of **5** by transforming it into (+)-dubiusamine A (1), which was isolated from the crude base of *Pandanus dubius*,⁷ a congener of a medicinally relevant tropical plant of the family Pandanaceae.⁸

At the outset, we envisioned that 9-oxa-bicyclo[3.3.1]non-3-en-2-one (**6**) could be obtained from 4-hydroxycyclooct-2-enone (**4a**)⁹ by employing HTIB-mediated, intramolecular oxidative etherification (Scheme 1). The attempt was carried out using racemic **4**,¹⁰ and unfortunately, the attempted intramolecular oxidative etherification using HTIB/NaOAc⁴ gave not even a trace amount of **6**; instead, 5-(4-hydroxybutyl)-2(5*H*)-furanone (**5**) was obtained with modest yields (Scheme 1, Table 1, entries 1–3). The cause of the unexpected reaction is considered to be the reluctance of **4b** to tautomerize to **4a**, where HTIB reacts with **4b** at the hemiacetalic OH moiety to give the covalent intermediate **B**, from which oxidative fragmentation¹¹ occurred and the concomitant hydrolysis furnished the butenolide **5** (Scheme 2).¹²

Scheme 1. Oxidative Fragmentation

Prompted by the novel mode of the reaction as well as the potential use of the butenolide **5** as a building block for


(9) ¹H NMR indicated that 4-hydroxycyclooct-2-enone (**4a**) exists as a tautomeric mixture with 9-oxabicyclo[4.2.1]non-7-en-1-ol (**4b**) in a 1:24 ratio in CDCl₃ at rt.

(10) Racemic 4 was prepared in one-pot reaction from *cis,cis*-1,3cyclooctadiene in 95% yield via photooxygenation (O₂ bubbling, 5 mol% tetraphenylprophyrin, 100 W tungsten lamp) and the following treatment with 2 equiv of Et_3N .

(11) Selected examples of oxidative ring fragmentation; (a) HgO/I₂: Suginome, H.; Yamada, S. J. Org. Chem. 1985, 50, 2489. Tetrahedron 1987, 43, 3371. Pb(OAC)₄/I₂: (b) Fuhrer, H.; Lorenc, L.; Pavlovic, V.; Rihs, G.; Rist, G.; Kalvoda, J.; Mihailovic, M. Lj. Helv. Chim. Acta 1981, 64, 703. IBDA/I₂: (c) Freire, R.; Marrero, J. J.; Rodríguez, M. S.; Suárez, E. Tetrahedron Lett. 1986, 27, 383. Iodosyl-benzene/I₂: (d) Arrmas, P.; Francisco, C. G.; Suárez, E. Tetrahedron Lett. 1986, 34, 7331. FeSO₄/Cu(OAc)₂: (e) Schreiber, S. L. J. Am. Chem. Soc. 1980, 102, 6163. Pb(OAc)₄ with γ-hydroxyalkylstannanes: (f) Nakatani, K.; Isoe, S. Tetrahedron Lett. 1984, 25, 5335. Mn(OAc)₃/Cu(OAc)₂: (g) Heiba, E. I.; Dessau, R. M. J. Am. Chem. Soc. 1971, 93, 524. Pb(OAc)₄/ Cu(OAc)₂: (h) Rigby, J. H.; Psyn, A.; Warshakoon, N. Tetrahedron Lett. 2001, 42, 2047.

(12) According to a reviewer's comment, we examined the use of other iodine(III) reagents for this transformation. $PhI(OAc)_2$ resulted in no reaction after 24 h at 50 °C either in the presence or absense of NaH_2PO_4 . $PhI(OCOCF_3)_2$ caused gradual decomposition of **4b** to give intractable polar byproducts under the same reaction conditions.

Scheme 2. Plausible Reaction Pathway for Oxidative Etherification

the synthesis of γ -lactone-containing natural products^{13,14} (Figure 1), we then focused on identifying optimal conditions for oxidative fragmentation.

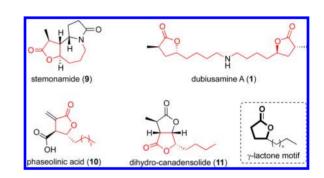
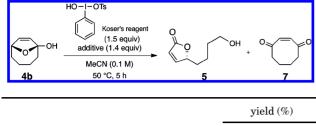


Figure 1. Natural products featuring γ -lactone moiety.

After the set of examinations summarized in Table 1, we found that the presence of $NaH_2PO_4 \cdot 2H_2O$ significantly improved the productivity of the reaction: treatment of **4a** with 1.5 equiv of HTIB in the presence of 1.4 equiv of $NaH_2PO_4 \cdot 2H_2O$ in MeCN at 50 °C afforded **5** with 54% yield (entry 10).


Having identified reliable conditions for conducting HTIB-mediated oxidative fragmentation to give 5, we embarked on the formal total synthesis of (+)-dubiusamine A (1) to demonstrate the synthetic use of the reaction. The requisite starting material, namely, (1S,6R)-9oxabicyclo[4.2.1]non-7-en-1-ol (-)-4**b**, was prepared via onepot synthesis with 92% yield and > 99% ee¹⁵ starting from

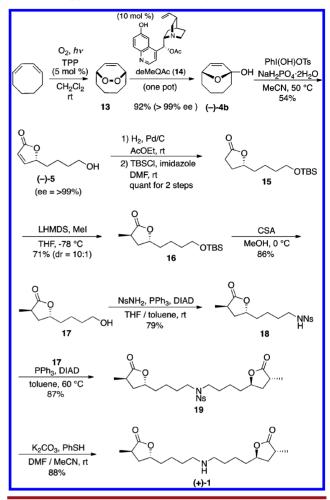
^{(13) (}a) Bandichhor, R.; Nosse, B.; Reiser, O. *Top. Curr. Chem.* **2005**, 243, 43. (b) Kitson, R. R. A.; Millemaggi, A.; Taylor, R. J. K. *Angew. Chem., Int. Ed.* **2009**, 48, 9426.

⁽¹⁴⁾ For recent synthesis of chiral butenolides, see: (a) Devalankar, D. A.; Chouthaiwale, P. V.; Sudalai, A. *Tetrahedron; Asymmetry* **2012**, 23, 240. (b) Wu, Y.; Singh, R. P.; Li, D. J. Am. Chem. Soc. **2011**, 133, 12458. (c) Mao, B.; Geurts, K.; Fananás-Mastral, M.; van Zijl, A. W.; Fletcher, S. P.; Minnaard, A. J.; Feringa, B. L. Org. Lett. **2011**, 13, 948.

⁽¹⁵⁾ The enantiomeric purity of the butenolide (-)-5 was determined after benzoylation. See Supporting Information.

Table 1. Optimization of Oxidative Fragmentation

entry	additive	5	7
$1^{a,b}$	AcONa	trace	0
2		29	0
3	AcONa	26	0
4^c	AcOK	28	4
5	$LiOH \cdot H_2O$	34	0
6	KH_2PO_4	29	nd.
7	KaHPO ₄	30	nd.
8	KHSO_4	36	nd.
9	Na_zHPO_4	45	0
10	$NaH_2PO_4 \cdot 2H_2O$	54	0


 a Reaction was carried out at rt. b Reaction Time was 24 h. c 12 was obtained with 6% yield.

cis,cis-1,3-cyclooctadiene, through sequential photooxygenation to give the prochiral endoperoxide 13 and deMeQAc (14)catalyzed Toste-Kornblum-DeLaMare rearrangement.⁶ Upon treatment with 1.5 equiv of HTIB in the presence of 1.4 equiv of NaH₂PO₄·2H₂O in warm MeCN for 0.5 h, (-)-4b furnished (-)-5 with 54% yield without the loss of enantiomeric integrity. Prior to the introduction of a C-2 methyl group, the butenolide moiety of (-)-5 was hydrogenated and the primary hydroxyl group was masked as the TBS ether. The treatment of 15 with LHMDS and MeI allowed the diastereoselective α -methylation of the lactone ring to give 16 with a 10:1 (anti/syn) ratio. After the removal of the TBS group from 16 using camphorsulfonic acid in MeOH at 0 °C, the resultant alcohol 17 was subjected to the Mitsunobu reaction employing 2-nitrobenzenesulfonamide,¹⁶ PPh₃, and DIAD in THF/toluene to give 18 in 79% yield, which was again subjected to the Mitsunobu reaction with alcohol 17 to give the nosyl¹⁶-protected symmetrical amide 19. The treatment of 19 with K_2CO_3 and PhSH in MeCN-DMF affected the deprotection of the nosyl group. After carefully purifying the crude product using silica gel chromatography, diastereomerically pure (+)-1 was obtained, Scheme 3. All the spectral data and the specific rotation of (+)-1 were in good agreement with those reported by Takayama et al.,⁷ which clearly determined the stereochemical course of the HTIB-mediated reaction of (-)-4b.

In summary, the concise enantioselective synthesis of 5-(4-hydroxybutyl)-2(5H)-furanone (5) has been accomplished

Scheme 3. Application to the Formal Synthesis of (+)-1

via the HTIB-mediated oxidative fragmentation of 9-oxabicyclo[4.2.1]non-7-en-1-ol (4b), which represents the further potential of hypervalent iodine reagents for organic synthesis. The synthetic use of (–)-5 was demonstrated by a formal total synthesis of dubiusamine A (1). Since a chiral catalyst that leads to the asymmetric Toste-Kornblum-DeLaMare reaction of (+)-4b (>99% ee) has been established,⁶ the present work will allow the realization of a concise entry to both enantiomers of 5.

Acknowledgment. This work was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas "Advanced Molecular Transformations by Organocatalysis" from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and by a Grant-in Aid for the Research Fellowship for Young Scientists (M.K) (234661) from Japan Society for the Promotion of Science.

Supporting Information Available. Experimental procedures and spectroscopic and analytical data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

⁽¹⁶⁾ Kan, T.; Fukuyama, T. Chem. Commun. 2004, 353.

The authors declare no competing financial interest.