FULL PAPERS

DOI: 10.1002/adsc.200900809

Copper(II) Bromide/Boron Trifluoride Etherate-Cocatalyzed Cyclization of Ketene Dithioacetals and *p***-Quinones: a Mild and General Approach to Polyfunctionalized Benzofurans**

Yingjie Liu,^a Mang Wang,^{a,b,*} Hongjuan Yuan,^a and Qun Liu^{a,*}

^a Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China Fax: (+86)-431-8509-9759; e-mail: wangm452@nenu.edu.cn

^b State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, People's Republic of China

Received: November 19, 2009; Revised: February 17, 2010; Published online: March 9, 2010

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.200900809.

Abstract: A new application of copper(II) bromideactivated ketene dithioacetals as nucleophiles in organic chemistry has been developed. Under the cocatalysis of copper(II) bromide (2.0 mol%) and boron trifluoride etherate (10 mol%), the conjugate addition and sequential cyclization of α -electron-withdrawing group-substituted ketene dithioacetals with *p*-quinones in acetonitrile at room temperature gave a variety of benzofurans. This formal [3+2] cycloaddition provides a general method for catalytic synthesis of polyfunctionalized benzofurans with the ad-

Introduction

The frequent occurrence of benzofurans in natural products and pharmaceutical molecules^[1] has led to the development of numerous synthetic methods for their preparation.^[2-5] The predominant strategy involves the assembly of the furan nucleus on a benzenoid scaffold, for example, via a cyclization reaction of o-functionalized phenols or phenyl ethers,[2-4] and growing interest has been focused on the transition processes.^[3,4] metal-catalyzed Nevertheless, the method based on the conjugate addition and sequential cyclization of quinones with active alkenes in the presence of an over-stoichiometric amount of Lewis or Brønsted acids provides an alternative route to the benzofuran skeleton.^[5a-f] The Yb(OTf)₃-catalyzed conjugate addition of β -keto esters to activated 1,4-naphthoquinones was developed for the facile synthesis of benzofurans recently.^[5g] While each of the above approaches^[2-5] represents an important advance towards the objective of an efficient method for the construction of benzofurans, the synthesis of densely functionalized benzofurans is limited and remains a challenge. Herein we disclose a CuBr₂/BF₃·Et₂O-cocatalyzed revantages of readily available starting materials, cheap catalysts, mild reaction conditions, good yields and wide range of synthetic potential for the benzofuran products. Further transformations of the resulting benzofurans to 2-aminobenzofurans and benzofuro[2,3-*d*]pyrimidine derivatives are also investigated.

Keywords: active alkenes; benzofurans; cocatalysis; copper; cyclization

action of p-quinones with active alkenes, which allows the efficient construction of a variety of polyfunctionalized benzofurans under mild reaction conditions.

As a part of our ongoing interest in synthetic applications of functionalized ketene dithioacetals,^[6,7] the C–C bond-forming reaction at their α -position was examined to extend their synthetic potential.^[8,9] Our previous results show that the adducts of α -EWG ketene dithioacetals 1 with aldehydes/simple ketones can be obtained in the presence of either over-stoichiometric amounts of $\hat{\text{TiCl}}_4$ [Scheme 1, Eq. (1), conventional activation manner]^[8a-c] or catalytic amounts of CuBr₂ [10 mol%, Scheme 1, Eq. (1), non-conventional activation manner].^[9] It was found that a wider range of reaction partners, both α -EWG ketene dithioacetals and electrophiles (including aldehydes, ketones, and allyl iodide), are promising substrates in this type of coupling reaction when CuBr₂ was employed as the catalyst^[9] and thus this novel non-conventional activation manner is expected to open a new version of the applications of versatile functionalized ketene dithioacetals in organic chemistry. In the present work, we envisioned a confluence of this cata-

Scheme 1. Activation manners on α -EWG ketene dithioacetals **1**.

lytic topic as a straightforward means for the synthesis of benzofurans^[1-5] by a conjugate addition/cyclization sequence, a formal [3+2] cycloaddition, between CuBr₂-activated α -EWG ketene dithioacetals as active alkenes and BF₃·Et₂O-activated *p*-quinones [Scheme 1, Eq. (2)].

Results and Discussion

Exploration on Cooperative Catalysis^[10] of CuBr₂ and BF₃·Et₂O in the Reaction of α-EWG Ketene Dithioacetals and Aldehydes

With the aim of obtaining further evidence of the catalytic activation of $CuBr_2$ on ketene dithioacetals, we carried out the reaction of 2-(1,3-dithiolan-2-ylidene)acetonitrile **1'** with aldehydes catalyzed by $CuBr_2$ in the presence of a catalytic amount of BF_3 ·Et₂O (an oxophilic Lewis acid for carbonyl activation) as described in Table 1.

According to the results in our previous work,^[9] the reaction of **1'** with 4-chlorobenzaldehyde catalyzed by 0.1 equivalent of CuBr₂ at room temperature for 12 h to yield adduct **a** in 98% yield (Table 1, entry 1). By comparison, in this work, when 0.1 equivalent of BF₃·Et₂O was taken as catalyst to activate aldehydes for this process, 35 h was required to provide **a** with a lower yield (Table 1, entry 2). Notably, with 0.1 equivalent of CuBr₂ and 0.1 equivalent of BF₃·OEt₂ as cooperative catalyst, the reaction was significantly accelerated (Table 1, entry 3). Similarly, in the case of other aldehydes as electrophiles, all the tested CuBr₂/BF₃·Et₂O-cocatalyzed reactions were completed within shorter reaction times (Table 1, entries 5, 7, 9)

Table 1. CuBr₂ and BF₃·Et₂O-cocatalyzed reactions of $\mathbf{1}'$ with aldehydes.^[a]

Entry	CuBr ₂ :BF ₃ ·Et ₂ O [equiv.]:[equiv.]	\mathbf{R}^1	<i>t</i> [h]	Yield ^[b] of adduct [%]
1	0.1:0	$4-ClC_6H_4$	12	a : 98 ^[9]
2	0:0.1	$4-ClC_6H_4$	35	a : 70
3	0.1:0.1	$4-ClC_6H_4$	2.0	a : 98
4	0.1:0	$4-NO_2C_6H_4$	18	b : 96 ^[9]
5	0.1:0.1	$4-NO_2C_6H_4$	4.0	b : 95
6	0.1:0	Ph	12	c : 93 ^[9]
7	0.1:0.1	Ph	2.5	c : 94
8	0.1:0	$4-MeOC_6H_4$	15	d : 97 ^[9]
9	0.1:0.1	$4-MeOC_6H_4$	2.0	d : 97
10	0.1:0	2-furyl	9.0	e : 88 ^[9]
11	0.1:0.1	2-furyl	0.8	e : 98

 [a] Reaction conditions: 1' (2.0 mmol), aldehydes (1.0 mmol), MeCN (8.0 mL), room temperature.

^[b] Isolated yield.

and 11) than those reactions only with CuBr_2 as catalyst (Table 1, entries 4, 6, 8 and 10). Clearly, the experimental results provide strong evidence that CuBr_2 plays a key role in increasing the nucleophilicity of the α -carbon atom of ketene dithioacetals (Table 1, entries 1–3) and suggest that the cooperative catalysis of CuBr_2 and $\text{BF}_3 \cdot \text{Et}_2 \text{O}$ contributes to the higher reaction efficiency.

Synthesis of Benzofurans by the CuBr₂/BF₃·Et₂O-Cocatalyzed Cyclization of Ketene Dithioacetals with *p*-Quinones

On the basis of the above experimental results, we turned to explore the application of this catalytic process as a novel entry to benzofurans. The substrates α-EWG ketene dithioacetals 1a-g were conveniently prepared following the procedures reported previously.^[7e,8e,f,9] Initially, we chose *p*-benzoquinone 2a as the electrophile to try the reaction of ethyl 3,3-bis(methylthio)acrylate 1a and 2a in the presence of 10 mol% of CuBr₂. However, no reaction was detected upon treatment of **1a** and **2a** with CuBr₂ in MeCN at room temperature for 24 h (Table 2, entry 1). This result indicates that *p*-benzoquinone is not active enough to react with CuBr₂-activated 1a in this nonconventional activation process. Then, CuBr₂ together with BF₃·Et₂O were selected as cooperative catalysts for the reaction. To our delight, benzofuran 3a was obtained in 49% yield by treatment of 1a (1.0 mmol)

Entry	CuBr ₂ [equiv.]	BF ₃ ·Et ₂ O [equiv.]	Solvent	Т [°С]	<i>t</i> [h]	Yield [%] ^[b]
1	0.1	0	MeCN	r.t.	24	$nr^{[c]} 49^{[d]} 73^{[e]} 80^{[f]} 38^{[g]} 65$
2	0.1	0.1	MeCN	r.t.	2.5	
3	0.05	0.1	MeCN	r.t.	1.5	
4	0.02	0.1	MeCN	<i>r.t.</i>	1.0	
5	0	0.1	MeCN	r.t.	0.7	
6	0.02	0.05	MeCN	r.t.	3.0	
7 ^[h]	0.02	0.1	MeCN	r.t.	1.5	53
8	0.02	0.1	MeCN	50	0.8	54
9	0.02	0.1	MeCN	reflux	0.7	56
10	0.02	0.1	CH ₂ Cl ₂	r.t.	1.5	55
11	0.02	0.1	THF	r.t.	24	nr ^[c]

[a] Reaction conditions: 1a (1.0 mmol), 2a (1.5 mmol), solvent (4.0 mL).

[b] Isolated yields.

- [d] A was obtained in 5.0% yield with the formation of **B** in 23% yield.
- [e] A was obtained in 5.0% yield with the formation of **B** in 12% yield.
- [f] A was obtained in 3.0% yield with the formation of **B** in 8.0% yield.
- [g] A was obtained in 30% yield and no B was detected.
- ^[h] **1a** (1.5 mmol), **2a** (1.0 mmol), MeCN (4.0 mL).

with 2a (1.5 mmol) in MeCN (4.0 mL) in the presence of CuBr₂ (0.1 mmol) and BF₃·Et₂O (0.1 mmol) under ambient atmosphere for 2.5 h (Table 2, entry 2). In this case, by-products A and $B^{[11]}$ were isolated in 5.0% and 23% yields, respectively.

Then, the optimization of the reaction conditions was performed carefully with respect to the amount of catalysts, the ratio of 1a to 2a, the reaction temperature and the reaction solvent. As described in Table 2, entries 2–4, the formation of two by-products, especially by-product **B**, could be restrained via decreasing the amount of CuBr₂. However, when the reaction of **1a** and **2a** was performed without CuBr₂, the reaction resulted in complex product mixtures and 3a was only isolated in 38% yield along with the formation of by-product A in 30% yield under identical conditions (Table 2, entry 5). It was also found that Yingjie Liu et al.

excess 1a (Table 2, entry 7) or higher temperature (Table 2, entries 8 and 9) seemed not acceptable for this procedure. In comparison, the reaction under otherwise the same conditions in CH₂Cl₂ gave 3a in a lower yield (Table 2, entry 10) and no reaction was detected in THF (Table 2, entry 11). As a result, the best reaction conditions were found to be 2.0 mol% of CuBr₂ and 10 mol% of BF₃·Et₂O as catalysts (in 4.0 mL MeCN), with the 1.0:1.5 ratio of 1a to 2a and at room temperature (Table 2, entry 4).

Subsequently, the scope of this catalytic benzofuran synthesis was studied under the optimized reaction conditions described in Table 2, entry 4, and some representative results are listed in Table 3. Clearly, ketene dithioacetals 1 with a wide range of functional groups at the α -position, including alkoxy carbonyl, acetyl, cyano, benzoyl, and cinnamoyl (Table 3, entries 1–5), could react with p-benzoquinone 2a smoothly to give the desired benzofurans **3a–e** in 46– 80% yields. On the other hand, to test the generality of the method to the quinone component, selected pquinones 2 were investigated. Pleasingly, as described in Table 3, all the reactions of ketene dithioacetals 1a-e with 1,4-naphthoquinone 2b could give the corresponding benzofurans 3f-j, respectively, in good to high vields under identical conditions (Table 3, entries 6–10). p-Quinones 2c and 2d containing either electron-withdrawing or electron-donating substituents were also proved to be effective and gave benzofurans 3k-n in good yields (Table 3, entries 11–14). Similarly, when substrates **1f** and **1g** with ethylthio functionality were selected to react with 2a-c, the desired benzofurans 30-r were afforded in 48-74% yields, respectively (Table 3, entries 15-18). By contrast, o-quinone proved not to be a suitable substrate toward this cyclization and the reaction of 3,5-di-tertbutyl-o-quinone with 1a afforded a complex mixture under the identical conditions.

In order to show the synthetic utility of this catalyst system, the synthesis of benzofurans was also expanded to a gram-scale. Catalyzed by 2.0 mol% CuBr₂ and 10 mol% BF₃·Et₂O, **3a** could be obtained in 65% yield (3.27 g) via the reaction of **1a** (3.84 g, 20 mmol) with 2a (3.24 g, 30 mmol) in MeCN (20 mL) at room temperature for 3.0 h.

Although the mechanism for the catalytic activation of CuBr₂ on α -EWG ketene dithioacetals **1** is not yet clear at this stage, all the above experimental results provide obvious proof of this catalysis. Together with related research results,^[5,9,12] clearly, the construction of benzofurans undergoes a formal [3+2]cycloaddition, which is initiated by the conjugate addition of CuBr₂-activated ketene dithioacetal **1** with BF₃·Et₂Oactivated quinone 2 (to give the diketone intermediate I), followed by aromatization (to give the diphenol intermediate II) and subsequent intramolecular $S_N V$ reaction^[7a,e,9] as described in Scheme 2.

[[]c] No reaction.

Entry	1	EWG	R	2	3	<i>t</i> [h]	Yield 3 [%] ^[b]
1	1 a	CO ₂ Et	Me	2a	3 a	1.0	80
2	1b	MeCO	Me	2a	3b	5.0	65
3	1c	CN	Me	2a	3c	7.0	46
4	1d	PhCO	Me	2a	3d	2.0	64
5	1e	PhCH=CHCO	Me	2a	3e	3.5	55
6	1 a	CO ₂ Et	Me	2 b	3f	0.2	88
7	1b	MeCO	Me	2b	3g	4.0	75
8	1c	CN	Me	2 b	3ĥ	12	60
9	1d	PhCO	Me	2b	3i	3.5	58
10	1e	PhCH=CHCO	Me	2 b	3j	6.0	51
11	1 a	CO ₂ Et	Me	2c	3k	4.0	64
12	1d	PhCO	Me	2c	31	8.0	59
13	1 a	CO ₂ Et	Me	2d	3m	5.0	57
14	1d	PhCO	Me	2d	3n	10	52
15	1f	CO ₂ Et	Et	2a	30	3.0	74
16	1f	$\overline{CO_2Et}$	Et	2b	3р	3.0	65
17	1f	$\overline{CO_2Et}$	Et	2c	3q	4.5	60
18	1g	PhCO	Et	2b	3r	15	48

[a] Reaction conditions: 1 (1.0 mmol), 2 (1.5 mmol), CuBr₂ (0.02 mmol), BF₃·Et₂O (0.1 mmol), MeCN (4.0 mL), room temperature. ^[b] Isolated yields.

Scheme 2. Proposed mechanism for the cyclization of 1 with 2.

Adv. Synth. Catal. 2010, 352, 884-892

Applications of the Resulting Polyfunctionalized Benzofurans

Compared with the acid-promoted formal [3+2] cvcloaddition of active alkenes with guinones toward the benzofuran motif, we here developed a novel catalytic method, which is one of the most efficient and general known to date. Notably, this catalytic cyclization strategy provides a facile access to a wide variety of benzofurans containing rich functionality, such as 2-alkylthio, 3-EWG, and 5-hydroxy. These functional groups can provide opportunities for further elaboration of these benzofurans.^[4g] As an example to introduce more structural diversity, the transformation of benzofurans **3** into 2-aminobenzofurans^[13] was firstly examined by direct substitution of the 2-methylthio group of 3 with an amine. As summarized in Table 4, aliphatic primary (Table 4, entries 1 and 2) and secondary amines (Table 4, entries 3-5) are suitable nucleophiles for this S_NV reaction and lead to the 2-aminobenzofurans 4 in high yields. In contrast, the less nucleophilic aniline was found to be inert under identical conditions (Table 4, entry 6).

 Table 4. Synthesis of 2-aminobenzofurans 4 from 3.^[a]

HO		EWG	R⁴R⁵NH	HO ,,,(,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,		EWG ONR ⁴ R ⁵
	:	3			4	
Entry	3	R^4R^5NH	$T [^{\circ}C]$	<i>t</i> [h]	4	Yield [%] ^[b]
1	3d	<i>n</i> -BuNH ₂	reflux	5.0	4a	88
2	3d	BnNH ₂	reflux	7.0	4b	82
3	3d	NH	r.t.	1.0	4c	90
4	3d	0NH	r.t.	2.0	4d	85
5	3i	NH	r.t.	3.0	4 e	80
6	3d	$PhNH_2$	reflux	24	-	nr ^[c]

^[a] *Reaction conditions:* **3** (1.0 mmol), amine (3.0 mmol), EtOH (5.0 mL).

^[b] Isolated yields.

^[c] No reaction.

Additionally, compounds 3 possess the structural characters of ketene monothioacetals which may be used as versatile synthetic intermediates in the construction of fused heterocycles. Thus, an attempt to the synthesis of furo[2,3-d]pyrimidines, which exhibit widely valuable biological activities,^[14] was carried out via the condensation reactions of 3 with guanidine or acetimidamide. As expected, 5a and 5b containing the furo[2,3-d]pyrimidine motif were easily obtained in high yield, respectively, upon treatment of methylated 3b (1.0 mmol)with guanidine/acetimidamide (2.0 mmol) at reflux in EtOH (5.0 mL) in the presence of KOH (4.0 mmol) (Scheme 3).

Conclusions

In summary, we have developed a new CuBr₂ and BF₃·Et₂O cocatalyzed cyclization of α -EWG ketene dithioacetals with *p*-quinones, which provides a simple and general method for the synthesis of poly-functionalized benzofurans. This protocol is associated with readily available starting materials, cheap catalysts, mild reaction conditions, good yields and wide range of synthetic potential of the resulting products. Furthermore, the novel non-conventional activation of ketene dithioacetals is more valuable in creating new opportunities for the synthetically versatile functionalized ketene dithioacetals. Further studies are in progress.

Experimental Section

General Methods

All reagents were purchased from commercial sources and used without further treatment, unless otherwise indicated. Melting points were uncorrected. ¹H NMR and ¹³C NMR spectra were recorded at 25 °C at 500 MHz and 125 MHz, respectively, using TMS as internal standard. IR spectra (KBr) were recorded on an FT-IR spectrophotometer in the range of 400–4000 cm⁻¹. Mass spectra were recorded on an LCMsD mass spectrometer.

888 asc.wiley-vch.de

© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Typical Procedure for CuBr₂/BF₃·Et₂O-Cocatalyzed Reaction of 2-(1,3-Dithiolan-2-ylidene)acetonitrile 1' with Aldehydes

To a well-stirred solution of 2-(1,3-dithiolan-2-ylidene)acetonitrile **1'** (286 mg, 2.0 mmol) and 4-chlorobenzaldehyde (140 mg, 1.0 mmol) in MeCN (8.0 mL) was added BF₃·Et₂O-MeCN solution (0.1 mL, prediluted by MeCN, M=1.0 mol/ L, 0.1 mmol) and CuBr₂ (22.1 mg, 0.1 mmol) at room temperature. The reaction mixture was stirred for 2.0 h. After the starting material **1'** had been consumed as indicated by TLC, the resulting mixture was poured into ice-water (30 mL) and neutralized with aqueous NaHCO₃. The precipitate was collected by filtration, washed with water (3 × 20 mL), and dried under vacuum to afford adduct **a** as a white solid; yield: 400 mg (98%). For characterization data of adducts **a**, **b**, **c** and **d**, please see ref.^[9]

Typical Procedure for the Synthesis of Benzofurans 3 (with 3a as an Example)

To a well-stirred solution of ethyl 3,3-bis(methylthio)acrylate 1a (192 mg, 1.0 mmol) and p-benzoquinone 2a (162 mg, 1.5 mmol) in MeCN (4.0 mL) was added BF₃·Et₂O-MeCN solution (0.1 mL, prediluted by MeCN, M = 1.0 mol/L, 0.1 mmol) and CuBr₂ (4.5 mg, 0.02 mmol) at room temperature. The reaction mixture was stirred for 1.0 h. After the starting material **1a** had been consumed as indicated by TLC, the resulting mixture was poured into saturated aqueous NaCl (20 mL), neutralized with aqueous NaHCO₃, and extracted with CH_2Cl_2 (3×20 mL). The combined organic phase was washed with water $(3 \times 20 \text{ mL})$, dried over MgSO₄ and concentrated under vacuum. The residue was purified by silica gel chromatography (silica gel, petroleum ether:diethyl ether=6:1, v/v) to give ethyl 5-hydroxy-2-(methylthio)benzofuran-3-carboxylate 3a as a white solid; yield: 202 mg (80%). By-products A and B were isolated in 3.0% and 8.0% yields, respectively. The product 3a was often recrystallized to give purer material.

Physical Data of Compounds Isolated

3a: White solid; mp 158–160 °C; ¹H NMR (500 MHz, DMSO): δ =1.34 (t, *J*=7.5 Hz, 3H), 2.66 (s, 3H), 4.29 (q, *J*=7.0 Hz, 2H), 6.69 (dd, *J*=2.5, 9.0 Hz, 1H), 7.18 (d, *J*=2.5 Hz, 1H), 7.39 (d, *J*=9.0, 1H), 9.43 (s, 1H); ¹³C NMR (125 MHz, DMSO): δ =13.2, 14.8, 60.6, 105.7, 107.3, 111.6, 112.4, 127.4, 149.2, 155.1, 163.3, 163.5; IR (KBr): *v*=3321, 2980, 1681, 1263, 970, 836 cm⁻¹; MS (ESI): *m*/*z*=253.1 [(M+1)]⁺; anal. calcd. for C₁₂H₁₂O₄S: C 57.13, H 4.79; found: C 57.34, H 4.71.

A: Yellow solid; mp 144–146 °C; ¹H NMR (500 MHz, CDCl₃): $\delta = 2.33$ (s, 3H), 6.35 (s, 1H), 6.73 (d, J = 10.0 Hz, 1H), 6.81 (d, J = 10.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 13.6$, 124.6, 136.0, 137.5, 153.9, 183.7, 183.8; IR (KBr): $\nu = 3043$, 2992, 1642, 1012 cm⁻¹; MS (ESI): m/z = 155.0 [(M+1)]⁺; anal. calcd. for C₇H₆O₂S: C 54.53, H 3.92; found: C 54.34; H 3.82.

B: Yellow liquid; ¹H NMR (500 MHz, CDCl₃): $\delta = 1.39$ (t, J = 7.5 Hz, 3 H), 2.31 (s, 3 H), 2.32 (s, 3 H), 2.42 (s, 3 H), 4.34 (t, J = 7.5 Hz, 2 H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 14.2$, 16.1, 16.3, 18.5, 61.7, 132.8, 135.8, 164.7; IR (KBr): $\nu = 2981$, 2922, 1722, 1235, 1056 cm⁻¹; MS (ESI): m/z = 239.0 [(M+

1)]⁺; anal. calcd. for $C_8H_{14}O_2S_3$: C 40.31, H 5.92; found: C 40.52, H 5.84.

3b: White solid; mp 202–204 °C; ¹H NMR (500 MHz, DMSO): δ =2.52 (s, 3H), 2.66 (s, 3H), 6.71 (dd, *J*=2.5, 9.0 Hz, 1H), 7.20 (d, *J*=2.5 Hz, 1H), 7.40 (d, *J*=9.0 Hz, 1H), 9.50 (s, 1H); ¹³C NMR (125 MHz, DMSO): δ =13.1, 30.3, 105.5, 111.2, 111.9, 116.4, 126.7, 148.8, 154.7, 162.8, 192.0; IR (KBr): ν =3204, 2986, 1623, 1259, 979, 878 cm⁻¹; MS (ESI): *m/z*=223.0 [(M+1)]⁺; anal. calcd. for C₁₁H₁₀O₃S: C 59.44, H 4.53; found: C 59.21, H 4.43.

3c: White solid; mp 184–186 °C; ¹H NMR (500 MHz, DMSO): δ =2.74 (s, 3H), 6.81–6.84 (m, 2H), 7.48 (d, *J*= 8.5 Hz, 1H), 9.74 (s, 1H); ¹³C NMR (125 MHz, DMSO): δ = 14.8, 91.0, 102.9, 112.2, 112.9, 114.3, 126.8, 148.5, 155.1, 162.8; IR (KBr): ν =3338, 3015, 2224, 1608, 1508, 640 cm⁻¹; MS (ESI): *m*/*z*=206.0 [(M+1)]⁺; anal. calcd. for C₁₀H₇NO₂S: C 58.52, H 3.44, N 6.82; found: C 58.75, H 3.57, N 6.86.

3d: Yellow solid; mp 212–214 °C; ¹H NMR (500 MHz, DMSO): $\delta = 2.63$ (s, 3H), 6.56 (d, J = 2.0 Hz, 1H), 6.70 (dd, J = 2.0, 9.0 Hz, 1H), 7.43 (d, J = 9.0 Hz, 1H), 7.56 (t, J = 7.5 Hz, 2H), 7.65–7.70 (m, 3H), 9.37 (s, 1H); ¹³C NMR (125 MHz, DMSO): $\delta = 13.5$, 105.1, 111.3, 112.4, 116.1, 127.0, 128.2 (2C), 128.7 (2C), 132.3, 139.1, 148.9, 154.3, 163.3, 189.7; IR (KBr): $\nu = 3261$, 3021, 1604, 1444, 1219, 908 cm⁻¹; MS (ESI): m/z = 285.0 [(M+1)]⁺; anal. calcd. for C₁₆H₁₂O₃S: C 67.59, H 4.25; found: C 67.23, H 4.34.

3e: Yellow solid; mp 234–236 °C; ¹H NMR (500 MHz, DMSO): $\delta = 2.69$ (s, 3 H), 6.73 (dd, J = 2.0, 8.5 Hz, 1 H), 7.29 (d, J = 2.0 Hz, 1 H), 7.43–7.48 (m, 4 H), 7.56 (d, J = 16.0 Hz, 1 H), 7.67 (d, J = 16.0 Hz, 1 H), 7.77–7.78 (m, 2 H), 9.65 (s, 1 H); ¹³C NMR (125 MHz, DMSO): $\delta = 14.4$, 106.3, 112.3, 113.1, 118.0, 125.3, 127.3, 129.3 (2 C), 130.0 (2 C), 131.5, 135.3, 143.1, 149.8, 155.4, 164.2, 184.9; IR (KBr): $\nu = 3261$, 2923, 1637, 1433, 1183, 962 cm⁻¹; MS (ESI): m/z = 311.1 [(M+1)]⁺; anal. calcd. for C₁₈H₁₄O₃S: C 69.66, H 4.55; found: C 69.45, H 4.43.

3f: White solid; mp 208–210 °C; ¹H NMR (500 MHz, DMSO): $\delta = 1.38$ (t, J = 7.0 Hz, 3 H), 2.78 (s, 3 H), 4.33 (q, J = 7.0 Hz, 2 H), 7.34 (s, 1 H), 7.48 (t, J = 8.0 Hz, 1 H), 7.63 (t, J = 7.5 Hz, 1 H), 8.11 (d, J = 8.0 Hz, 1 H), 8.20 (d, J = 8.5 Hz, 1 H), 10.26 (s, 1 H); ¹³C NMR (125 MHz, DMSO): $\delta = 13.4$, 14.9, 60.7, 100.1, 108.7, 119.5, 120.7, 122.6, 123.0, 123.8, 124.8, 127.9, 144.4, 151.2, 160.8, 163.6; IR (KBr): $\nu = 3290$, 3002, 1662, 1379, 1134, 995 cm⁻¹; MS (ESI): m/z = 303.1 [(M+1)]⁺; anal. calcd. for C₁₆H₁₄O₄S: C 63.56, H 4.67; found: C 63.23, H 4.55.

3g: White solid; mp 250–252 °C; ¹H NMR (500 MHz, DMSO): δ =2.59 (s, 3H), 2.80 (s, 3H), 7.39 (s, 1H), 7.48–7.51 (m, 1H), 7.62–7.65 (m, 1H), 8.13 (d, *J*=8.0 Hz, 1H), 8.20 (d, *J*=8.5 Hz, 1H), 10.25 (s, 1H); ¹³C NMR (125 MHz, DMSO): δ =13.6, 30.3, 99.8, 118.0, 119.1, 120.1, 122.0, 122.1, 123.2, 124.4, 127.4, 144.0, 150.8, 160.0, 192.3; IR (KBr): ν = 3187, 2998, 1616, 1251, 959, 763 cm⁻¹; MS (ESI): *m*/*z*=273.0 [(M+1)]⁺; anal. calcd. for C₁₅H₁₂O₃S: C 66.16, H 4.44; found: C 66.35, H 4.36.

3h: White solid; mp 222–224 °C; ¹H NMR (500 MHz, DMSO): δ =2.83 (s, 3H), 6.91 (s, 1H), 7.58 (s, 1H), 7.71 (s, 1H), 8.18 (d, *J*=8.0 Hz, 1H), 8.24 (d, *J*=8.0 Hz, 1H), 10.6 (s, 1H); ¹³C NMR (125 MHz, DMSO): δ =16.2, 93.8, 97.1, 113.6, 119.9, 120.9, 123.0, 123.9, 124.0, 126.1, 128.7, 144.9, 152.1, 160.9; IR (KBr): ν =3305, 3013, 2226, 1665, 1249,

765 cm⁻¹; MS (ESI): m/z = 256.0 [(M+1)]⁺; anal. calcd. for C₁₄H₉NO₂S: C 65.87, H 3.55, N 5.49; found: C 65.68, H 3.42, N 5.46.

3i: Yellow solid; mp 228–230 °C; ¹H NMR (500 MHz, DMSO): δ =2.74 (s, 3H), 6.77 (s, 1H), 7.51 (t, *J*=7.5 Hz, 1H), 7.58 (t, *J*=7.5 Hz, 2H), 7.66 (t, *J*=7.5, 1H), 7.70 (t, *J*=7.5, 1H), 7.76 (d, *J*=7.5 Hz, 2H), 8.19 (d, *J*=8.5 Hz, 2H), 10.15 (s, 1H); ¹³C NMR (125 MHz, DMSO): δ =14.5, 99.8, 118.4, 119.7, 120.7, 122.9 (2C), 123.7, 125.1, 128.0, 129.0 (2C), 129.2 (2C), 133.1, 139.4, 144.7, 150.9, 160.6, 190.3; IR (KBr): ν =3185, 3035, 1602, 1589, 917, 761 cm⁻¹; MS (ESI): m/z=335.1 [(M+1)]⁺; anal. calcd. for C₂₀H₁₄O₃S: C 71.84, H 4.22; found: C 71.69, H 4.11.

3j: Yellow solid; mp 242–244 °C; ¹H NMR (500 MHz, DMSO): $\delta = 2.84$ (s, 3H), 7.46 (s, 1H), 7.50–7.54 (m, 4H), 7.66–7.69 (m, 2H), 7.74 (d, J = 15.5 Hz, 1H), 7.82 (d, J = 7.0 Hz, 2H), 8.18 (d, J = 8.5 Hz, 1H), 8.22(d, J = 8.5 Hz, 1H), 10.32 (s, 1H); ¹³C NMR (125 MHz, DMSO): $\delta = 14.1$, 99.7, 119.0, 119.2, 120.2, 122.1, 122.3, 123.3, 124.6, 124.8, 127.5, 128.6 (2 C), 129.2 (2 C), 130.7, 134.6, 142.4, 144.3, 150.9, 160.2, 184.4; IR (KBr): $\nu = 3152$, 2930, 1638, 1556, 1251, 765 cm⁻¹; MS (ESI): m/z = 361.1 [(M+1)]⁺; anal. calcd. for C₂₂H₁₆O₃S: C 73.31, H 4.47; found: C 73.10, H 4.39.

3k: White solid; mp 186–188 °C; ¹H NMR (500 MHz, DMSO): $\delta = 1.33$ (t, J = 7.0 Hz, 3H), 2.65 (s, 3H), 4.32 (q, J = 7.0 Hz, 2H), 7.14 (s, 1H), 10.54 (s, 1H); ¹³C NMR (125 MHz, DMSO): $\delta = 14.6$, 14.7, 61.6, 98.6, 102.0, 112.6, 115.4, 127.5, 146.2, 152.8, 160.5, 162.5; IR (KBr): $\nu = 3242$, 2985, 1637, 1370, 1169, 865 cm⁻¹; MS (ESI): m/z = 409.0 [(M+1)]⁺; anal. calcd. for C₁₂H₁₀Br₂O₄S: C 35.15, H 2.46; found: C 35.33, H 2.37.

31: White solid; mp 214–216 °C; ¹H NMR (500 MHz, DMSO): δ =2.55 (s, 3H), 7.20 (s, 1H), 7.53 (t, *J*=7.5 Hz, 2H), 7.69 (t, *J*=7.0 Hz, 1H), 7.82 (d, *J*=7.0 Hz, 2H), 10.58 (s, 1H); ¹³C NMR (125 MHz, DMSO): δ =15.9, 97.9, 101.7, 115.8, 121.5, 128.5, 129.0 (2C), 129.4 (2C), 134.1, 137.8, 145.9, 151.9, 154.4, 189.6; IR (KBr): ν =3148, 2992, 1599, 1461, 1159, 887 cm⁻¹; MS (ESI): *m*/*z*=440.9 [(M+1)]⁺; anal. calcd. for C₁₆H₁₀Br₂O₃S: C 43.47, H 2.28; found: C 43.29, H 2.36.

3m: White solid; mp 178–180 °C; ¹H NMR (500 MHz, DMSO): $\delta = 1.32$ (t, J = 7.0 Hz, 3H), 2.34 (s, 6H), 2.63 (s, 3H), 4.28 (d, J = 7.0 Hz, 2H), 6.62 (s, 1H), 9.08 (s, 1H); ¹³C NMR (125 MHz, DMSO): $\delta = 13.4$, 13.8, 14.7 (2C), 60.9, 110.2, 113.0, 113.6, 117.9, 125.6, 148.3, 152.4, 161.1, 163.7; IR (KBr): $\nu = 3355$, 2985, 1638, 1369, 1152, 858 cm⁻¹; MS (ESI): m/z = 281.1 [(M+1)]⁺; anal. calcd. for C₁₄H₁₆O₄S: C 59.98, H 5.75; found: C 59.76, H 5.63.

3n: White solid; mp 220–222 °C; ¹H NMR (500 MHz, DMSO): $\delta = 1.74$ (s, 3H), 2.40 (s, 3H), 2.52 (s, 3H), 6.70 (s, 1H), 7.54 (t, J = 7.5 Hz, 2H), 7.68 (t, J = 7.5 Hz, 1H), 7.78 (d, J = 7.0 Hz, 2H), 9.12 (s, 1H); ¹³C NMR (125 MHz, DMSO): $\delta = 13.2$, 15.0, 16.1, 112.1, 114.7, 118.5, 121.6, 127.0, 129.5 (2C), 129.7 (2 C), 134.2, 138.6, 148.4, 152.0, 154.0, 191.8; IR (KBr): $\nu = 3284$, 2969, 1592, 1460, 1190, 887 cm⁻¹; MS (ESI): m/z = 313.1 [(M+1)]⁺; anal. calcd. for C₁₈H₁₆O₃S: C 69.21, H 5.16; found: C 69.38, H 5.23.

30: White solid; mp 154–156 °C; ¹H NMR (500 MHz, DMSO): $\delta = 1.31-1.36$ (m, 6H), 3.20 (q, J = 7.0 Hz, 2H), 4.27 (q, J = 7.5 Hz, 2H), 6.69 (dd, J = 2.0, 9.0 Hz, 1H), 7.16 (d, J = 2.0 Hz, 1H), 7.38 (d, J = 9.0, 1H), 9.57 (s, 1H); ¹³C NMR (125 MHz, DMSO): $\delta = 15.1$, 16.2, 25.5, 61.1,

106.1, 108.2, 112.0, 113.0, 127.6, 149.6, 155.3, 163.0, 163.9; IR (KBr): ν = 3357, 2998, 1659, 1232, 1058, 797 cm⁻¹; MS (ESI): m/z = 267.0 [(M+1)]⁺; anal. calcd. for C₁₃H₁₄O₄S: C 58.63, H 5.30; found: C 58.49, H 5.18.

3p: White solid; mp 174–176 °C; ¹H NMR (500 MHz, DMSO): $\delta = 1.38$ (t, J = 7.0 Hz, 3H), 1.43 (t, J = 7.0 Hz, 3H), 3.35 (q, J = 7.5 Hz, 2H), 4.33 (q, J = 7.5 Hz, 2H), 7.35 (s, 1H), 7.49 (t, J = 7.5 Hz, 1H), 7.63 (t, J = 7.0 Hz, 1H), 8.11 (d, J = 8.0 Hz, 1H), 8.20 (d, J = 8.0 Hz, 1H), 10.27 (s, 1H); ¹³C NMR (125 MHz, DMSO): $\delta = 14.9$, 15.9, 25.6, 60.8, 100.2, 109.5, 119.5, 120.7, 122.8, 123.0, 123.9, 124.9, 128.0, 144.5, 151.3, 160.1, 163.6; IR (KBr): $\nu = 3278$, 3005, 1663, 1376, 1129, 989 cm⁻¹; MS (ESI): m/z = 317.1 [(M+1)]⁺; anal. calcd. for C₁₇H₁₆O₄S: C 64.54, H 5.10; Found: C 64.68, H 5.19.

3q: White solid; mp 178–180 °C; ¹H NMR (500 MHz, CDCl₃): δ = 1.42–1.48 (m, 6H), 3.22 (q, *J* = 7.0 Hz, 2H), 4.33 (q, *J* = 7.0 Hz, 2H), 6.42 (s, broad, 1H), 7.17 (s, 1H); ¹³C NMR (125 MHz, CDCl₃): δ = 14.3, 15.1, 26.3, 61.3, 98.9, 102.9, 111.7, 114.8, 126.7, 147.1, 150.7, 162.2, 162.6; IR (KBr): ν = 3241, 2983, 2927, 1636, 1171, 867 cm⁻¹; MS (ESI): m/z = 423.0 [(M+1)]⁺; anal. calcd. for C₁₃H₁₂Br₂O₄S: C 36.82, H 2.85; found: C 36.63, H 2.71.

3r: White solid; mp 182–184 °C; ¹H NMR (500 MHz, DMSO): $\delta = 1.36$ (t, J = 7.0 Hz, 3H), 3.27 (q, J = 7.0 Hz, 2H), 6.78 (s, 1H), 7.52 (t, J = 8.0 Hz, 1H), 7.58 (t, J = 7.5 Hz, 2H), 7.66–7.72 (m, 2H), 7.77 (d, J = 7.5 Hz, 2H), 8.19 (d, J = 8.5 Hz, 2H), 10.17 (s, 1H); ¹³C NMR (125 MHz, DMSO): $\delta = 15.8$, 27.0, 99.8, 119.8, 120.0, 120.9, 123.0, 123.2, 123.9, 125.4, 128.2, 129.3 (2C), 129.4 (2C), 133.4, 139.3, 144.9, 151.1, 158.9, 190.6; IR (KBr): $\nu = 3202$, 2967, 1594, 1429, 1148, 912 cm⁻¹; MS (ESI): m/z = 349.1 [(M+1)]⁺; anal. calcd. for C₂₁H₁₆O₃S: C 72.39, H 4.63; found: C 72.58, H 4.74.

General Procedure for the Synthesis of 4 (with 4a as an Example)

To a solution of **3d** (284 mg, 1.0 mmol) in 5.0 mL of ethanol, was added butan-1-amine (0.03 mL, 3.0 mmol). The resulting mixture was stirred under reflux. After completion of the reaction as indicated by TLC, the reaction mixture was poured into saturated aqueous NaCl (20 mL), neutralized with dilute HCl, and extracted with CH_2Cl_2 (3×20 mL). The combined organic phase was washed with water (3×20 mL), dried over MgSO₄ and concentrated under vacuum. The crude product was purified by flash chromatography (silica gel, petroleum ether:diethyl ether=5:1) to give **4a** as yellow crystals; yield: 271 mg (88%).

Physical Data of Compounds Isolated

4a: Yellow crystals; mp 202–204 °C; ¹H NMR (500 MHz, DMSO): $\delta = 0.92$ (t, J = 7.0 Hz, 3H), 1.32–1.38 (m, 2H), 1.60–1.65 (m, 2H), 3.51 (d, J = 5.5 Hz, 2H), 6.07 (d, J = 2.5 Hz, 1H), 6.39 (dd, J = 6.0, 8.5 Hz, 1H), 7.15 (d, J = 8.5 Hz, 1H), 7.51–7.58 (m, 5H), 9.02 (s, broad, 1H), 9.11 (s, 1H); ¹³C NMR (125 MHz, DMSO): $\delta = 14.1$, 20.0, 32.2, 41.8, 93.2, 104.9, 108.9, 110.8, 127.4 (2C), 127.6, 129.0 (2C), 130.9, 141.8, 143.0, 154.5, 167.0, 188.5; IR (KBr): $\nu = 3196$, 2958, 1657, 1531, 1366, 1171, 751 cm⁻¹; MS (ESI): m/z = 310.1 [(M+1)]⁺; anal. calcd. for C₁₉H₁₉NO₃: C 73.77, H 6.19, N 4.53; found: C 73.59, H 6.27, N 4. 59.

4b: Yellow crystals; mp 176–178 °C; ¹H NMR (500 MHz, DMSO): δ =4.72 (d, *J*=6.5 Hz, 2H), 6.08 (d, *J*=2.0 Hz, 1H), 6.39 (dd, *J*=2.0, 8.5 Hz, 1H), 7.13 (d, *J*=8.5 Hz, 1H), 7.29 (d, *J*=7.5 Hz, 1H), 7.37 (t, *J*=7.5 Hz, 2H), 7.42 (d, *J*=7.0 Hz, 2H), 7.52–7.58 (m, 5H), 9.03 (s, 1H), 9.52 (t, *J*=6.5 Hz, 1H); ¹³C NMR (125 MHz, DMSO): δ =45.5, 93.5, 105.0, 109.0, 110.9, 127.4 (2C), 127.6, 127.9 (3C), 129.0 (2C), 129.2 (2C), 131.0, 139.0, 141.7, 143.0, 154.5, 166.6, 188.8; IR (KBr): ν =3196, 2963, 1641, 1582, 1455, 747 cm⁻¹; MS (ESI): *m*/*z*=344.1 [(M+1)]⁺; anal. calcd. for C₂₂H₁₇NO₃: C 76.95, H 4.99, N 4.08; found: C 76.83, H 4.90, N 4.12.

4c: Yellow crystals; mp 218–220 °C; ¹H NMR (500 MHz, DMSO): δ =1.39–1.48 (m, 6H), 3.27 (s, 4H), 6.45 (dd, *J*=2.0, 8.5 Hz, 1H), 6.53 (d, *J*=1.5 Hz, 1H), 7.14 (d, *J*=8.5 Hz, 1H), 7.51 (t, *J*=7.5 Hz, 2H), 7.59 (t, *J*=7.5 Hz, 1H), 7.67 (d, *J*=7.5 Hz, 2H), 9.06 (s, 1H); ¹³C NMR (125 MHz, DMSO): δ =32.8, 34.3 (2C), 59.0 (2C), 104.0, 114.3, 118.6, 119.4, 137.9 (2C), 138.2 (2C), 139.6, 141.3, 150.1, 151.7, 163.4, 173.4, 198.5; IR (KBr): *ν*=3440, 2920, 1559, 1462, 1140, 999 cm⁻¹; MS (ESI): *m*/*z*=322.1 [(M+1)]⁺; anal. calcd. for C₂₀H₁₉NO₃: C 74.75, H 5.96, N 4.36; found: C 74.54, H 5.88, N 4.31.

4d: Yellow crystals; mp 216–218 °C; ¹H NMR (500 MHz, DMSO): δ =3.34 (d, *J*=4.0 Hz, 4H), 3.53 (d, *J*=4.0 Hz, 4H), 6.45 (s, 1H), 6.48 (t, *J*=8.5 Hz, 1H), 7.17 (d, *J*=8.5 Hz, 1H), 7.53 (t, *J*=7.5 Hz, 2H), 7.62 (d, *J*=7.5 Hz, 1H), 7.70 (d, *J*=7.5 Hz, 2H), 9.07 (s, 1H); ¹³C NMR (125 MHz, DMSO): δ =48.7 (2C), 65.8 (2C), 95.8, 105.4, 110.0, 110.5, 128.9 (2C), 129.1 (2C), 130.2, 132.4, 140.8, 142.7, 154.4, 163.9, 189.5; IR (KBr): *v*=3199, 2993, 2863, 1554, 1111, 805 cm⁻¹; MS (ESI): *m*/*z*=324.1 [(M+1)]⁺; anal. calcd. for C₁₉H₁₇NO₄: C 70.58, H 5.30, N 4.33; found: C 70.33, H 5.41, N 4.37.

4e: Yellow crystals; mp 232–234 °C; ¹H NMR (500 MHz, DMSO): δ =1.41–1.44 (m, 4H), 1.45–1.48 (m, 2H), 3.34 (t, J=5.0 Hz, 4H), 6.88 (s, 1H), 7.34 (t, J=7.5 Hz, 1H), 7.52–7.56 (m, 3H), 7.62 (t, J=7.5 Hz, 1H), 7.74–7.75 (m, 2H), 7.99 (d, J=8.0 Hz, 1H), 8.11 (d, J=8.5 Hz, 1H), 9.87 (s, 1H); ¹³C NMR (125 MHz, DMSO): δ =23.8, 25.2 (2C), 50.1 (2C), 96.8, 100.6, 118.9, 120.4, 121.5, 123.2, 123.7, 125.5, 127.4, 129.1 (2C), 129.2 (2C), 132.4, 136.4, 140.7, 150.4, 163.5, 189.7; IR (KBr): ν =3440, 2928, 1539, 1392, 1127, 675 cm⁻¹; MS (ESI): m/z=372.1 [(M+1)]⁺; anal. calcd. for C₂₄H₂₁NO₃: C 77.61, H 5.70, N 3.77; found: C 77.46, H 5.57, N 3.79.

General Procedure for the Synthesis of 5 (with 5a as an Example)

To a solution of **3b** (222 mg, 1.0 mmol) and CH₃I (0.09 mL, 1.5 mmol) in 4.0 mL of DMF was added K_2CO_3 (138 mg, 1.0 mmol). The resulting mixture was stirred at room temperature. After completion of the reaction as indicated by TLC, the reaction mixture was poured into saturated aqueous NaCl (20 mL) and neutralized with dilute HCl. The white precipitate was collected by filtration, washed with water (30 mL) and dried under vacuum to afford 1-(5-methoxy-2-(methylthio)benzofuran-3-yl)ethanone **3b'** as a white solid; yield: 214 mg (95%).

Then, 3b' (118 mg, 0.5 mmol) was redissolved in 5.0 mL of ethanol and treated with guanidine hydrochloride (95.5 mg, 1.0 mmol) and KOH (112 mg, 2.0 mmol) under reflux. After

completion of the reaction as indicated by TLC, the reaction mixture was poured into saturated aqueous NaCl (10 mL) and neutralized with dilute HCl. The resulting precipitate was collected by filtration, washed with water (10 mL) and dried under vacuum to afford **5a** as a white solid; yield: 103 mg (90%).

Physical Data of Compounds Isolated

3b': White solid; mp 86–88 °C; ¹H NMR (500 MHz, CDCl₃): $\delta = 2.63$ (s, 3H), 2.71 (s, 3H), 3.88 (s, 3H), 6.84 (dd, J = 2.5, 8.5 Hz, 1H), 7.34 (d, J = 8.5 Hz, 1H), 7.39 (d, J = 2.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 13.7$, 30.5, 55.9, 103.8, 110.9, 111.5, 117.3, 127.2, 150.1, 157.0, 163.2, 192.7; IR (KBr): $\nu = 3110$, 2996, 2932, 1649, 1496, 1162, 859 cm⁻¹; MS (ESI): m/z = 237.1 [(M+1)]⁺; anal. calcd. for C₁₂H₁₂O₃S: C 61.00, H 5.12; found: C 61.21, H 5.23.

5a: White solid; mp 276–278 °C; ¹H NMR (500 MHz, DMSO): δ =2.67 (s, 3H), 3.84 (s, 3H), 6.95 (d, *J*=8.0 Hz, 1H), 7.04 (s, 2H), 7.32 (s, 1H), 7.51 (d, *J*=8.0 Hz, 1H); ¹³C NMR (125 MHz, DMSO): δ =22.7, 56.3, 103.1, 105.6, 112.3, 112.6, 123.3, 146.6, 156.7, 163.0, 163.8, 171.0; IR (KBr): ν =3355, 3166, 2996, 1656, 1577, 1183, 788 cm⁻¹; MS (ESI): *m*/*z*=230.1 [(M+1)]⁺; anal. calcd. for C₁₂H₁₁N₃O₂: C 62.87, H 4.84, N 18.33; found: C 62.68, H 4.75, N 18.38.

5b: White solid; mp 136–138 °C; ¹H NMR (500 MHz, DMSO): δ = 2.65 (s, 3H), 2.81 (s, 3H), 3.86 (s, 3H), 7.13 (d, J = 8.0 Hz, 1H), 7.45 (s, 1H), 7.64 (d, J = 8.0 Hz, 1H); ¹³C NMR (125 MHz, DMSO): δ = 22.7, 26.1, 56.4, 106.7, 110.8, 113.1, 116.2, 121.4, 147.5, 156.9, 162.5, 165.2, 168.9; IR (KBr): ν = 3165, 2973, 2839, 1593, 1485, 1183, 788 cm⁻¹; MS (ESI): m/z = 229.1 [(M+1)]⁺; anal. calcd. for C₁₃H₁₂N₂O₂: C 68.41, H 5.30, N 12.27; found: C 68.53, H 5.39, N 12.21.

Acknowledgements

Financial support of this research by NNSFC-20972029/ 20872015, NENU-STC08007/07007 and the State Key Laboratory of Fine Chemicals (KF0807) is gratefully acknowledged.

References

- For representative examples on bioactivities of benzofurans, see: a) B. L. Flynn, E. Hamel, M. J. Katherine, *J. Med. Chem.* 2002, 45, 2670–2673; b) S. Pautus, S. W. Yee, M. Jayne, M. P. Coogan, C. Simons, *Bioorg. Med. Chem.* 2006, 14, 3643–3653; c) M. Dixit, B. K. Tripathi, A. K. Tamrakar, A. K. Srivastava, B. Kumar, A. Goel, *Bioorg. Med. Chem.* 2007, 15, 727–734; d) Y. Chen, X. Wei, H. Xie, H. Deng, *J. Nat. Prod.* 2008, 71, 929–932; e) N. T. Dat, X. Jin, K. Lee, Y.-S. Hong, Y. H. Kim, J. J. Lee, *J. Nat. Prod.* 2009, 72, 39–43.
- [2] For selected reviews of the chemistry and synthesis of benzofurans, see: a) X.-L. Hou, Z. Yang, H. N. C. Wong, in: *Progress in Heterocyclic Chemistry*, Vol. 14, (Eds.: G. W. Gribble, T. L. Gilchrist), Pergamon, Oxford, England, **2002**, pp 139–179; b) X.-L. Hou, Z. Yang, K. S. Yeung, H. N. C. Wong, in: *Progress in Heterocyclic Chemistry*, Vol. 17, (Eds.: G. W. Gribble, T. L.

Gilchrist), Pergamon, Oxford, England, **2005**, pp 142–171; c) L. De Luca, G. Nieddu, A. Porcheddu, G. Giacomelli, *Curr. Med. Chem.* **2009**, *16*, 1–20.

- [3] For selected reviews on the synthesis of benzofurans by transition metal-catalyzed transformations, see: a) F. Alonso, I. P. Beletskaya, M. Yus, *Chem. Rev.* 2004, 104, 3079–3160; b) R. E. Ziegert, J. Torang, K. Knepper, S. Brase, *J. Comb. Chem.* 2005, 7, 147–169; c) S. Cacchi, G. Fabrizi, A. Goggiamani, *Curr. Org. Chem.* 2006, 10, 1423–1455; d) G. Zeni, R. C. Larock, *Chem. Rev.* 2006, 106, 4644–4680.
- [4] For selected examples on the synthesis of benzofurans by transition metal-catalyzed transformations, see:
 a) H. Zhang, E. M. Ferreira, B. M. Stoltz, Angew. Chem. 2004, 116, 6270-6274; Angew. Chem. Int. Ed. 2004, 43, 6144-6148; b) I. Nakamura, Y. Mizushima, Y. Yamamoto, J. Am. Chem. Soc. 2005, 127, 15022-15023; c) A. Fürstner, P. W. Davies, J. Am. Chem. Soc. 2005, 127, 15024-15025; d) J. Oppenheimer, W. L. Johnson, M. R. Tracey, R. P. Hsung, P.-Y. Yao, R. Liu, K. Zhao, Org. Lett. 2007, 9, 2361-2364; e) B. Lu, B. Wang, Y. Zhang, D. Ma, J. Org. Chem. 2007, 72, 5337-5341; f) C. Eidamshaus, J. D. Burch, Org. Lett. 2008, 10, 4211-4214; g) S. G. Newman, V. Aureggi, C. S. Bryan, M. Lautens, Chem. Commun. 2009, 5236-5238.
- [5] For selected examples on the synthesis of benzofurans based on quinones, see: a) M. E. Jung, F. Perez, Org. Lett. 2009, 11, 2165-2167; b) X.-M. Cheng, X.-W. Liu, J. Comb. Chem. 2007, 9, 906-908; c) G. Z. Stasevich, V. L. Stepanenko, M. V. Kudrevatykh, O. Yu. Avrutina, O. N. Bubel, Chem. Heterocycl. Compd. 2003, 39, 707-712; d) S. Al-Mousawi, M. M. Abdel-Khalik, S. El-Sherbiny, E. John, M. H. Elnagdi, J. Heterocycl. Chem. 2001, 38, 949-953; e) H. Takahata, A. Anazawa, K. Moriyama, T. Yamazaki, J. Chem. Soc. Perkin Trans. 1 1987, 1501-1504; f) V. Aggarwat, A. Kumar, H. Ila, H. Junjappa, Synthesis 1981, 157-158; g) N. V. S. Mudiganti, S. Claessens, N. D. Kimpe, Tetrahedron 2009, 65, 1716-1723.
- [6] For selected reviews, see: a) R. K. Dieter, *Tetrahedron* 1986, 42, 3029–3096; b) H. Junjappa, H. Ila, C. V. Asokan, *Tetrahedron* 1990, 46, 5423–5506.
- [7] For representative examples, see: a) X. Bi, D. Dong, Q. Liu, W. Pan, L. Zhao, B. Li, J. Am. Chem. Soc. 2005, 127, 4578-4579; b) J. Liu, M. Wang, B. Li, Q. Liu, Y. Zhao, J. Org. Chem. 2007, 72, 4401-4405; c) J. Tan, X. Xu, L. Zhang, Y. Li, Q. Liu, Angew. Chem. 2009, 121, 2912-2916; Angew. Chem. Int. Ed. 2009, 48, 2868-2872; d) J. Liu, M. Wang, F. Han, Y. Liu, Q. Liu, J. Org. Chem. 2009, 74, 5090-5092; e) Z. Fu, M. Wang, Y. Dong, J. Liu, Q. Liu, J. Org. Chem. 2009, 74, 6105-6110.
- [8] a) Y. Yin, M. Wang, Q. Liu, J. Hu, S. Sun, J. Kang, *Tetrahedron Lett.* 2005, 46, 4399–4402; b) S. Sun, Q. Zhang, Q. Liu, J. Kang, Y. Yin, D. Li, D. Dong, *Tetrahedron Lett.* 2005, 46, 6271–6274; c) Q. Zhang, Y. Liu, M. Wang, Q. Liu, J. Hu, Y. Yin, *Synthesis* 2006, 3009–3014; d) Y. Yin, Q. Zhang, J. Li, S. Sun, Q. Liu, *Tetrahedron Lett.* 2006, 47, 6071–6074; e) Z. Fu, M. Wang, Y. Ma, Q. Liu, J. Liu, J. Org. Chem. 2008, 73, 7625–7630; f) Y. Ma, M. Wang, D. Li, B. Bekturhun, J. Liu, Q. Liu, J. Org. Chem. 2009, 74, 3116–3121.

- [9] H.-J. Yuan, M. Wang, Y.-J. Liu, Q. Liu, Adv. Synth. Catal. 2009, 351, 112–116, and references cited therein.
- [10] a) D. H. Paull, C. J. Abraham, M. T. Scerba, E. Alden-Danforth, T. Lectka, Acc. Chem. Res. 2008, 41, 655–663; b) Y. J. Park, J.-W. Park, C.-H. Jun, Acc. Chem. Res. 2008, 41, 222–234.
- [11] a) Formation of by-product A should result from a sequential Michael addition of methanethiol (eliminating product) with benzoquenone 2a, aromatization, and oxidation. b) Formation of by-product B should result

[O]: p-benzoquenone

from the coupling of $CuBr_2$ -activated **1a** and 1,2-dimethyldisulfane (formed by the coupling of two methane-thiol).

- [12] In order to understand this process, we performed additional two reactions under the cooperative catalysis of CuBr₂ (2.0 mol%) and BF₃·Et₂O (10 mol%) in MeCN at room temperature for 1.0 h, (i) the reaction of 1a (1.0 mmol) and 2a (1.0 mmol) at ambient conditions; (ii) the reaction of 1a (1.0 mmol) and 2a (1.0 mmol) under N₂. The former reaction gave benzofuran 3a in 52% yield and the latter one afforded 3a in 58% yield. By comparison of the experimental data, no evidence suggests that the coupling of 1a and 2a benefits from O₂. Thus, the experimental results do not support a Cu(II)-catalyzed oxidative coupling of ketene dithioacetals and quinones.
- [13] Aminobenzofurans are evaluated as either a scaffold in natural product synthesis or useful building blocks in organic synthesis, see: a) T. Benincori, F. Sannicolo, J. Org. Chem. 1988, 53, 1309–1312; b) M. Gerster, R. Wicki, Synthesis 2004, 249–254; c) T. Ishikawa, T. Miyahara, M. Asakura, S. Higuchi, Y. Miyauchi, S. Saito, Org. Lett. 2005, 7, 1211–1214.
- [14] a) A. Gangjee, R. Devraj, J. J. McGuire, R. L. Kisliuk, J. Med. Chem. 1995, 38, 3798–3805; b) Y. Maeda, M. Nakano, H. Sato, Y. Miyazaki, S. L. Schweiker, J. L. Smith, A. T. Truesdale, Bioorg. Med. Chem. Lett. 2004, 14, 3907–3911; c) Z. Janeba, J. Balzarini, G. Andrei, R. Snoeck, E. De Clercq, M. J. Robins, J. Med. Chem. 2005, 48, 4690–4696; d) N. Foloppe, L. M. Fisher, R. Howes, P. Kierstan, A. Potter, A. G. S. Robertson, A. E. Surgenor, J. Med. Chem. 2005, 48, 4332–4345.