Synthesis of fluorinated allenes *via* palladium-catalyzed monofluoromethylation using FBSM[†]

Masamichi Ogasawara,*^a Hidetoshi Murakami,^a Tatsuya Furukawa,^b Tamotsu Takahashi*^a and Norio Shibata*^b

Received (in Cambridge, UK) 25th June 2009, Accepted 16th October 2009 First published as an Advance Article on the web 2nd November 2009 DOI: 10.1039/b912531k

Palladium-catalyzed monofluoromethylation of substituted 2-bromo-1,3-dienes using fluorobis(phenylsulfonyl)methane (FBSM) as a pronucleophile gave previously unknown monofluoromethylated allenes in high yields, which are the isosteres of biologically attractive allenic alcohols.

Allenes have received considerable attention as unique building blocks in medicinal chemistry.¹ Due to perpendicular orientation of the two cumulated carbon-carbon double bonds in an allenic framework, allenes can be axially chiral with proper substitution, which enables the generation of stereochemical diversity in drug candidates. Although about 150 natural products comprising an allenic or a related cumulenic structure have been known, the design and synthesis of biologically active allenic compounds is a relatively undeveloped area.² We considered that the incorporation of a fluorine atom into allenic compounds could provide new building blocks where the unique properties of allenes and fluorine might contribute to new biological activities.³ It is evident that fluorinated molecules play a crucial role in the pharmaceutical as well as agrochemical fields,⁴ and nowadays fluorinated allenes are an emerging class of synthetic targets.³ Among such fluorinated allenes, we became interested in monofluoromethylated allenes 1 as our synthetic targets based on the isostere design of the corresponding allenic alcohols. Allenic alcohol moiety is frequently found in allenic natural products and pharmaceuticals, such as grasshopper ketone and adenallene.² Recent evidence indicates that replacement of a hydroxy group by a fluorine atom is often regarded as an isosteric substitution.⁵ Thus, the monofluoromethylated allenes 1 are potential mimics of the corresponding allenic alcohols and can have a significant impact on pharmacological properties. In 2006, a nucleophilic monofluoromethylation reagent, fluorobis(phenylsulfonyl)methane (FBSM), was developed as a synthetic equivalent of a fluoromethide species by Shibata's group in Nagoya.⁶ This work sparked the imagination of chemists to design new nucleophilic monofluoromethylation reactions using FBSM which affords a variety of monofluoromethylated

Scheme 1 Strategy for preparing monofluoromethylated allenes.

compounds.^{7,8} As a part of our research program in Sapporo involving the development of a novel synthetic method for preparing a variety of functionalized allenes,⁹ we report herein the efficient, simple synthesis of monofluoromethylated allenes 1 from substituted 2-bromo-1,3-dienes (or a related triflate) 2. Our protocol comprises of two steps: after preparation of fluorobis(phenylsulfonyl)methylated allenes 3 using the palladium-catalyzed nucleophilic substitution reaction based on the FBSM chemistry, following reductive desulfonylation gives the previously unknown monofluoromethylated allenes 1 in high yields with excellent selectivity (Scheme 1).

Our initial studies were focused on the development of suitable reaction conditions including base, solvent, and palladium precursor for the Pd-catalyzed reaction of (Z)-^tBuCH=CBrCH=CH₂ (2a) and FBSM producing the allene 3a (Table 1). Under the conditions optimized for a methylmalonate pronucleophile CHMe(CO2Me)2,9a which were with $[PdCl(\pi-allyl)]_2$ and NaH in THF, the reaction was very sluggish and 3a was obtained in 24% in 12 h (entry 1). The use of KO'Bu as a base in place of NaH increased the yield of 3a to 86% (entry 2) and the yield was further improved to 90% by running the reaction in dichloromethane (entry 4). A catalyst generated from Pd(dba)₂ and dpbp showed the lower catalytic activity and gave only 78% of 3a under otherwise identical reaction conditions (entry 5). Thus, a mixture of 2a (37.8 mg, 0.20 mmol), FBSM (70 mg, 0.22 mmol), KO'Bu (27 mg, 0.24 mmol), $[PdCl(\pi-allyl)]_2$ (1.8 mg, 5.0 μ mol), and dpbp¹⁰ (5.7 mg, 11 μ mol) in CH₂Cl₂ (2 mL) was heated at 40 °C. The reaction was complete within 12 h, and 76.1 mg (90% yield based on 2a) of 3a was isolated as a colorless viscous liquid by silica gel chromatography.

Under these optimized conditions, the Pd-catalyzed reactions took place very cleanly for a wide range of dienyl substrates 2 to give the allenic compounds 3 in high yields.

^a Catalysis Research Center and Graduate School of Life Science,

Hokkaido University, Kita-ku, Sapporo 001-0021, Japan.

E-mail: ogasawar@cat.hokudai.ac.jp, tamotsu@cat.hokudai.ac.jp; Fax: +81-11-706-9150

^b Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan. E-mail: nozshiba@nitech.ac.jp; Fax: +81-52-735-5442

[†] Electronic supplementary information (ESI) available: Experimental procedures and compound characterization data. See DOI: 10.1039/b912531k

Isolated yield b	y silica gel chromatography.	our hands, reductive desulfonylation of a to the envisaged monofluoromethylallen Whereas a significant decrease of mo	3, which should lead less 1, was examined decular weight (<i>i.e.</i>)
The results of Table 2. Bromo afforded the cor entries 1–3). Ar yields by the aryldiene beari substituent 2g all the substrate yield of 3g could of the dienyl s	the Pd-catalyzed reaction are summarized in dienes with a sterically diverse alkyl substituent responding allenes in excellent yields (89–93%; ylallenes 3d–f were obtained as well in 81–83% present reaction (entries 4–6), however, the ng an electron withdrawing trifluoromethyl gave 3g in as low as 42% (entry 7). Whereas 2g was consumed during the reaction, the low d be ascribed to oligomerization/polymerization substrate 2g and/or the allenic product 3g .	increase of volatility) was expected upon the desulfonylation was performed on allenes of relatively larger molecular wei, the FBSM-allenes for the desulfonyla carefully chosen to demonstrate suffici present chemistry, which included disub an alkyl (3b), an aryl (3f), or a silylmet trisubstituted endocyclic allene (3m). Des carried out according to the Carpino's pr modifications. Due to low solubility of methanol, a MeOH–THF mixture was	the transformation the selected FBSM ght. The short list of the short list of the short list of the short list of the short list of the short list of the sh
Table 2 Palladiu	m-catalyzed reaction of 2 with FBSM giving allene 3^a Substrate 2	FBSM-allene 3	Yield (%)
1	$\int \int \mathbf{a} (\mathbf{R} = t \mathbf{B} \mathbf{u})$	CF(SO ₂ Ph) ₂	90
2	$2b (R = PhCMe_2CH_2)$	3b	89
3	$2c (R = {}^{n}C_{8}H_{17})$	3c	93
4	2d (R = Ph)	3d	83
	$2e(R = n MeOC_cH_c)$	3e	81
5	2c (ic p mcoconita)		82
5 6	$2f(R = 2,4,6-Me_3C_6H_2)$	3f	02
5 6 7	26 ($R = 2,4,6-Me_3C_6H_2$) 26 ($R = p-CF_3C_6H_4$)	3f 3g	42
5 6 7 8	26 ($R = 2,4,6-M_{e3}C_{6}H_{2}$) 26 ($R = p-CF_{3}C_{6}H_{4}$) 27 ($R = M_{e3}SiCH_{2}$)	3f 3g 3h	42 85
5 6 7 8 9	2f ($R = 2,4,6-Me_3C_6H_2$) 2g ($R = p-CF_3C_6H_4$) 2h ($R = Me_3SiCH_2$) 2i ($R = {}^{i}Pr_3SiCH_2$)	3f 3g 3h 3i	42 85 85
5 6 7 8 9	2f ($R = 2,4,6-Me_3C_6H_2$) 2g ($R = p-CF_3C_6H_4$) 2h ($R = Me_3SiCH_2$) 2i ($R = {}^{i}Pr_3SiCH_2$) Me Me	3f 3g 3h 3i Me	42 85 85
0	2f ($R = 2,4,6-Me_3C_6H_2$) 2g ($R = p-CF_3C_6H_4$) 2h ($R = Me_3SiCH_2$) 2i ($R = {}^{i}Pr_3SiCH_2$) Me Me	3f 3g 3h 3i Me Me	42 85 85 82
5 6 7 8 9 10	2f ($R = 2,4,6-Me_3C_6H_2$) 2g ($R = p-CF_3C_6H_4$) 2h ($R = Me_3SiCH_2$) 2i ($R = {}^{i}Pr_3SiCH_2$) Me Me Br 2j	$3f$ $3g$ $3h$ $3i$ Me Me Me $CF(SO_2Ph)_2$ Me $3j$	42 85 85 82
5 6 7 8 9 10	2f ($R = 2,4,6-Me_3C_6H_2$) 2g ($R = p-CF_3C_6H_4$) 2h ($R = Me_3SiCH_2$) 2i ($R = iPr_3SiCH_2$) Me Me Me Me Me Me	$3f$ $3g$ $3h$ $3i$ Me Me Me $CF(SO_2Ph)_2$ Ph	42 85 85 82
5 6 7 8 9 10	2f ($R = 2,4,6-Me_3C_6H_2$) 2g ($R = p-CF_3C_6H_4$) 2h ($R = Me_3SiCH_2$) 2i ($R = iPr_3SiCH_2$) Me Me Me Me Me Me	$3f$ $3g$ $3h$ $3i$ Me Me Me $CF(SO_2Ph)_2$ Ph Me $CF(SO_2Ph)_2$	42 85 85 82 86
5 6 7 8 9 10	2f ($R = 2,4,6-Me_3C_6H_2$) 2g ($R = p-CF_3C_6H_4$) 2h ($R = Me_3SiCH_2$) 2i ($R = {}^{i}Pr_3SiCH_2$) Me Me Me Me Me T DTf 2k $C(CH_2)_{R}$	$3f$ $3g$ $3h$ $3i$ Me Me Me Ji $CF(SO_2Ph)_2$ $GF(SO_2Ph)_2$ $GF(SO_2Ph)_2$ $GF(SO_2Ph)_2$ $GF(SO_2Ph)_2$	42 85 85 82 86
5 6 7 8 9 10 11	2f ($R = 2, 4, 6 \cdot Me_3C_6H_2$) 2g ($R = p \cdot CF_3C_6H_4$) 2h ($R = Me_3SiCH_2$) 2i ($R = {}^{i}Pr_3SiCH_2$) Me Me Me Me Me Me OTf 2k $\binom{(CH_2)_n}{}$	$3f$ $3g$ $3h$ $3i$ Me Me Me Jj $CF(SO_2Ph)_2$ Jk $CF(SO_2Ph)_2$ $G(CH_2)_n$	42 85 85 82 86
5 6 7 8 9 10 11	2f ($R = 2, 4, 6 \cdot Me_3C_6H_2$) 2g ($R = p \cdot CF_3C_6H_4$) 2h ($R = Me_3SiCH_2$) 2i ($R = iPr_3SiCH_2$) Me Me Me Me OTf 2k $C(CH_2)_n$ Rr 2l (n = 0)	$3f$ $3g$ $3h$ $3i$ Me Me Me Jj $CF(SO_2Ph)_2$ $3k$ $CF(SO_2Ph)_2$ Jk $CF(SO_2Ph)_2$ $G(CH_2)_n$ $G(CH_2)_n$ $G(CH_2)_n$ $G(CF(SO_2Ph)_2)$	42 85 85 82 86 82

Table 1 Optimization of palladium-catalyzed reaction of 2a with FBSM

^tBı

Ph₂P

PPh₂

Pd-precursor

 $[PdCl(\pi-allyl)]_2$ $[PdCl(\pi-allyl)]_2$

[PdCl(*π*-allyl)]₂

 $[PdCl(\pi-allyl)]_2$

CF(SO₂Ph)₂

24

86

72

90

Yield $(\%)^a$

3a

dpbp

FBSM

(1.1 eq to **2a**) Pd/dpbp

(5 mol %)

base, solvent 40 °C, 12 h

Solvent

THF

THF

THF

CH₂Cl₂

^tBu

Entry

1

2

3

4

Β̈́r 2a

Base

NaH

KO'Bu

Cs₂CO₃

KO'Bu

Indeed, poorly characterized gummy material was observed in the reaction mixture. Similarly, the reactions of silvlmethylsubstituted dienes 2h and 2i yielded the corresponding homoallenylsilanes 3h and 3i, respectively, in good yields (entries 8 and 9). The present Pd-catalyzed reaction was applicable to preparation of multisubstituted FBSM-allenes (entries 10-13). The reaction of 2j provided a persubstituted allene 3i in 82% (entry 10). A dienyl triflate was equally reactive as the bromodienes: the triflate 2k furnished the trisubstituted allene 3k in 86% yield under identical conditions (entry 11). Cyclic dienylbromides 21 and 2m also underwent the Pd-catalyzed reaction to give the corresponding endocyclic allenes 31 and 3m in 82% and 87% yields, respectively (entries 12 and 13).

^{*a*} Reaction was carried out with **3** (0.30 mmol) and activated Mg turnings (*ca.* 30 equiv. to **3**) in MeOH–THF (1/3) at 0 °C for 3 h. ^{*b*} Isolated yield by silica gel chromatography. GC yield in parentheses.

Magnesium turnings, which were activated with $BrCH_2CH_2Br$ in THF, were extremely effective in the reductive desulfonylation and the reaction completed within 3 h even at 0 °C. The results of the desulfonylation are listed in Table 3. In all cases, the reactions were very clean under these conditions. GC and NMR analyses of the crude reaction mixtures showed exclusive formation of 1 in nearly quantitative yields (>95%). The isolated yields of the desulfonylated products 1, however, were relatively poor, which could be ascribed to handling loss of the products due to their high volatility. It should be noted that the allenic frameworks in 3 were completely retained in 1 during the reductive desulfonylation and isomerization into conjugated dienes and/or alkynes (propargyls) were not detected at all.

In summary, we have developed a novel protocol for preparing a series of monofluorinated allenic compounds. The palladium-catalyzed nucleophilic substitution of 2-bromo-1,3-dienes 2 with FBSM affords the desired fluorobis-(phenylsulfonyl)methylated allenes 3 in high yields. The two phenylsulfonyl moieties in 3 can be easily and cleanly removed by a treatment with Mg in MeOH-THF to provide the previously unknown monofluoromethylated allenes exclusively, which are non-polar isosteres of allenic alcohols. The use of a chiral Pd-catalyst in this protocol is presently under investigation to develop an enantioselective synthesis of axially chiral monofluoromethylated allenes. The design and synthesis of biologically attractive fluoromethylated compounds is also in progress and will be reported in due course.

This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas "Advanced Molecular Transformations of Carbon Resources" from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Notes and references

- (a) D. J. Pasto, Tetrahedron, 1984, 40, 2805; (b) S. Patai, The Chemistry of Ketenes, Allenes and Related Compounds, Wiley, Chichester, 1980; (c) S. R. Landor, The Chemistry of the Allenes, Academic Press, London, 1982; (d) G. M. Coppola and H. F. Schuster, Allenes in Organic Synthesis, Wiley, New York, 1984; (e) N. Krause and A. S. K. Hashmi, Modern Allene Chemistry, Wiley-VCH, Weinheim, 2004.
- 2 (a) S. R. Landor, in *The Chemistry of the Allenes*, ed. S. R. Landor, Academic Press, London, 1982, pp. 679–707; (b) A. Claesson, in *The Chemistry of the Allenes*, ed. S. R. Landor, Academic Press, London, 1982, pp. 709–733; (c) C. H. Robinson and D. F. Covey, in *The Chemistry of Ketenes Allenes, and Related Compounds*, ed. S. Patai, Wiley, Chichester, 1980, pp. 451–485; (d) A. Hoffmann-Röder and N. Krause, *Angew. Chem., Int. Ed.*, 2004, **43**, 1196.
- 3 (a) G. B. Hammond, ACS Symp. Ser., 2005, 911, 204; (b) M. C. Pacheco, S. Purser and V. Gouverneur, Chem. Rev., 2008, 108, 1943.
- 4 (a) P. Kirsch, Modern Fluoroorganic Chemistry, Wiley-VCH, Weinheim, 2004; (b) A. M. Thayer, Chem. Eng. News, 2006, 84, 15.
- 5 B. E. Smart, in Organofluorine Chemistry: Principles and Commercial Applications, ed. R. E. Banks, B. E. Smart and J. C. Tatlow, Plenum Press, New York, 1994, pp. 57–88.
- 6 T. Fukuzumi, N. Shibata, M. Sugiura, H. Yasui, S. Nakamura and T. Toru, Angew. Chem., Int. Ed., 2006, 45, 4973.
- 7 (a) S. Mizuta, N. Shibata, Y. Goto, T. Furukawa, S. Nakamura and T. Toru, J. Am. Chem. Soc., 2007, 129, 6394; (b) T. Furukawa, N. Shibata, S. Mizuta, S. Nakamura, T. Toru and M. Shiro, Angew. Chem., Int. Ed., 2008, 47, 8051; (c) N. Shibata, T. Furukawa and D. S. Reddy, Chem. Today, 2009, 27, 38.
- 8 (a) G. K. S. Prakash, S. Chacko, S. Alconcel, T. Stewart, T. Mathew and G. A. Olah, *Angew. Chem., Int. Ed.*, 2007, 46, 4933; (b) C. Ni, Y. Li and J. Hu, *J. Org. Chem.*, 2006, 71, 6829; (c) G. K. S. Prakash, S. Chacko, H. Vaghoo, N. Shao, L. Gurung, T. Mathew and G. A. Olah, *Org. Lett.*, 2009, 11, 1127; (d) C. Ni, L. Zhang and J. Hu, *J. Org. Chem.*, 2008, 73, 5699.
- 9 (a) M. Ogasawara, H. Ikeda and T. Hayashi, Angew. Chem., Int. Ed., 2000, 39, 1042; (b) M. Ogasawara, H. Ikeda, T. Nagano and T. Hayashi, J. Am. Chem. Soc., 2001, 123, 2089; (c) M. Ogasawara, H. Ikeda, T. Nagano and T. Hayashi, Org. Lett., 2001, 3, 2615; (d) M. Ogasawara, K. Ueyama, Y. Nagano, Y. Mizuhata and T. Hayashi, Org. Lett., 2003, 5, 217; (e) M. Ogasawara, T. Nagano and T. Hayashi, J. Org. Chem., 2005, 70, 5764; (f) M. Ogasawara, Y. Ge, K. Uetake, L. Fan and T. Takahashi, Org. Lett., 2005, 7, 5697; (g) M. Ogasawara, Y. Ge, K. Uetake, L. Fan and T. Takahashi, J. Org. Chem., 2005, 70, 3871; (h) M. Ogasawara, L. Fan, Y. Ge and T. Takahashi, Org. Lett., 2006, 8, 5409; (i) M. Ogasawara, A. Okada, S. Watanabe, L. Fan, K. Uetake, K. Nakajima and T. Takahashi, Organometallics, 2007, 26, 5025; (j) M. Ogasawara, A. Okada, K. Nakajima and T. Takahashi, Org. Lett., 2009, 11, 177; (k) M. Ogasawara, A. Okada, H. Murakami, S. Watanabe, Y. Ge and T. Takahashi, Org. Lett., 2009, 11, 4240.
- 10 dpbp = 2,2'-bis(diphenylphosphino)-1,1'-biphenyl. See: M. Ogasawara, K. Yoshida and T. Hayashi, *Organometallics*, 2000, **19**, 1567, and references cited therein.
- 11 A. C. Brown and L. A. Carpino, J. Org. Chem., 1985, 50, 1749.