

Tetrahedron Letters 42 (2001) 9-12

TETRAHEDRON LETTERS

Asymmetric synthesis of 1-aryl 2,3,4,5-tetrahydro-2-benz[*c*]azepines

Rocío Gámez-Montaño, María Isabel Chávez, Georges Roussi and Raymundo Cruz-Almanza*

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria Coyoacan, México D.F. 04510, Mexico

Received 20 September 2000; revised 19 October 2000; accepted 23 October 2000

Abstract—The first stereoselective synthesis of 1-aryl-2-benz[c]azepines is described using oxazolidines as chiral inducers. © 2000 Elsevier Science Ltd. All rights reserved.

The synthesis of 1-phenyl tetrahydrobenzazepines is a topic of continuing interest since these types of compounds have been found to exhibit antihypertensive¹ 1, anticonvulsant² 2 and antiarrhythmic³ 3 activities. Furthermore, these compounds are useful for treatment of mental disorders and hypoxia⁴ 4 (Fig. 1). Several synthetic strategies have been employed for the construction of racemic 1-aryl-2-benzazepine system based mainly on classical processes such as the Bischler Napieralski⁵ and Pictet–Spengler⁶ reactions or miscellaneous methods such as the intramolecular phenolic cyclization,⁷ Meisenheimer rearrangement⁸ and palladium catalyzed arylation.⁹ The asymmetric synthesis of this system remains unexplored, however.

In the present work we describe the asymmetric synthesis of 1-aryl-2-benzazepines using an oxazolidine moiety as a chiral inducer. Oxazolidines have been widely exploited as chiral auxiliaries directed to the formation of a new stereogenic center.¹⁰ Indeed, the particular addition of organometallic reagents to chiral oxazolidines has enjoyed widespread success in asymmetric synthesis.¹¹ In

addition, oxazolidines can be easily prepared from aminoalcohols. $^{\rm 12}$

The most practical route to the synthesis of aminoalcohols is the opening of epoxide rings with amines.

Usually, unsymmetrical epoxides undergo regioselective addition of the nucleophile to the less substituted carbon atom. In the case of styrene oxide, however, it is possible to obtain a reversal of the regiochemistry of the opening process.¹³

On the basis of the above information, we envisaged the preparation of two different chiral oxazolidines **10** and **11** (Scheme 1) from the two aminoalcohols **6** and **7**. We carried out the reaction of benzazepine **5** with (R)-(+)-styrene oxide under different conditions to afford isomeric mixtures of aminoalcohols **6** and **7**. The use of 1 equiv. of NaH in dry THF gave the aminoalcohol **6** as the major product (9:1) in 83% yield. Otherwise using 1 equiv. of LiClO₄ gave reversal ratio; in this case aminoalcohol **7** was the major product (9:1) in 81% yield. These compounds were separated by fractional crystallization.

Figure 1.

Keywords: chirals 1-arylbenzazepines; 1,3-oxazolidines; aminoalcohols.

* Corresponding author. Tel.: 5256224428; fax: 52 56 16 22 17; e-mail: raymundo@servidor.unam.mx

0040-4039/01/\$ - see front matter @ 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)01881-5

Scheme 1. Reagents and conditions: (a) NaH, THF, 80°C; (b) H₂O₂ 30%, MeOH, 10°C; (c) BuLi, THF, -78°C; (d) RMgBr, THF, -78°C; (e) MeI, CH₃CN. 60°C, *t*-BuOH/*t*-BuOH, 80°C; (f) CH₃CN, LiClO₄, 30°C; (g) H₂O₂ 30%, MeOH, rt; (h) H₂ Pd/C.

Compound 6 and 7 were transformed into the corresponding *N*-oxides 8 and 9 by treatment with hydrogen peroxide (5 equiv.) in 90% yield. These compounds were air and light sensitive and were used for the next reaction without further purification.¹⁴

N-Oxides 8 and 9 were treated with BuLi to afford pairs of the diastereomeric oxazolidines 10a/10b (8:2) and 11a/11b (95:05) in 51 and 58% yield, respectively.¹⁵ The diastereomeric ratio and the absolute configuration of the major products 10a and 11a were determined by ¹H NMR and NOESY experimental analyses.¹⁶ The β-orientation of H-11b for compound 10a was ascertained by the observed dipolar interactions between this hydrogen with H-7 β (δ 2.93), H-5 β (δ 2.70) and H-3 β $(\delta 2.67)$ (Fig. 2). The observed cross-peaks between H-3 α (δ 3.63), H-2 α (δ 5.30) and H-5 α (δ 3.41) confirmed the assigned configuration at C-11b and established the extended conformation of the seven-membered ring. Furthermore, the configuration for **10a** was confirmed by X-ray analysis (Fig. 2). A similar analysis by NMR was made for compound 11a.

The diastereoselective addition of Grignard reagents to chiral oxazolidines **10a** and **11a** gave the mixture of

diastereoisomers 12a/12b, 13a/13b and 13c/13d in a 8:2, 9:1 and 9:1 ratio in 58, 65 and 60% yield, respectively. The diastereomeric ratios of 12a/12b, 13a/13b and 13c/ 13d were determined from the mixture by analyzing relevant signals in the ¹H NMR spectra.

NOESY experiments performed on 12a indicated that the stereochemistry at C-1 remained unchanged due to the interactions between H-1 (δ 5.02), with H-9 (δ 6.96), and with the pro-S hydrogen at C-1'. The minor compound 12b possesses the phenyl group attached at C-1 with a β -orientation, since H-9 is shielded (δ 6.81) in comparison with the major stereoisomer 12a, where H-9 resonates at δ 6.96 and therefore the phenyl group is α -oriented (Fig. 3). A NOESY correlation between H-1 α and H-2' for 12b confirmed the stereochemical assignments. Similar analyses by NMR were performed for compounds 13.

The diastereoselectivity of this reaction can be rationalized by assuming that the Grignard reagent approaches the oxygen atom of the 1,3-oxazolidine ring to give a favorable intermediate immonium salt and nucleophilic attack occurs from the same face, in agreement with previous observations.¹⁷

A mixture of 12a/12b (8:2) was converted into the *N*-methylammonium salt by treatment with methyl iodide in acetonitrile and reacted in situ with *t*-BuOK in *t*-BuOH to afford 14a (8:2 ee) in 50% yield. Compounds 13a/13b and 13c/13d were treated under catalytic hydrogenation with Pd/C to afford the desired arylbenzazepine 14b (9:1 ee) in 55% yield and 14c (9:1ee) in 60% yield.¹⁸

In summary, 1,3-oxazolidines **10a** and **11a** are useful chiral inducers in the stereoselective synthesis to 1-aryl-2-benz[c]azepines. To the best of our knowledge, this procedure represents the first asymmetric synthesis for these kind of compounds.

Acknowledgements

Financial support from CONACYT is gratefully acknowledged. We also want to thank to A. Toscano, A. Peña, L. Velasco, R. Patiño, W. Matus, C. Márquez and J. Pérez for technical support.

References

- 1. Meschino, J. A. US 3,483,186. Chem. Abstr. 1970, 72, 121383x.
- 2. Fujisawa, Pharmaceutical Co. Ltd., Japan. Chemical Abstracts. 1991, 115, 158987e.
- 3. Johnson, R. E.; Busacca, C. A. Chem. Abstr. 1992, 117, 7949j.
- 4. Croisier, P.; Rodriguez, L. Chem. Abstr. 1978, 88, 152456h.
- 5. Schluter, G.; Meise, W. Liebigs. Ann. Chem. 1988, 833.
- Wittekind, R. R.; Lazarus, S. J. Heterocycl. Chem. 1971, 8 495
- 7. Kametani, T.; Kigasawa, K.; Hiiragi, M.; Ishimaru, H.; Haga, S. J. Chem. Soc., Perkin 1 1974, 2602.
- Bremmer, J. B.; Browne, E. J.; Davies, P. E.; Raston, C. L.; White, A. H. Aust. J. Chem. 1980, 33, 1323.
- Busacca, C. A.; Johnson, R. E. Tetrahedron Lett. 1992, 33, 165.
- (a) Andrés, C.; González, A.; Pedrosa, R.; Pérez-Encabo, A. *Tetrahedron Lett.* **1992**, 2895. (b) Higashiyama, K.; Fujikura, H.; Takahashi, H. *Chem. Pharm. Bull.* **1995**, 722.

- Poerwono, H.; Higashiyama, K.; Takahashi, H. J. Org. Chem. 1998, 63, 2711.
- 12. Yamauchi, T.; Takahashi, H.; Higashiyama, K. Chem. Pharm. Bull. 1998, 46, 384.
- Chini, M.; Crotti, P.; Macchia, F. J. Org. Chem. 1991, 56, 5939.
- 14. An analytical sample was obtained in order to get their spectroscopic data.
- Carbonnelle, A. C.; Gott, V.; Rousi, G. *Heterocycles* 1993, 36, 1763.
- 16. Spectral data of selected products: Compound 10a: ¹H NMR (500 MHz, CDCl₃): δ 2.67 (td, J = 12.0, 12.0, 3.0Hz, 1H, H-3 β), 3.63 (dd, J = 10.0, 5.0 Hz, 1H, H-3 α), 5.30 $(dd, J = 10.0, 5.0 \text{ Hz}, 1\text{H}, \text{H}-2\alpha), 5.4 (s, 1\text{H}, \text{H}-11\text{b}); {}^{13}\text{C}$ NMR (125 MHz, CDCl₃): δ 28.10 (C-6), 34.59 (C-7), 56.40 (C-5), 64.44 (C-3), 78.37 (C-2), 95.31 (C-12), 123.77 (C-11), 126.13 (C-2', C-6'), 126.44 (C-10), 127.69 (C-9), 127.89 (C-4'), 128.49 (C-3', C-5'), 129.0 (C-8), 139.42 (C-7a), 140.39 (C-1'), 140.42 (C-11a); IR (CHCl₃): 1149.5, 1105.2, 1060.8 cm⁻¹; MS: E.I m/z (%) M⁺ 265 (8.6), 264 (M-1), (50.3) 159 (100). Compound 11a: ¹H NMR (500 MHz, CDCl₃): δ 3.83 (dd, J = 3.0, 3.5 Hz, 2H, H-2 β , H-3 α), 4.31 (dd, J = 3.0, 3.5 Hz, 2α), 5.34 (s, 1H, H-11b); ¹³C NMR (75 MHz, CDCl₃): δ 28.22 (C-6), 34.85 (C-7), 54.37 (C-5), 70.24 (C-3), 73.30 (C-2), 95.45 (C-11b), 123.66 (C-11), 127.45 (C-10), 127.88 (C-4'), 127.96 (C-2', C-6'), 128.49 (C-3', C-5'), 129.02 (C-8), 129.23 (C-9), 138.15 (C-1'), 139.78 (C-8a), 140.99 (C-11a); IR (CHCl₃): 1199.7, 1175.0, 1122.5 cm⁻¹; MS: Fab m/z (%) M⁺ 265 (34), 264 M-1 (100), 154 (65), 136 (42).
- 17. Takahashi, H.; Hsieh, B. C.; Higashiyama, K. Chem. Pharm. Bull. 1990, 38, 2429.
- 18. Selected spectral data of final products: Compound **14a**: ¹H NMR (200 MHz, CDCl₃): δ 1.70 (m, 2H, H-4), 2.41 (s, 3H, Me), 2.76 (ddd, J = 14.0, 9.5, 3.5 Hz, 2H, H-5α, H-5-β), 2.91 (ddd, J = 8.4, 4.5, 3.4 Hz, 1H, H-3β), 3.17 (ddd, J = 10.7, 7.4, 3.0 Hz, H-3α), 5.03 (s, 1H, H-1β), 7.0 (d, J = 6.5 Hz, 1H, H-9), 7.1–7.6 (m, 8H); IR: (CHCl₃) 2928.3, 2854.4, 1600.2 cm⁻¹; MS: E.I m/z (%) 237 M⁺ (28.9), 160 (100). Compound **14b**: ¹H NMR (500 MHz, CDCl₃): δ 1.77 (m, 2H, H-4), 2.92 (ddd, 1H, H-5β), 3.12 (ddd, 1H, H-5α), 3.18 (ddd, 1H, H-3β), 3.37 (ddd, 1H, H-3α), 5.19 (s, 1H, H-1β), 6.61 (d, 1H, H-9), 7.0 (ddd, 1H, H-7), 7.18 (d, 1H, H-4'), 7.31 (d, J = 7.0, 2H, H-2', H-6'), 7.36 (dd, J = 7.0, 7.0, 2H, H-3', H-5'); ¹³C NMR (125 MHz, CDCl₃): δ 29.85 (C-4), 35.69 (C-5), 50.71 (C-3), 65.70 (C-1), 125.97 (C-8), 126.93 (C-7), 126.97 (C-4'),

127.87 (C-2', C-6'), 127.97 (C-9), 128.44 (C-3', C-5'), 129.72 (C-6), 132.56 (C-6a), 142.42 (C-9a), 142.42 (C-1'); IR (CHCl₃): 3445.8, 2933.6 cm⁻¹; MS: E.I m/z (%) 223 M⁺ (30), 160 (100). Compound **14c**: ¹H NMR (500 MHz, CD₃OD): δ 1.84 (m, 2H, H-4), 2.67 (ddd, J = 15.6, 7.8, 7.8 Hz, 2H, H-5α, H-5β), 2.88 (ddd, J = 15.6, 7.8, 7.8 Hz, 2H, H-3α, H-3β), 3.94 (s, 1H, H-1), 5.86 (s, 2H, OCH₂O), 6.56 (s, 1H, H-5'), 6.57 (d, J = 7.8 Hz, 1H, H-2'), 6.70 (dd, $J = 7.5, 1.0, 1H, H-3'), 7.08-7.21 \text{ (m, 4H); }^{13}\text{C NMR} (75 \text{ MHz, CDCl}_3): \delta 29.62 (C-4), 30.39 (C-5), 39.34 (C-1), 40.51 (C-3), 102.14(C-4'), 109.10 (C-3'), 109.96 (C-5'), 122.5 (C-2'), 127.61 (C-8), 127.86 (C-7), 130.31 (C-6), 131.70 (C-9), 136.07 (C-9a), 139.97 (C-6a), 139.97 (C-1'), 147.29 (C-2a'), 149.23 (C-3a'); IR (CHCl}_3): 2929.0, 2854.5 cm^{-1}; MS: C.I.$ *m*/*z*(%) 268 M+1 (100), 252 (72), 146 (21).