Technical Notes

Aza-Diels—Alder Reaction of Methyl 2-[(*R*)-1-Phenylethyl]iminoethanoate with Cyclopentadiene Using Practical and Environmentally Friendly Biphasic Solvent System

Norio Hashimoto,*,^{†,‡} Hironobu Yasuda,[†] Masaru Hayashi,[†] and Yoo Tanabe[‡]

Chemical Development Laboratories, Fujisawa Pharmaceutical Co., Ltd., 2-1-6, Kashima, Yodogawa-ku, Osaka 532-8514, Japan, and School of Science, Kwansei Gakuin University, 2-1, Gakuen, Sanda, Hyogo 669-1337, Japan

Abstract:

Aza-Diels-Alder reaction between 2-[(R)-1-phenylethyl]iminoethanoate (1) and cyclopentadiene using the biphasic solvent system (TMSCl-CH₃OH/toluene) gave (1*S*,3*S*,4*R*)-2-[(*R*)-1phenylethyl]-2-aza-bicyclo[2.2.1]hept-5-ene-3-carboxylates (3a) in 32% isolated yield. The present method is advantageous for the large-scale synthesis, because (i) the reported methods required harmful and expensive fluorinated chemicals, (ii) methyl analogue 3a was practically isolated as a crystalline solid, and (iii) the reaction was conducted with very little observable exotherm. In addition, the absolute configurations of the other three diastereomers 2, 4, and 5 were unambiguously determined.

Introduction

Recently, a class of bicyclic proline analogue, (1S,3S,4R)-2-[(*R*)-1-phenylethyl]-2-aza-bicyclo[2.2.1]hept-5-ene-3-carboxylates (**3**) have attracted considerable attention due to the application not only for biologically active peptides^{1,2} but also for chiral catalysts.^{3–5} In general, bicyclic compound **3** can be obtained as the major adduct by the diastereoselective [4 + 2]-type aza-Diels–Alder (aza-DA) reaction between 2-[(*R*)-1-phenylethyl]iminoethanoate (**1**) and cyclopentadiene, along with three other diastereomers **2**, **4**, and **5** (Scheme 1).⁶

The isolation of the desired diasteromer **3**, however, requires tedious procedures for industrial-scale production and the use of silica gel column chromatography and fluorinated chemicals such as CF_3CO_2H , BF_3 • OEt_2 reagents, and CF_3CH_2OH solvent.^{6–10}

- [‡] Kwansei Gakuin University.
- (1) Limburg, D. C.; Thomas, B. E.; Li, J.; Fuller, M.; Spicer, D.; Chen, Y.; Guo, H.; Steiner, J. P.; Hamilton, G. S.; Wu, Y. *Bioorg. Med. Chem. Lett.* 2003, *13*, 3867.
- (2) Mellor, J. M.; Richards, N. G. J.; Sargood, K. J.; Anderson, D. W.; Chamberlin, S. G.; Davies, D. E. *Tetrahedron Lett.* **1995**, *36*, 6765.
- (3) Pinho, P.; Guijarro, D.; Andersson, P. G. Tetrahedron 1998, 54, 7897.
- (4) Södergren, M. J.; Andersson, P. G. *Tetrahedron Lett.* **1996**, *37*, 7577.
 (5) Guijarro, D.; Pinho, P.; Andersson, P. G. J. Org. Chem. **1998**, *63*, 2530.

10.1021/op049828m CCC: \$30.25 © 2005 American Chemical Society Published on Web 11/13/2004

To overcome these problems, we investigated a new protocol from the standpoint of process chemistry. Here, we disclose a practical method for the preparation of methyl analogue **3a** using the aza-DA reaction in the biphasic solvent system, TMSCl-CH₃OH/toluene. Utilizing the present method, **3a** was successfully obtained as highly pure crystal-line solid for the first time,¹¹ using neither column chromatography nor any fluorinated chemicals.

Results and Discussion

First, we reexamined the aza-DA reaction of methyl 2-[(R)-1-phenylethyl]iminoethanoate (**1a**) with cyclopentadiene, following the reported conditions (CF₃CO₂H-CF₃-CH₂OH monophasic system).¹⁰ Imine **1a** was readily prepared from available (R)-1-phenylethylamine¹² and methyl 2-hydroxy-2-methoxyacetate.¹³ Reverse-phase HPLC analysis of the crude product showed four main peaks (Chart 1).¹⁴ LC-MASS/MASS analysis for each peak revealed that all four products have the same M⁺ data (MW = 257) with very similar degradation patterns. This result indicates that these four products correspond to methyl ester diastereomers **2a**, **3a**, **4a**, and **5a**, in order of elution from the HPLC as an end result.

The absolute configuration of diastereomer **5a**, which eluted first from the silica gel column chromatography (normal phase), was deduced to be *endo*-[1S,3R,4R] (Scheme

- (8) Abraham, H.; Stella, L. Tetrahedron 1992, 48, 9707.
- (9) Balley, P. D.; Brown, G. R.; Korber, F.; Reed, A.; Wilson, R. D. Tetrahedron: Asymmetry 1991, 2, 1263.
- (10) Bailey, P. D.; McDonald, I. M.; Rosair, G. M.; Taylor, D. Chem. Commun. 2000, 2451.
- (11) Stella et al. reported in ref 6 that neither **3a** nor its enantiomer could be obtained in crystalline form.
- (12) Juaristi, E.; León-Romo, J.; Reyes, A.; Escalante, J. Tetrahedron: Asymmetry 1999, 10, 2441.
- (13) Ethyl form **1b** was prepared according to the method of ref 7. See Experimental Section for **1a**.
- (14) HPLC analytical conditions: YMC-Pack ODS-Am (YMC Co., Ltd.) (particle size: 5 μm, diameter: 4.6 mm, length: 150 mm), column temperature: 40 °C, mobile phase: 60% aqueous acetonitrile (Na₂-HPO₄·12H₂O, KH₂PO₄, 0.5 g/L each), wavelength: 235 nm.

^{*} To whom correspondence should be addressed. E-mail: norio_hasimoto@ po.fujisawa.co.jp. Telephone: 81-6-6390-1183. Fax: 81-6-6304-4419. [†] Fujisawa Pharmaceutical Co. Ltd.

 ⁽⁶⁾ Stella, L.; Abraham, H.; Feneau-dupont, J.; Tinant, B.; Declercq, J. P. Tetrahedron Lett. 1990, 31, 2603.

⁽⁷⁾ Tararov, V. I.; Kadyrov, R.; Kadyrova, Z.; Dubrovina, N.; Börner, A. *Tetrahedron: Asymmetry* 2002, *13*, 25. (Tararov et al. succeeded in the conversion of crude 3b to ethyl (1*R*,3*S*,4*S*)-2-[(*R*)-1-phenylethyl]-2azabicyclo[2.2.1]heptane-3-carboxylate hydrochloride as crystals in 32% overall yields.

Chart 1

1), although Stella et al. reported that of **5a** was *endo*- $[1R,3S,4S]^6$ based on the ¹H NMR chemical shift of methyl ester moiety (3.78 ppm, the highest value among four diastereomers). The absolute configuration of diastereomers were assigned as follows.

Hydrogenation/hydrogenolysis of **5a** using H₂–Pd/C catalyst by the reported method¹⁵ resulted in the formation of (2*R*)-cyclopentyl glycine methyl ester (**7a**) ($[\alpha]^{25}_{D}$ –24.9 (*c* 1, CHCl₃)), wherein the chiralty of the 3-position of **5a** was retained. On the other hand, major diasteromer **3a**, known as *exo*-[1*S*,3*S*,4*R*],^{6,16} was similarly converted into the antipodal ester **6a** ($[\alpha]^{25}_{D}$ +22.7 (*c* 1, CHCl₃)). In addition, minor diasteromer **2a**, which could also be separated by silica gel column chromatography, was transformed into **6a** ($[\alpha]^{25}_{D}$ +21.4 (*c* 1, CHCl₃)) by a similar method. The absolute configuration of **2a** was inevitably *endo*-[1*R*,3*S*,4*S*]. These experimental results apparently

indicate that the absolute configuration of diastereomer **5a** should be revised as either *endo*-[1S,3R,4R] or *exo*-[1R,3R,4S] at this stage.

¹H NMR chemical shifts of methyl esters *endo*-**2a** and *exo*-**3a** were 3.43 and 3.35 ppm, respectively; the upper field value of *exo*-**3a** is supposed due to the shield effect of the benzene ring. Those of **4a** and **5a** were 3.68 and 3.78 ppm, respectively. By close analogy, based on the shield effect, the configurations of **4a** and **5a** were finally determined as *exo*-[1*R*,3*R*,4*S*] and *endo*-[1*S*,3*R*,4*R*], respectively.

Taking into account this information, we started to investigate the reaction conditions without fluorinated reagents and/or CF₃CH₂OH as the solvent. Table 1 lists these results. The most common acid, HCl, which was conveniently and quantitatively generated by reaction of TMSCl with CH₃OH, was selected instead of the reported method that used CF_3CO_2H (entries 1, 2). However, the reaction did not proceed to completion and only a moderate conversion was observed (entry 3). We speculated that cyclopentadiene was poorly soluble in CH₃OH leading to the observed white suspension due to its low solubility. To dissolve the problem, toluene was added to the system as a cosolvent (entries 4, 5). As we expected, the reaction proceeded smoothly compared with the reported methods.⁹⁻¹⁰ It should be noted that undesirable suspension disappeared and the system became a homogeneous biphasic solvent system with cyclopentadiene soluble in toluene, and the imine, 1a, dissolved in CH₃OH as its hydrochloride salt. The major impurity was endo-5a in the CF₃CO₂H-CF₃CH₂OH system (entry 1), while in the present system (entry 4) the major impurity is endo-2a. Lowering the temperature decreased the amount of 2a (entry 5).

⁽¹⁵⁾ Alonso, D. A.; Bertilsson, S. K.; Johnsson, S. Y.; Nordin, S. J. M.; Södergren, M. J.; Andersson, P. G. *J. Org. Chem.* **1999**, *64*, 2276.
(16) Waldmann, H.; Braun, M. *Liebigs Ann. Chem.* **1991**, 1045.

Table 1. Aza-I	Diels-Alder	reaction	utilizing	biphasic	system ^a
----------------	-------------	----------	-----------	----------	---------------------

entry	imine	solvent (vol) solvent (vol)	acid (equiv)	reaction temp (°C)/ time (h)	% ^{<i>b</i>} conversion of 3 (diastereomer ratio 2 : 3 : 4 : 5)	isolated yield (%) ^c	de (%) ^b
1	1a	CF_3CH_2OH (6) tolueme (1)	CF_3CO_2H	-15 to -10/ 0.25	54.7 (5:78:4:13)	21.5	99.3
2	1a	DMF (4) H_2O (0.01 equiv)	CF_3CO_2H	23 to 25/ 26	33.0 (s.m. remained)		
3	1a	MeOH (10)	TMSC1 (2.0)	2 to 5/	46.0 (7:82:5:6)		
4	1 a	toluene (4) MeOH (1)	TMSCl $(2.0)^d$	2 to 3/ 19	59.8 (16:74:5:5)	36.1	94.6 (98.3) ^e
5	1a	toluene (4) MeOH (1)	TMSC1 (2.0)	-15 to 3/	62.4 (11:79:6:4)	36.5	97.8
6	1b	toluene (4) EtOH (1)	TMSC1 (2.0)	2 to 3/	71.0 (5:80:10:5)	64.7 ^{<i>f</i>}	
7	1 a	toluene (4) PrOH (1)	TMSC1 (2.0)	-13 to 5/2	61.8 (8:76:12:4)		
8	1a	toluene (4) CF_3CH_2OH (1)	TMSC1 (2.0)	-11 to 5/ 2.5	59.4 (7:77:9:7)		

^{*a*} Cyclopentadiene (1.5 equiv) was used in all entries. ^{*b*} Conversion based on **1** and diastereomeric excess were determined by the HPLC analysis mentioned in the text. ^{*c*} Product **3a** could be crystallized in *n*-heptane at 0 °C, followed by filtration at -15 °C after stirring for 1 h. ^{*d*} TMSCl (1.0 equiv) gave an unsatisfactory conversion. ^{*e*} One more recrystallization with *n*-heptane gave a higher purified product. ^{*f*} Purified by silica gel column chromatography.

Table 2. Stereoselectivity of aza-DA reaction using cosolvents

cosolvent	exo/endo	3 <i>S</i> /3 <i>R</i>	
MeOH	5.7	9.0	
EtOH	9.0	5.7	
ⁱ PrOH	7.3	5.3	
CF ₃ CH ₂ OH	6.0	5.3	

In the case of using ethyl analogue **1b**, the conversion yield increased compared with that using **1a** (entry 6), but unfortunately, the desired major product **3b**, which was purified by silica gel column chromatography, did not solidify. Diastereomer **2b** was isolated in 7% yield as a major impurity, and the ¹H NMR analysis coincided with the reported data⁹ of the *endo* form. To determine the absolute configuration, **2b** was converted into (2*S*)-cyclopentyl glycine ethyl ester (**6b**) in a manner similar to the case of the methyl form **6a**. The optical rotation of **6b** was $[\alpha]^{25}_{D} + 15.3$ (*c* 1, CHCl₃), which surpassed the reported data ($[\alpha]^{25}_{D} + 10.2$ (*c* 1, CHCl₃))¹⁵ derived from *exo*-**3b**. Thus, the absolute configuration of **2b** was unambiguously determined to be *endo*-[1*R*,3*S*,4*S*]. The use of ¹PrOH or CF₃CH₂OH as cosolvent did not show promising results (entries 7, 8).

Table 2 summarizes the relationship between solvents and *exo/endo*, 3S/3R (*si/re*-face) selectivities. No apparent correlation of solvents with *exo/endo* ratios was observed. In contrast, as the bulk of alcohols (<u>ROH</u>) increased, 3S/3R ratios considerably decreased. This tendency would be explained by the following plausible mechanism (Scheme 2). As Balley et al. pointed out,⁹ chiral imine **1a** chelates with an alcohol through two hydrogen bonds to give the activated seven-membered ring intermediate **8**. Sterically unhindered CH₃OH avoids the repulsion against (*R*)-1-phenylethyl group, and cyclopentadiene predominantly approaches from the *si*-face of **8**. Regarding the counterion, chloride forms a tighter ion pair than trifluoroacetate⁸ so that the undesirable reverse reaction from ionic intermediate **8**

to the corresponding covalent form should be sufficiently retarded.⁶

One more notable aspect lies in the fact that the present aza-DA reaction displayed only a small exotherm compared to the CF₃CO₂H-CF₃CH₂OH system (ca. 60 kJ/mol of cyclopentadiene). Actually, auto-MATE¹⁷ indicated a small heat release value of 4.4 kJ during the addition of 1 mol of cyclopentadiene. Thus, cyclopentadiene could be added *in one portion* into the biphasic solvent system, which is regarded as a safe and desirable process. Finally, we successfully scaled up the present procedure for the large-scale production of **3a** (103 kg) in 32% isolated yield. As the reaction displayed only a mild exotherm, it was easily controlled using -15 °C brine in a 4000-L glass-lined reactor.

Conclusions

We have established the practical and environmentally friendly aza-DA reaction between methyl 2-[(R)-1-phenyl-ethyl]iminoethanoate (**1a**) and cyclopentadiene using a biphasic solvent system (TMSCl–CH₃OH/toluene), which not only avoided expensive and pollutive fluorinated chemicals but also produced methyl (1S,3S,4R)-2-[(R)-1-phenyl-ethyl]-2-aza-bicyclo[2.2.1]hept-5-ene-3-carboxylate (**3a**) as a high quality crystalline solid. In addition, the absolute configurations of all four diastereomers **2**, **3**, **4**, and **5** were unambiguously determined by using LC–MASS/MASS, ¹H NMR analyses, and a valid derivatization to cyclopentyl-glycine derivatives.

Experimental Section

All reagents and solvents were commercially available. ¹H NMR spectra were recorded with a Bruker AC200P(200 MHz) spectrometer using tetramethylsilane as an internal standard. HPLC analysis was performed with a Shimadzu 10A. Melting points were determined in open capillary tubes

⁽¹⁷⁾ auto-MATE is a product of Hazard Evaluation Laboratory Limited.

and were uncorrected. Mass, LC-MASS/MASS, and optical analyses were carried out by Analytical Science Laboratories, Inc.

Methyl 2-[(*R*)-1-phenylethyl]iminoethanoate (1a). To a 2000-L glass-lined reactor were added toluene (653 kg) and methyl 2-hydroxy-2-methoxyacetate (164 kg, 1365 mol). To the mixture was added dropwise (*R*)-1-phenylethylamine (150 kg, 1241 mol) at -5-0 °C, followed by stirring for 1 h at room temperature. The reaction solution was washed with water (750 L), and the aqueous layer was re-extracted with toluene (392 kg). The combined organic layer was washed with 20% (w/v) aqueous NaCl (450 L), followed by concentration under reduced pressure to give **1a** quantitatively. ¹H NMR (CDCl₃) δ (ppm): 1.63 (3H, d, *J* = 7.0 Hz), 3.87 (3H, S), 4.61 (1H, q, *J* = 6.5 Hz), 7.20–7.40 (5H, m), 7.74 (1H, s). MASS (*e*/*z*): 192 (M + H⁺). Compound **1a** was stable for at least 2 weeks in the refrigerator.

Methyl (1*S*,3*S*,4*R*)-2-[(*R*)-1-Phenylethyl]-2-aza-bicyclo-[2.2.1]hept-5-ene-3-carboxylate (3a). To a sufficiently stirred imine 1a (237 kg, 1241 mol) in toluene (815 kg) and methanol (206 kg) in a 4000-L glass-lined reactor was added TMSCl (270 kg, 2486 mol) dropwise at 0-5 °C for 2 h. Then, freshly distilled cyclopentadiene (123 kg, 1861 mol) was added dropwise at -10 to -5 °C for 1 h, followed by stirring for an additional 1 h and at 0-5 °C for 1 h.

The lower layer containing **3a** as its hydrochloride salt was separated, and the top layer was back extracted with 9% aqueous HCl. Combined aqueous CH₃OH solution was neutralized to pH 8-9 with 25% aqueous H₄NOH solution, followed by extraction with n-heptane (1068 kg). Evaporation under reduced pressure gave a concentrated solution (610 kg), which was stirred over 1 h at 0-5 °C and an additional 1 h at -5 to -10 °C for the crystallization. Filtration and drying gave **3a** as a white solid (103.4 kg, 32.4% yield): mp = 47-48 °C; the ¹H NMR spectrum was identical with the reported data.⁶ ¹H NMR (CDCl₃) δ (ppm): 1.42 (3H, d, J = 6.5 Hz), 1.63 (1H, broad s), 2.10 (1H, d, J = 8.5 Hz), 2.22 (1H, s), 2.91 (1H, broad s), 3.04 (1H, q, J = 6.5 Hz), 3.36 (3H, s), 4.32 (1H, broad s), 6.22–6.30 (1H, m), 6.40– 6.46 (1H, m), 7.16–7.30 (5H, m). MASS (e/z): 258 (M + H⁺).

An aliquot sample of mother liquid was concentrated under reduced pressure to give orange oil (5 g), which was purified by column chromatography (SiO₂:160 g, elution:

108 • Vol. 9, No. 1, 2005 / Organic Process Research & Development

n-heptane:ethyl acetate = 3:1 to 1:1) to give **2a** and **5a** each as a pale-yellow oil.

Methyl (1*R*,3*S*,4*S*)-2-[(*R*)-1-phenylethyl]-2-aza-bicyclo-[2.2.1]hept-5-ene-3-carboxylate (2a): ¹H NMR (CDCl₃) δ (ppm): 1.48 (3H, d, J = 6.5 Hz), 1.40–1.67 (2H, m), 3.20– 3.30 (1H, m), 3.30–3.36 (1H, m), 3.43 (3H, s), 3.60–3.70 (1H, q, J = 7.0 Hz), 4.02–4.10 (1H, m), 6.04–6.12 (1H, m), 6.54–6.62 (1H, m), 7.18–7.40 (5H, m). MASS (*e*/*z*): 258 (M + H⁺).

Methyl (1*S*,3*R*,4*R*)-2-[(*R*)-1-phenylethyl]-2-aza-bicyclo-[2.2.1]hept-5-ene-3-carboxylate (5a): ¹H NMR (CDCl₃) δ (ppm): 1.22 (3H, d, J = 6.5 Hz), 1.61 (1H, s), 1.89 (1H, d, J = 8.5 Hz), 2.49 (1H, s), 3.03 (1H, q, J = 6.5 Hz), 3.05–3.12 (1H, m), 3.50–3.56 (1H, m), 3.78 (3H, s), 6.00–6.06 (1H, m), 6.38–6.44 (1H, m), 7.20–7.40 (5H, m). MASS (*e*/*z*): 258 (M + H⁺).

Methyl (1*R*,3*R*,4*S*)-2-[(*R*)-1-Phenylethyl]-2-aza-bicyclo-[2.2.1]hept-5-ene-3-carboxylate (4a). Compound 4a could not be sufficiently purified due to the nearly identical R_f values of 4a and 3a; therefore, 4a was identified as a mixture with 3a. ¹H NMR (CDCl₃) δ (ppm): 1.33 (3H, d, J = 6.6Hz), 1.72–1.75 (1H, m), 1.78 (1H, s), 3.42–3.46 (1H, m), 3.48–3.56 (3H, m), 3.68 (3H, s), 6.08–6.10 (1H, m), 6.38– 6.40 (1H, m), 7.15–7.40 (5H, m).

(2S)-Cyclopentyl Glycine Methyl Ester (6a). To compound 3a (1.0 g, 3.89 mmol) in CH₃OH (50 mL) and CH₃-CO₂H (0.10 g, 38.9 mmol) was added 10% Pd-C (50% wet) (0.10 g) at room temperature. Equipped with hydrogen balloon, the suspension was stirred overnight at the same temperature. Then, the mixture was filtered, washed with CH₃OH, and concentrated under reduced pressure. The residual oil was purified with column chromatography (SiO₂: 15 g, ethyl acetate:*n*-heptane (1:1) as elution) to give **6a** as a pale-yellow oil ($[\alpha]^{25}_{D} + 22.7$ (*c* 1, CHCl₃), 0.39 g, 63.8% yields). ¹H NMR (CDCl₃) δ (ppm): 1.25–1.82 (10H, m), 2.02–2.18 (1H, m), 3.33 (1H, d, *J* = 7.0 Hz), 3.72 (3H, s). MASS (*e*/*z*): 158 (M + H⁺). In the same manner, **6a** ($[\alpha]^{25}_{D} + 21.4$ (*c* 1, CHCl₃)) was obtained from **2a** in similar yields.

(2*R*)-Cyclopentyl Glycine Methyl Ester (7a). Compound 5a was converted into 7a ($[\alpha]^{25}_{D}$ –24.9 (*c* 1, CHCl₃)) in the same way as that described above. The ¹H NMR spectrum was identical with 6a completely.

Ethyl (1*S*,3*S*,4*R*)-2-[(*R*)-1-Phenylethyl]-2-aza-bicyclo-[2.2.1]hept-5-ene-3-carboxylate (3b). Imine 1b (5.66 g, 27.6 mmol) readily prepared by the condensation of ethyl glyoxylate and (*R*)-phenylethylamine was used instead of **1a** under the same conditions as those for**3a**. The residual oil after workup was purified by column chromatography (SiO₂: 200 g, elution: *n*-heptane:ethyl acetate = 3:1 to 1:1) to give **3b** and **2b** as a colorless oil in 64.7% and 7.4% yields, respectively. ¹H NMR (CDCl₃) δ (ppm): 0.95 (3H, t, *J* = 7.5 Hz), 1.41 (4H, d, *J* = 6.5 Hz), 2.12 (1H, d, *J* = 8.0 Hz), 2.20 (1H, s), 2.90 (1H, broad s), 3.03 (1H, q, 6.5 Hz), 3.81 (2H, q, *J* = 7.5 Hz), 4.30 (1H, broad s), 6.25–6.29 (1H, m), 6.40–6.45 (1H, m), 7.13–7.42 (5H, m). MASS (*e*/*z*): 272 (M + H⁺).

Ethyl (1*R*,3*S*,4*S*)-2-[(*R*)-1-phenylethyl]-2-aza-bicyclo-[2.2.1]hept-5-ene-3-carboxylate (2b): ¹H NMR (CDCl₃) δ (ppm): 1.04 (3H, t, *J* = 7.0 Hz), 1.48 (3H, d, *J* = 6.5 Hz), 1.50 (1H, d, *J* = 8.5 Hz), 1.65 (1H, d, *J* = 8.5 Hz), 3.24 (1H, broad s), 3.31 (1H, d, *J* = 3.0 Hz), 3.65 (1H, q, *J* = 6.5 Hz), 3.90 (2H, q, *J* = 7.0 Hz), 4.06 (1H, broad s), 6.02– 6.10 (1H, m), 6.56–6.62 (1H, m), 7.16–7.40 (5H, m). MASS (*e*/*z*): 272 (M + H⁺).

(2S)-Cyclopentyl Glycine Ethyl Ester (6b). Compound 2b was converted into 6b ($[\alpha]^{25}_{D}$ +15.3 (*c* 1, CHCl₃), 0.39 g, 63.8% yields) as a pale-yellow oil under the same

conditions as those for**6a**. ¹H NMR (CDCl₃) δ (ppm): 1.28 (3H, t, J = 7.0 Hz), 1.30–1.82 (10H, m), 2.00–2.20 (1H, m), 3.30 (1H, d, J = 7.0 Hz), 4.18 (2H, q, J = 7.0 Hz). MASS (e/z): 172 (M + H⁺). The optical purity of **6b** was also checked by the chiral HPLC analysis (CHIRALPAK AD-RH, Daisel Chemical Industries, Ltd. Elution: 30% aqueous acetonitrile, wave length: 235 nm) to give 99.5% ee.

Acknowledgment

N.H. thanks Fujisawa Pharmaceutical Company for financial support, and we are also grateful to Mr. Toshio Azuma in Analytical Research Laboratories for the analysis of LC–MASS/MASS and Mr. Hiroki Takeuchi in Chemical Development Laboratories for his measurement techniques of reaction heat. Last, we are very grateful to KURARAY CO., Ltd. for the large-scale production of **3a** and their cooperative studies for scale-up.

Received for review September 15, 2004.

OP049828M