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Abstract 

A stereoselective synthesis of the AB ring of the complex sesterterpenoid variecolin is 

presented. Our strategy features the development of a tandem Wolff/Cope rearrangement of α-

diazo cyclobutyl ketones for the construction of fused, eight-membered carbocycles. Preliminary 

studies revealed a facile Wolff rearrangement but a difficult vinyl ketene cyclobutane Cope 

rearrangement. We have leveraged an efficient microwave-promoted tandem rearrangement to 

prepare the desired functionalized cyclooctadienones that we envision as potential key 

intermediates in the convergent synthesis of variecolin. 
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 2 

 

 

Introduction 

The complex sesterterpenoid variecolin (1) was isolated in 1991 by Hensens and co-workers 

from the fungal fermentation extracts of Aspergillus variecolor.1 The fascinating polycyclic 

structure of 1 was elucidated by NMR methods and later confirmed by X-ray crystallography,2 

with the natural antipode3 represented in Figure 1. Preliminary biological evaluation has 

established an array of activities for variecolin. The original report identified 1 as a modest 

angiotensin II receptor binding inhibitor with potential application in the treatment of 

hypertension.1 Subsequent studies demonstrated 1 to suppress the proliferation of induced mouse 

splenic lymphocytes.3 Variecolin has also been shown to compete with macrophage inflammatory 

protein (MIP)-1α for binding to CCR5,2 a key chemokine receptor involved in the uptake of HIV-

1 into target cells. Other reports have identified general antifungal properties.4 Several variecolin 

congeners have also been identified from other fungal species, with many exhibiting a similar 

biological profile (Figure 1).2,3,4,5,6 The varied activity and intriguing molecular architecture of this 

family of sesterterpenes serves to stimulate new strategies targeting their chemical synthesis. Our 

interest in the pursuit of an effective synthetic strategy toward these bioactive natural products 

focused on variecolin given that it is the most widely studied and biologically relevant member. 
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 3 

 

Figure 1. Variecolin family of sesterterpenes. 

 

 

Synthesis Design 

The 25-carbon tetracyclic core of variecolin (1) consists of a central eight-membered ring and 

possesses eight stereocenters, including two all-carbon quaternary stereocenters at C(11) and 

C(14) of the BC and CD ring fusions, respectively. Synthetic control of the relative and absolute 

stereochemistry of these trans-fused rings that form a stereopentad poses a notable design 

challenge for critical bond-forming reactions. We therefore envisioned that the assembly of these 

key features of variecolin in a convergent manner would provide opportunities to explore new 

reactivity. When considering key elements toward our synthetic design, we were drawn to the 

eight-membered B ring. Eight-membered rings are common structural motifs that occur in widely 

diverse terrestrial plants, insects, marine organisms, and fungi. The theoretical and synthetic 

intrigue of these medium-sized carbocyclic structures has stimulated the development of various 

strategies for their preparation, many of which have been applied toward the synthesis of complex 

molecular targets.7 Inasmuch as we are restricted by the limitations of reaction scope in the state 

of the art, the selective preparation of eight-membered carbocycles remains a noteworthy and 
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 4 

continuing challenge to modern chemical methods.8 No total synthesis of variecolin or any family 

members has been reported to date, however, significant progress toward this end has been 

achieved by the Piers9 and Molander10 labs. Related general strategic advancements have also been 

reported.11,12,13 

The formulation of our synthetic approach toward variecolin (1) focused on the construction 

of the central eight-membered ring, revealing a critical C ring disconnection that could simplify 

the target into two functional AB (11) and D ring (12) fragments (Scheme 1). The scalable 

synthesis of D ring fragment 13 has been advanced by our lab using an asymmetric alkylation/ring 

contraction technology.14 Notably, this acylcyclopentene motif is amenable to selective 

functionalization. A suitable AB ring fragment could comprise functionalized cyclooctadienone 

14 in order to facilitate selective bond forming reactions at the C(10) and C(11) positions. This 

structural unit is comparable to fused bicyclic cycloheptadienones that have been constructed using 

a powerful tandem Wolff/Cope rearrangement developed in our lab.15 Extending this technology 

to eight-membered carbocycles, we anticipated that AB ring synthon 14 could be accessed through 

a Wolff/Cope rearrangement of highly functionalized α-diazo cyclobutyl ketone 15, which may in 

turn be assembled via a cycloaddition of allylic alcohol 16 and an appropriate functionalized olefin 

component. The design of tandem reaction sequences for the rapid generation of molecular 

complexity is an area of constant investigation in our laboratory,16 and therefore a primary 

objective of our synthetic endeavor toward variecolin (1) is the development of a tandem 

Wolff/Cope rearrangement to forge fused eight-membered carbocyclic systems. Application of 

this key transformation for the construction of the central B ring of 1 would expand the reaction 

scope, and furthermore, would create a new tool for the general preparation of natural and non-

natural substances containing this eight-membered ring motif. Herein we report the asymmetric 

synthesis of the AB ring of variecolin employing a tandem Wolff/Cope rearrangement to forge the 

eight-membered carbocycle. 
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 5 

Scheme 1. Retrosynthetic analysis of variecolin (1) 

 

 

 

Results and Discussion 

 

A. Synthesis of a Wolff/Cope Model Substrate. The development of a tandem Wolff/Cope 

rearrangement toward the fused bicyclic eight-membered AB ring fragment (14) required an 

expedient, regio and stereoselective synthesis of a highly substituted cyclobutane substrate (e.g., 

15). During the course of our efforts, we elected to employ an efficacious intramolecular 

cyclobutadiene–olefin cycloaddition for the rapid construction of this moiety.17,18,19 Model studies 

pursued toward this goal provided insight into the identification and physical properties of reaction 

intermediates using a readily accessible cyclopentenol analogue. 

Our investigations toward an AB ring model system began with the preparation of a suitable 

cyclopentenol that would engage cyclobutadiene via a tethered20 cycloaddition. Convenient access 

to stereodefined 4-substituted cyclopentenols is possible using copper-catalyzed allylic 

substitution chemistry. Exposure of allylic monoacetate (±)-1721 to a mixture of CuCN and p-

tolylmagnesium bromide generated anti-cyclopentenol 1822 in excellent yield (Scheme 2). We then 

sought the alkylation of this alcohol with (cyclobutadiene)tricarbonyliron complexes that possess 

sufficient electrophilicity to react under mild conditions.23 This was achieved by the zinc(II)-

catalyzed alkylation24 of cyclopentenol 18 with trichloroacetimidate 19 to prepare the requisite 

intramolecular cycloaddition substrate 20 in 76% yield. Oxidative liberation of cyclobutadiene 

promoted by ceric ammonium nitrate (CAN) and subsequent [4+2] cycloaddition rapidly 

assembled cyclobutene 21 as a single diastereomer in 76% yield. 
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 6 

 

Scheme 2. Tethered olefin-cyclobutadiene cycloaddition of alcohol (±)-18 

 

 

Advancement of cycloadduct 21 toward a Wolff/Cope substrate necessitated a regioselective 

olefin functionalization with our aim of generating a C(8) aldehyde and C(10) ester (i.e., 24).25 We 

were intrigued by Schreiber’s method26,27 for the ozonolytic cleavage of olefins to terminally 

differentiated products as it has been demonstrated as a powerful tool for the regioselective 

cleavage of advanced synthetic intermediates in complex molecule synthesis.28 In the event, 

ozonolysis of cycloadduct 21 in CH2Cl2/MeOH followed by an acylation and base induced 

elimination provided a mixture of several of compounds, including undesired acetal 22 in 13% 

yield and an inseparable 9:1 mixture of acetal 23 and desired aldehyde 24 in 68% yield (Scheme 

3). Direct Wittig methylenation of this mixture afforded pure acetal 2329 in addition to minor 

quantities of desired olefin 25. 

 

Scheme 3. Termini-differentiating ozonolysis of cyclobutene 21  
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 7 

The production of acetals 22 and 23 from this unsymmetrical ozonolysis indicates diverging 

reaction pathways. Cycloaddition of ozone and cyclobutene 21 likely generates primary ozonide 

26, which could fragment in two possible ways (Scheme 4, paths a and b). Cleavage of the primary 

ozonide to 27 (path a) positions the carbonyl oxide on the fully substituted carbon. Subsequent 

addition of methanol to this intermediate and dehydration of 28 with Ac2O/Et3N generates acetal 

22. Conversely, primary ozonide cleavage in the opposite manner produces 29 (path b) with the 

carbonyl oxide positioned on the less-substituted carbon. This intermediate further reacts by 

another of two possible pathways: (1) addition of methanol from the reaction medium (path c) and 

dehydration of 30 to generate acetal 23, or (2) methanol addition to the carbonyl oxide (path d) 

and dehydration of 31 to furnish aldehyde 24. Although desired aldehyde 24 is a minor component 

of this reaction, the selectivity for the cleavage of primary ozonide 26 via the desired path b is 

favored in an approximate 5:1 ratio and is presumably the result of steric influences on the primary 

ozonide moiety.30  

 

Scheme 4. Diverging pathways for the termini-differentiating ozonolysis of cycloadduct 21 

 

 

The identification of aldehyde 24 as a minor product from the unsymmetrical ozonolysis of 

cyclobutene 21 hindered progress toward a model Wolff/Cope substrate. Fortuitously, we 

recognized that acetal 23 and aldehyde 24 arise from the same fragmentation pathway (path b) and 

thus possess the same C(8) aldehyde oxidation state. Encouraged by this result, we explored 

potential equilibration conditions to determine the propensity for formation of aldehyde 24 from 
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 8 

the isomeric aldehyde/acetal mixture (Table 1). We were gratified to find that solvation of pure 

acetal 23 in methanol effected the equilibration in favor of aldehyde 24 and produced minor 

quantities of acetal diastereomer 3229 (entries 1 and 2). A survey of various Lewis acids identified 

the proficiency of divalent triflate salts in shifting the equilibrium to further favor 24 (entries 3–

6).31 Similarly, molecular sieves and combinations thereof with Lewis acids proved to be efficient 

for the conversion to 24 (entries 7–10) to reach the apparent equilibrium of ca. 3:1 aldehyde 24 to 

acetals 23 and 32. We elected to proceed in our synthesis using 4 Å MS due to operational 

simplicity. 

 

Table 1. Equilibration of acetal 23 to aldehyde 24 

 

 

The equilibration of acetal 23 to desired aldehyde 24 considerably improved the overall 

reaction sequence for the preparation of a Wolff/Cope -diazo cyclobutyl ketone substrate. An 

optimized sequence involves the unsymmetrical ozonolysis of cyclobutene 21 followed by 

equilibration with 4 Å MS in methanol to afford ca.1:3 ratio of acetals 23/32 and aldehyde 24 

(Scheme 5a). Wittig methylenation of this crude reaction mixture produced the desired olefin (25) 

in 40% yield over three steps and the recovery of acetal diastereomers 23 and 32 in 14% yield. The 

recovered acetal mixture enabled recycling of material to augment our quantity of olefin 25 

(Scheme 5b). The model Wolff/Cope substrate synthesis was completed by the high-yielding 

Page 8 of 40

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 9 

hydrolysis of ester 25 with KOTMS and conversion to -diazoketone 34 by way of an acid chloride 

and diazomethane. 

 

Scheme 5. a) Optimized synthesis of model α-diazo cyclobutyl ketone 34; b) Recycling of acetal 

23/32 to increase the production of olefin 25  

 

 

 

B. Wolff-Cope Examination. The synthesis of -diazo cyclobutyl ketone 34 enabled the 

examination of our key Wolff/Cope rearrangement toward the eight-membered B ring of 

variecolin. A critical component to the success of our previously reported tandem Wolff/Cope 

rearrangement was the identification of photochemical or silver-catalyzed sonochemical 

conditions to allow direct access to a variety of [n–7] fused bicyclic systems in excellent yields.15 

Thorough investigations of this transformation using substrate 34 under various photochemical or 

silver(I)-catalyzed sonochemical conditions afforded only intractable mixtures and no evidence of 

the desired cyclooctadienone 35. The lack of useful information acquired from these initial 

experiments required us to examine the tandem process in a stepwise manner. Accordingly, 

irradiation of -diazo cyclobutyl ketone 34 in methanol at 350 nm induced the photochemical 

Wolff rearrangement to form homologated ester 37 as the sole product, confirming the 

intermediacy of ketene 36 (Scheme 6). This critical result indicated that we were likely accessing 
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 10 

a facile Wolff rearrangement, however, the ketene vinyl cyclobutane rearrangement does not 

readily occur under the conditions surveyed. 

 

Scheme 6. Preliminary Wolff/Cope rearrangement studies of α-diazo cyclobutyl ketone 34 

 

 

In order to rationalize the difficulty of the cis-ketene vinyl cyclobutane rearrangement of 36 

we considered the analogous cis-divinyl cyclobutane rearrangement.32 A comparison of the 

experimental activation energy for a strain-releasing Cope rearrangement of cis-divinyl 

cyclobutane is approximately 4–5 kcal/mol higher than the barrier of the cyclopropane analogue,33 

and is consistent with the modestly elevated reaction temperatures known to be required for cis-

divinyl cyclobutane rearrangements. This reactivity difference, when coupled with our 

observations that the ketene vinyl cyclopropane rearrangement to afford substituted 

cycloheptadienones occurs under mild conditions,15 suggested that thermolysis of the intermediate 

ketene should facilitate the rearrangement. In the event, a photochemical Wolff rearrangement 

with subsequent thermolysis at 80 °C provided the desired cyclooctadienone 35 in 59% yield 

(Scheme 7). With the success of this tandem reaction, we recognized that the general instability of 

a ketene intermediate and the time between photolysis/thermolysis could account for the moderate 

yield of 35 and furthermore might hinder material throughput. Our search for alternative conditions 

was bolstered by reports harnessing microwave irradiation to promote Wolff rearrangements,34 

where we anticipated the surplus energy could facilitate a Cope rearrangement. Indeed, microwave 

irradiation of α-diazo cyclobutyl ketone 34 for 20 minutes at 140 °C in toluene afforded 

cyclooctadienone 35 in a remarkable 95% yield. The results of our model system explorations 

thereby confirm the Wolff/Cope strategy for the synthesis of the AB fragment of variecolin (1), 

and provide new tools for the construction of substituted eight-membered rings. Having 
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 11 

established a viable route toward the AB ring system of variecolin through model system studies, 

we then pursued an asymmetric synthesis of this desirable fragment. 

 

Scheme 7. Optimal tandem Wolff/Cope rearrangement of α-diazo cyclobutyl ketone 34 

 

 

 

C. Asymmetric Synthesis of the AB ring of Variecolin. The application of our proven 

intramolecular cycloaddition strategy for an asymmetric synthesis of the AB ring fragment (i.e., 

14) originated from a chiral cyclopentenol possessing syn stereochemistry. Allylic substitution of 

monoacetate (+)-1735 using CuCN and methylmagnesium chloride afforded a 95:5 mixture of 

alcohols 38 and 39 in 91% yield (Scheme 8).22 Mitsunobu inversion of this alcohol mixture36 using 

benzoic acid and subsequent methanolysis of the resulting ester produced allylic alcohol 16 in 81% 

yield over two steps with the desired syn stereochemistry between C(3) and C(5). Lewis acid-

catalyzed coupling24 with trichloroacetimidate 19 gave the requisite intramolecular cycloaddition 

substrate 40 in good yield. 

 

Scheme 8. Asymmetric synthesis of intramolecular cycloaddition substrate 40 
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 12 

 

Initial efforts to implement the CAN-promoted intramolecular cyclobutadiene–olefin 

cycloaddition of 40 resulted in low yields and complex mixtures of products, presumably the result 

of competing intermolecular dimerization reactions. Snapper has demonstrated that the rapid 

oxidative decomplexation of (cyclobutadiene)tricarbonyliron complexes using CAN provides 

sufficient access to cycloadducts of substrates predisposed for the intramolecular cycloaddition.37 

This works well for anti-substrate 20, however, syn-substrate 40 possesses a C(3) methyl group 

that sterically impedes cyclobutadiene access to the olefin. The alternative use of mild oxidants 

such as trimethylamine-N-oxide enact a slow release of highly reactive cyclobutadiene to facilitate 

access to cycloadducts of substrates with a lower propensity for the cycloaddition (e.g., 40). 

Application of trimethylamine-N-oxide to facilitate the oxidative decomplexation of 40 in 

refluxing acetone smoothly generated cycloadduct 41 (Scheme 9).29,38 Subsequent unsymmetrical 

ozonolysis of 41, acetal equilibration promoted by 4 Å MS in refluxing methanol and Wittig 

methylenation afforded a 2.7:1 ratio of olefins 44 and 45, in addition to acetals 42 and 43.29 This 

reaction sequence provided desired olefin 44 in 16% yield over four steps, together with 17% yield 

of recyclable acetal 42.39 Acetal 43 was sufficiently crystalline to enable X-ray analysis, providing 

further confirmation of the desired relative stereochemistry of this polycyclic fragment (Figure 

2).40 It is notable that the termini-differentiating ozonolysis of 41 provided ~ 3:1 ratio of products 

44:45, whereas this differentiation strategy with cyclobutene substrate 21 yielded ~ 5:1 ratio of 

products. The C(3) stereochemistry is the major structural difference between the two fused 

polycyclic substrates, and it is plausible that subtle changes of the fused ring conformation are 

impacting the primary ozonide fragmentation pathway (paths a and b, Scheme 4) in an unknown 

way. 
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 13 

Scheme 9. Cycloaddition, oxidative cleavage and olefination sequence toward an AB ring 

Wolff/Cope substrate 

 

 

 

 

Figure 2. X-ray crystal structure of acetal 43. The molecular structure is shown with 50% 

probability ellipsoids. 

 

We desired cyclooctadienone products in our synthesis of asymmetric AB ring fragment 14 

where R = H, Me or alkyl. Model studies have demonstrated the tandem rearrangement where R 

= H (i.e., 34  35). However, alkyl substitution had not yet been explored for the Wolff/Cope 

rearrangement and thus represented an unprecedented extension of this method. Advancing to the 

target -diazoketones, hydrolysis of ester 44 to acid 46, conversion to the acid chloride and 

treatment with either diazomethane (RCH2N2 where R = H) or diazoethane (R = Me) produced -

diazoketones 47 and 48, respectively (Scheme 10). The efficiency of diazomethane in the acylation 

of the acid chloride of 46 was notable (91% yield), however, we were surprised by the capricious 

and lower-yielding results obtained using diazoethane.41 Unfortunately, improvements in yield 

could not be realized despite efforts toward further optimization.42 We were nonetheless delighted 
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 14 

to find that the microwave-promoted tandem Wolff/Cope rearrangement of both substrates resulted 

in the successful construction of their respective cyclooctadienones (49 and 50). 

 

Scheme 10. AB ring α-diazo cyclobutyl ketone synthesis and Wolff/Cope rearrangement  

 

 

The low yield of -substituted cyclooctadienone 50 (R = Me) using microwave irradiation is 

a result of the formation of numerous byproducts.43 Inspection of these various compounds 

revealed that cyclopropane 5129 is a major side product (ca. 1:1 ratio of 50:51) of this reaction, 

ostensibly formed through a carbene intermediate. Two mechanisms have been advanced for the 

Wolff rearrangement (Scheme 11), comprising a concerted group migration with nitrogen 

expulsion to a ketene (53  56) or the stepwise loss of nitrogen to generate an  carbonyl carbene 

intermediate (54  57).42,44 The resulting carbene intermediate can then undergo the desired Wolff 

rearrangement to ketene 56, or it can participate in other intra- or intermolecular reactions 

characteristic of carbenes, such as cyclopropanations, hydride shifts and C–H insertions. Substrate 

conformation has been demonstrated to be pivotal in the mechanistic outcome, with the s-Z 

conformation typically resulting in products consistent with the concerted pathway.44,45 Moreover, 

the large barrier of rotation around the C–C bond imposes a balance between electrostatic 

attractions and steric repulsions that influence conformation. For example, substrates where R2 = 

H exist mostly in the s-Z (53) conformation, whereas substrates where R2 = Me exist predominately 

in the s-E conformation (54).44,45 
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 15 

Scheme 11. Mechanistic pathways for a Wolff rearrangement 

 

 

A complicating factor in our analysis of the rearrangement of 48 is that the two mechanisms 

often operate competitively with high substrate dependence. Given this insight and the interactions 

that affect conformation, we reasoned that solvent polarity was a plausible parameter to explore. 

We posited that non-polar solvents might enhance the electrostatic attraction in 52, favoring the s-

Z conformation and promoting the concerted rearrangement pathway to increase the production of 

our targeted cyclooctadienone 50 (Table 2).46 We observed that the tandem rearrangement in 

higher dielectric solvents such as acetonitrile or 1,2-dichloroethane favored cyclopropane 

formation decidedly over the Wolff rearrangement (entries 1 and 2). The data suggests that polar 

solvents could stabilize the charge-separated conformation (55), leading to greater population of 

s-E and therefore increasing amounts of carbene-related products. Lower dielectric solvents, such 

as THF, ethyl acetate, and toluene, modulated the selectivity and improved the formation of desired 

product 50 (entries 3–6). Furthermore, the nonpolar solvents methylcyclohexane and heptane 

reversed the reaction selectivity to favor the desired 50 as a major product in a 3:1 ratio (entries 7 

and 8). Although a trend in solvent dielectric roughly reflects product selectivity in which lower 

dielectric solvents seemingly favor the concerted Wolff rearrangement, the complex reaction 

profile and other unidentified reaction products make it difficult to conclusively correlate solvent 

polarity to the mechanistic pathway. Moreover, we do not know if the conformational 

interconversion is fast relative to decomposition of 48. This is nonetheless an intriguing result that 

has broader implications for future applications of the Wolff/Cope method. 
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Table 2. Wolff/Cope solvent studies of substrate 48 

 

 

The application of solvent-optimized reaction conditions with heptane enabled the microwave-

promoted rearrangement of 48 to produce -methyl cyclooctadienone 50 in 42% isolated yield 

(Equation 1). The success of this rearrangement is significant as it represents the first example of 

the tandem Wolff/Cope rearrangement of a substrate possessing -alkyl functionality. Moreover, 

the combined results from all α-diazo cyclobutyl ketone substrates in this study (i.e., 34, 47 and 

48) highlight the utility of microwave irradiation to facilitate tandem rearrangements and expand 

the collection of eight-membered rings available by this method. 

 

 

 

 

Conclusion 

We have described our efforts to develop a Wolff/Cope strategy for the asymmetric synthesis 

of the AB ring of the complex sesterterpenoid variecolin. Our approach has employed an 

intramolecular cyclobutadiene–olefin cycloaddition to control product regio and stereoselectivity, 

as well as an advanced application of a termi-differentiating ozonolytic cleavage of a cyclobutene 
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intermediate toward α-diazo cyclobutyl ketone substrates. These investigations have demonstrated 

an efficient microwave-promoted tandem Wolff/Cope rearrangement to forge highly-substituted, 

fused cyclooctadienone structures. Efforts are underway in our laboratory to leverage Wolff/Cope 

products 49 and 50 in coupling reactions with suitable D ring fragments toward completion of 

variecolin and will be reported in due course. 

 

 

Experimental Section 

 

General Methods. Reactions, reagents and solvents. Unless otherwise stated, reactions were 

performed in flame-dried glassware under an argon or nitrogen atmosphere using dry, 

deoxygenated solvents. Solvents were dried by passage through an activated alumina column 

under argon. Water (18 M) used as reaction medium was obtained from a Millipore MiliQ water 

purification system. All starting materials were purchased from commercial sources and used as 

received, unless otherwise stated. Liquids and solutions were transferred via syringe or positive-

pressure cannulation. Triethylamine was distilled from CaH2 prior to use. Oxalyl chloride was 

purified by distillation and stored in a Schlenk tube under nitrogen. Acetic acid was distilled from 

CrO3. Solutions of p-TolMgBr, and MeMgCl were titrated47 prior to use. Molecular sieves were 

dried and stored in a 115 °C oven. Diazomethane was freshly prepared from N-methyl-N-nitroso-

p-toluenesulfonamide (Diazald) as a solution in Et2O using a Diazald kit. Diazoethane was freshly 

prepared from N-ethyl-N-nitrosourea48 as a solution in Et2O using a Diazald kit. Diazoalkane 

solutions were dried over KOH pellets for ca. 30 min at or below 0 °C and cannula (Teflon) 

transferred under nitrogen to a dry Erlenmeyer flask prior to use. 

Instruments, purification and analysis. Reaction temperatures were controlled by an IKAmag 

temperature modulator. Ozonolysis reactions were performed with an OzoneLab OL80 Desktop 

ozone generator. Photochemical irradiation was performed in septum sealed quartz tubes with a 

Luzchem Photochemical reactor or with a water-cooled Hanovia 450 W medium pressure 

mercury-vapor immersion lamp. Microwave reactions were performed with a Biotage Initiator 

Eight 400 W apparatus at 2.45 GHz and reaction temperatures were measured with an external 

surface sensor. Thin-layer chromatography was performed using E. Merck silica gel 60 F254 

precoated plates (0.25 mm) and visualized by UV fluorescence quenching, p-anisaldehyde, 
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potassium permanganate, or ceric ammonium molybdate staining. SiliCycle SiliaFlash P60 

Academic Silica Gel (particle size 40–63 μm; pore diameter 60 Å) was used for flash 

chromatography. Analytical chiral HPLC was performed with an Agilent 1100 Series HPLC 

utilizing a Chiralpak OD-H column (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, 

Ltd. with 1 mL/min mobile phase and visualization at 254 nm. Analytical achiral GC was 

performed on an Agilent 6850 GC with FID detector using an Agilent DB-WAX (30.0 m x 

0.25 mm) column at 1.0 mL/min He carrier gas flow. Chiral GC was performed on an Agilent 

6850 GC with FID detector using a Chiraldex GTA column (30.0 m x 0.25 mm, purchased from 

Bodman Industries) at 1.0 mL/min He carrier gas flow. Optical rotations were measured with a 

Jasco P-1010 polarimeter at 589 nm using spectrophotometric grade solvents. 1H and 13C NMR 

spectra were recorded on a Varian Mercury 300 (at 300 MHz and 75 MHz respectively), Varian 

Inova 500 (at 500 MHz and 126 MHz, respectively) or Varian Inova 600 (at 600 MHz), and are 

reported relative to residual protio-solvent for 1H (C6D5H at δ 7.16 ppm, CHCl3 at δ 7.26 ppm) 

and solvent for 13C (C6D6 at δ 128.06 ppm, CDCl3 at δ 77.16 ppm). Data for 1H NMR spectra are 

reported as follows: chemical shift ( ppm) (multiplicity, coupling constant (Hz), integration). IR 

spectra were recorded on a Perkin Elmer Paragon 1000 spectrometer and are reported in 

wavenumbers (cm-1). Melting points were acquired using a Buchi Melting Point B-545 instrument 

and the values are uncorrected. High-resolution mass spectra were acquired using an Agilent 6200 

Series TOF with an Agilent G1978A Multimode source in ESI, APCI, or MM (ESI/APCI) 

ionization mode, in addition to the Caltech Mass Spectral Facility. Crystallographic data have been 

deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, and copies can be obtained on 

request, free of charge, by quoting the publication citation and the deposition number. 

 

Trichloroacetimidate 19. To a round-bottom flask charged with hexanes-washed KH (41 mg, 

1.0 mmol, 0.057 equiv) and Et2O (43 mL) at 0 °C was added a solution of (hydroxymethyl 

cyclobutadiene)tricarbonyliron (SI3)49 (3.86 g, 17.4 mmol, 1.0 equiv) in Et2O (43 mL, 0.2 M total) 

by cannula transfer. After 10 min, trichloroacetonitrile (8.7 mL, 87 mmol, 5.0 equiv) was added 

dropwise by syringe to the light orange solution. The reaction turned dark brow over the course of 

the addition. After 15 min, the ice bath was removed and upon reaching ambient temperature the 

volatiles were removed in vacuo. The remaining dark brown oil was taken up in hexane (20 mL, 

anhydrous) with vigorous shaking, filtered through a pad of Celite, and the reaction flask was 
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washed with an additional portion of hexane (20 mL) and filtered. The combined filtrate was 

concentrated in vacuo to afford 19 (6.38 g, 17.4 mmol, 100% yield) as a clear, pale red oil. This 

oil was immediately used in the next step without further purification and it is not stable to 

prolonged storage. Rf = unstable to SiO2; 
1H NMR (500 MHz, C6D6)  8.22 (br s, 1H), 4.25 (s, 

2H), 3.49 (s, 2H), 3.30 (s, 1H); 13C{1H} NMR (126 MHz, C6D6)  214.5, 162.6, 92.0, 76.8, 65.7, 

64.9, 64.5; IR (Neat Film NaCl) 3344, 2049, 1971, 1666, 1449, 1368, 1304, 1288 cm-1; HRMS 

(FAB+) m/z: [M – CO]+ calc’d for C9H6Cl3FeNO3 336.8763, found 336.8769. 

 

Model cycloaddition substrate 20. To a round-bottom flask charged with Zn(OTf)2 (14.9 mg, 

0.041 mmol, 0.05 equiv) and toluene (0.2 mL) at 0 °C was added aryl cyclopentenol 1822 (151.3 

mg, 0.868 mmol, 1.0 equiv) by syringe. To this suspension was added a solution of 19 (370 mg, 

1.01 mmol, 1.2 equiv) in toluene (0.2 mL) by cannula transfer, with further washing by additional 

toluene (0.2 mL). A yellow precipitate was observed at the beginning of the addition, and this 

turned into a thick slurry upon completion of the addition. The ice bath was allowed to expire over 

1.5 h and the reaction was stirred for an additional 6 h. The crude reaction mixture was transferred 

directly onto a 5 g silica gel loading cartridge and purified by automated flash chromatography 

using a 40 g silica column (1:0  9:1 hexanes/EtOAc) to afford 20 (250.8 mg, 0.663 mmol, 76% 

yield) as a pale yellow oil. Rf = 0.56 (4:1 hexanes/EtOAc); 1H NMR (300 MHz, C6D6)  6.97 

(ABq, ΔδAB = 0.06, JAB = 7.8 Hz, 4H), 5.88–5.85 (m, 1H), 4.45–4.44 (m, 1H), 3.96–3.94 (m, 1H), 

3.55 (ABq, ΔδAB = 0.01, JAB = 9.2 Hz, 2H), 3.46 (s, 2H), 3.33 (s, 1H), 2.28 (ddd, J = 13.8, 6.9, 5.4 

Hz, 1H), 2.14 (s, 3H), 1.86 (ddd, J = 13.7, 6.9, 5.4 Hz, 1H); 13C{1H} NMR (126 MHz, C6D6)  

215.0, 142.3, 140.1, 135.9, 131.6, 129.5, 127.4, 84.9, 82.5, 64.65, 64.64, 64.0, 62.3, 50.1, 41.2, 

21.0; IR (Neat Film NaCl) 2863, 2044, 1959, 1513, 1075, 1048, 613 cm-1; HRMS (FAB+) m/z: 

[M]+ calc’d for C20H18O4Fe 378.0554, found 378.0551. 

 

Model cycloadduct 21.29 To a vigorously stirring solution of cycloaddition substrate 20 (683 

mg, 1.806 mmol, 1.0 equiv) in acetone (1.81 mL, 1 mM) was added CAN (1.98 g, 3.61 mmol, 2.0 

equiv) under ambient atmosphere. After 15 min, a second portion of CAN (1.98 g, 3.61 mmol, 2.0 

equiv) was added. After an additional 5 min, consumption of 20 by TLC (4:1 hexanes/Et2O, 

developed twice) was observed and the reaction was quenched by addition of sat aq NaHCO3 (50 

mL). Stirring was ceased after 15 min, the solids were allowed to settle and the supernatant was 
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decanted into a flask (to prevent bumping) and concentrated in vacuo to ca. 50 mL. This slurry and 

the remnants of the flask were transferred to a separatory funnel with minimal acetone, diluted 

with brine (10 mL) and pentane (200 mL). The layers were separated, the organic phase was 

washed with water (2 x 100 mL), and the combined aq layers were extracted with 1:1 hexanes/Et2O 

(200 mL). The combined organic layers were concentrated to ca. 25 mL, transferred to a sep funnel 

and diluted with CH2Cl2 (30 mL) and brine (25 mL). The layers were separated, the aq was 

extracted with CH2Cl2 (2 x 30 mL), the organics were dried over MgSO4, filtered, and concentrated 

to a dark orange oil. The crude material was purified by flash chromatography on SiO2 (2.5 x 21 

cm, 15:1  9:1 hexanes/Et2O, slow gradient) to afford 21 (326.2 mg, 1.37 mmol, 76% yield) as a 

colorless oil that solidified in a –20 °C freezer. Rf = 0.54 (4:1 hexanes/Et2O, developed twice); 1H 

NMR (500 MHz, CDCl3)  7.01 (ABq, ΔδAB = 0.03, JAB = 8.2 Hz, 4H), 6.35 (d, J = 2.1 Hz, 1H), 

6.31 (d, J = 2.3 Hz, 1H), 4.71–4.69 (m, 1H), 3.89 (ABq, ΔδAB = 0.04, JAB = 9.8 Hz, 2H), 3.27 (td, 

J = 7.8, 3.4 Hz, 1H), 3.06 (app t, J = 6.1 Hz, 1H), 2.94 (s, 1H), 2.46 (ddd, J = 13.8, 7.0, 2.4 Hz, 

1H), 2.35 (app t, J = 4.8 Hz, 1H), 2.32 (s, 3H), 2.03 (ddd, J = 13.8, 8.9, 4.9 Hz, 1H); 13C{1H} NMR 

(126 MHz, CDCl3)  142.9, 140.3, 138.4, 135.6, 129.3, 127.2, 84.1, 71.2, 59.6, 54.9, 52.6, 50.3, 

46.5, 44.6, 21.1; IR (Neat Film NaCl) 3025, 2949, 1514, 1074, 1041, 1025, 811, 744 cm-1; HRMS 

(FAB+) m/z: [M + H – H2]
+ calc’d for C17H17O 237.1279, found 237.1271. 

 

 

Diol 58. To a solution of cycloadduct 21 (18.0 mg, 75.5 mol, 1.0 equiv) in a 2:1 mixture of 

CH2Cl2 (1.0 mL) and MeOH (0.5 mL) was added a solution of Sudan Red 7b (25 L of a 0.05 wt 

% in MeOH) and cooled to –78 °C. The resulting pink solution was sparged with a gentle stream 

of oxygen for ca.1 min, then ozonolyzed until consumption of 21 by TLC (indicator typically 

turned colorless just prior to completion). The solution was sparged with oxygen for another 1 

min, and NaBH4 (28.8 mg, 0.76 mmol, 10 equiv) was added and the bath was removed. When the 

reaction reached room temperature, CH2Cl2 (2 mL) was added followed by quenching with 10% 

HCl (1 mL). The layers were separated, the aq extracted with CH2Cl2 (3 x 2 mL), the organics 

were dried over Na2SO4, filtered, and concentrated in vacuo. The crude material was purified by 

flash chromatography on SiO2 to afford 58 (18.2 mg, 66.3 mol, 88% yield) as a colorless oil. Rf 
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= 0.31 (3:1 hexanes/EtOAc); 1H NMR (300 MHz, CDCl3)  7.04 (ABq, ΔδAB = 0.08, JAB = 8.1 

Hz, 4H), 4.60 (app t, J = 4.3 Hz, 1H), 4.23 (d, J = 11.5 Hz, 1H), 4.09 (d, J = 9.2 Hz, 1H), 3.87–

3.74 (comp m, 2H), 3.69 (d, J = 9.2 Hz, 1H), 3.55 (d, J = 11.5 Hz, 1H), 3.42 (ddd, J = 10.5, 7.0, 

3.7 Hz, 1H), 3.09 (br s, 2H), 2.82 (dd, J = 8.5, 5.3 Hz, 1H), 2.58 (dd, J = 14.0, 7.2 Hz, 1H), 2.36 

(dd, J = 11.0, 5.4 Hz, 1H), 2.31 (s, 3H), 1.99 (app dt, J = 8.7, 4.4 Hz, 1H), 1.73 (ddd, J = 14.0, 

10.5, 3.5 Hz, 1H); 13C{1H} NMR (75 MHz, CDCl3)  143.1, 135.7, 129.3, 127.0, 86.2, 80.6, 63.5, 

63.4, 51.4, 50.8, 50.7, 49.1, 44.8, 42.2, 21.1; IR (Neat Film NaCl) 3332 (br), 2922, 1514, 1436, 

1100, 1037, 811 cm-1; HRMS (FAB+) m/z: [M + H – H2]
+ calc’d for C17H21O3 273.1491, found 

273.1485. 

 

Optimized preparation of model olefin 25. The following procedure represents a telescoped 

preparation of olefin 25. Individual optimization procedures can be found in the supporting 

information. A solution of cyclobutene 21 (326.2 mg, 1.369 mmol, 1.0 equiv) in CH2Cl2/MeOH 

(5:1, 27.4 mL, 0.05 M) containing NaHCO3 (34.5 mg, 0.411 mmol, 0.3 equiv) and Sudan Red 7b 

(150 L of a 0.05 wt % solution in MeOH) at –78 °C was sparged with a stream of oxygen for ca. 

1 min and ozonolyzed until consumption by TLC analysis (typically as indicator turned colorless). 

After sparging the solution with oxygen for an additional 3 min, the reaction was capped with a 

drying tube and warmed to room temperature. The solution was filtered through a cotton plug, 

washing with benzene (3 mL). The reaction was concentrated in vacuo to ca. 2 mL, and to this 

flask was added a stir bar, septum, and the flask was evacuated/purged briefly (3x). The crude was 

dissolved in CH2Cl2 (13.7 mL), cooled to 0 °C, and to this was added Ac2O (387 L, 4.11 mmol, 

3.0 equiv) and Et3N (286 L, 2.05 mmol, 1.5 equiv). The bath was removed and the reaction was 

stirred at room temperature for 8 h, diluted with CH2Cl2 (25 mL), washed with 2% HCl (10 mL), 

then 10% NaOH (10 mL), dried over MgSO4, filtered, and concentrated in vacuo to a pale yellow 

oil. The crude oil was purified by flash chromatography on SiO2 (2.5 x 8 cm, 4:1  1:1 

hexanes/Et2O) to afford acetal 22 (61.5 g, 0.205 mmol, 15% yield) and a mixture of aldehyde 24 

and acetals 23 and 32 (293.5 mg, 0.977 mmol, 71% yield). 

The mixture of 23, 24 and 32 (293.5 mg) was dissolved in MeOH (19.5 mL, 0.05 M) and to 

this was added oven-dried 4 Å MS (489 mg, 0.5 g/mmol). After 24 h at room temperature the 

reaction was diluted with EtOAc (20 mL), filtered through a plug of Celite, and concentrated to a 
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turbid yellow oil. This was dissolved in CH2Cl2 and passed through a small SiO2 plug and 

concentrated in vacuo to afford a pale yellow oil (312.1 mg). 

To a solution of Ph3P•CH3Br (390 mg, 1.09 mmol, 1.05 equiv) in THF (3 mL) at 0 °C was 

added KOt-Bu (105 mg, 0.935 mmol, 0.9 equiv). The resulting bright yellow solution was stirred 

for 1 h, and a solution of aldehyde 24 and acetals 23 and 32 (312.1 mg) in THF (2 mL, 0.2 M total) 

was quantitatively transferred via cannulation. The bath was removed after 5 min and at 5 h the 

reaction was quenched with water (5 mL) and diluted with Et2O (5 mL). The layers were separated, 

the aq was extracted with Et2O (2 x 10 mL), the combined organics were dried over Na2SO4, 

filtered, and concentrated in vacuo to a pale yellow oil. The crude material was purified by flash 

chromatography on SiO2 (2.5 x 15 cm, 9:1  1:1 hexanes/Et2O) to afford olefin 25 (162.2 mg, 

0.544 mmol, 40% yield over three steps) and ca. 7:3 mixture of acetals 23 and 32 (59.5 mg, 

0.198 mmol, 14% yield over three steps). 

Model acetal 22.29 Rf = 0.52 (1:2 hexanes/Et2O); 1H NMR (500 MHz, CDCl3)  7.13 (d, J = 

7.8 Hz, 2H), 7.05 (d, J = 8.1 Hz, 2H), 5.37 (s, 1H), 4.77 (dd, J = 5.2, 4.0 Hz, 1H), 4.14 (d, J = 9.7 

Hz, 1H), 4.03 (d, J = 9.7 Hz, 1H), 3.57 (app t, J = 6.4z Hz, 1H), 3.50 (s, 3H), 3.49 (ddd, J = 10.8, 

6.8, 4.3, 1H), 2.57 (dd, J = 14.2, 7.0 Hz, 1H), 2.55–2.53 (comp m, 2H), 2.33 (s, 3H), 1.80 (ddd, J 

= 14.4, 10.8, 3.6 Hz, 1H); 13C{1H} NMR (126 MHz, CDCl3)  175.5, 141.3, 136.3, 129.5, 127.2, 

109.0, 85.9, 73.0, 56.8, 55.5, 51.9, 51.3, 51.2, 44.5, 44.2, 21.1; IR (Neat Film NaCl) 2927, 1773, 

1515, 1353, 1182, 1143, 1118, 1018, 990, 930, 814 cm-1; HRMS (FAB+) m/z: [M + H]+ calc’d for 

C18H21O4 301.1440, found 301.1448. 

Model desired acetal 23.29 Rf = 0.33 (1:2 hexanes/Et2O); 1H NMR (500 MHz, CDCl3)  7.08 

(ABq, ΔδAB = 0.04, JAB = 8.0 Hz, 4H), 5.40 (s, 1H), 4.71 (dd, J = 5.4, 3.1 Hz, 1H), 4.08 (d, J = 

10.5 Hz, 1H), 3.78 (d, J = 10.5 Hz, 1H), 3.55 (dt, J = 11.6, 6.1 Hz, 1H), 3.48 (s, 3H), 3.31 (dd, J = 

7.4, 5.7 Hz, 1H), 2.89 (d, J = 2.4 Hz, 1H), 2.66 (ddd, J = 7.6, 5.2, 2.4 Hz, 1H), 2.53 (dd, J = 13.8, 

6.7 Hz, 1H), 2.31 (s, 3H), 1.76 (ddd, J = 13.8, 11.7, 3.1 Hz, 1H); 13C{1H} NMR (126 MHz, CDCl3) 

 177.7, 140.1, 136.1, 129.4, 127.1, 106.3, 85.7, 71.8, 56.8, 55.0, 51.1, 50.0, 47.9, 46.2, 43.9, 21.1; 

IR (Neat Film NaCl) 2925, 2847, 1772, 1516, 1352, 1207, 1168, 1144, 1108, 1042, 943, 814, 729, 

705 cm-1; HRMS (FAB+) m/z: [M + H]+ calc’d for C18H21O4 301.1440, found 301.1444. 

Model aldehyde 24. Aldehyde 24 was difficult to isolate as a pure compound, as it usually 

contained varying quantities of acetal 23. It has the following spectral properties: 1H NMR (300 

MHz, CDCl3)  9.76 (s, 1H), 7.07 (ABq, ΔδAB = 0.05, JAB = 8.3 Hz, 4H), 4.69 (dd, J = 4.6, 3.9 Hz, 
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1H), 4.10 (d, J = 9.6 Hz, 1H), 3.91 (d, J = 9.7 Hz, 1H), 3.70 (s, 3H), 3.59 (dd, J = 8.3, 5.3 Hz, 1H), 

3.45 (ddd, J = 10.7, 7.1, 3.7 Hz, 1H), 3.06–2.97 (comp m, 2H), 2.63 (dd, J = 14.2, 7.2 Hz, 1H), 

2.31 (s, 3H), 1.81 (ddd, J = 14.1, 10.7, 3.4 Hz, 1H). 

Model olefin 25. Rf = 0.62 (2:1 hexanes/EtOAc); 1H NMR (500 MHz, CDCl3)  7.07 (ABq, 

ΔδAB = 0.04, JAB = 8.0 Hz, 4H), 5.94 (dd, J = 17.5, 10.8 Hz, 1H), 5.18 (dd, J = 10.8, 1.1 Hz, 1H), 

5.14 (dd, J = 17.5, 1.1 Hz, 1H), 4.65–4.63 (m, 1H), 4.03 (d, J = 9.2 Hz, 1H), 3.62 (s, 3H), 3.57 (d, 

J = 9.2 Hz, 1H), 3.40 (ddd, J = 10.6, 7.1, 3.6 Hz, 1H), 3.26 (dd, J = 8.5, 5.2 Hz, 1H), 3.03 (ddd, J 

= 8.7, 5.2, 3.6 Hz, 1H), 2.98 (d, J = 5.5 Hz, 1H), 2.64 (dd, J = 14.1, 7.3 Hz, 1H), 2.31 (s, 3H), 1.78 

(ddd, J = 14.0, 10.6, 3.4 Hz, 1H); 13C{1H} NMR (126 MHz, CDCl3)  173.3, 142.6, 135.6, 134.7, 

129.2, 127.1, 116.3, 86.5, 78.9, 55.2, 53.0, 51.6, 51.2, 51.1, 45.0, 40.8, 21.1; IR (Neat Film NaCl) 

2952, 2922, 1733, 1515, 1435, 1210, 1158, 1055, 1037, 919, 812 cm-1; HRMS (EI+) m/z: [M]+ 

calc’d for C19H22O3 298.1569, found 298.1580. 

Model desired acetal 32.29 Rf = 0.19 (1:2 hexanes/Et2O); 1H NMR (500 MHz, CDCl3)  7.08 

(ABq, ΔδAB = 0.04, JAB = 8.0 Hz, 4H), 5.30 (s, 1H), 4.68 (dd, J = 5.6, 3.3 Hz, 1H), 4.07 (d, J = 9.5 

Hz, 1H), 3.72 (dd, 7.2, 6.2 Hz, 1H), 3.69 (d, J = 9.5 Hz, 1H), 3.63 (s, 3H), 3.50 (dt, J = 11.4, 5.8 

Hz, 1H), 2.85 (d, J = 2.7 Hz, 1H), 2.66 (ddd, J = 7.6, 4.9, 2.7 Hz, 1H), 2.54 (dd, J = 13.9, 6.8 Hz, 

1H), 2.31 (s, 3H), 1.79 (ddd, J = 13.9, 11.4, 3.3 Hz, 1H); 13C{1H} NMR (126 MHz, CDCl3)  

175.8, 140.8, 136.1, 129.4, 127.1, 104.0, 86.0, 72.7, 58.7, 54.5, 50.23, 50.20, 47.7, 44.8, 44.0, 21.1; 

IR (Neat Film NaCl) 2922, 1770, 1515, 1450, 1386, 1209, 1170, 1106, 1041, 995, 942, 813 cm-1; 

HRMS (MM: ESI/APCI) m/z: [M + H]+ calc’d for C18H21O4 301.1434, found 301.1432.  

 

 

Model dimethyl acetal 59. To a solution of acetal 23 (1.0 equiv) in MeOH (25 mM) was added 

either La(OTf)3 or Sm(OTf)3 (0.20 equiv). The reaction was stirred until complete conversion by 

TLC, diluted with Et2O, filtered through a plug of Celite, and concentrated in vacuo. The crude 1H 

NMR showed 59 as the exclusive product. Rf = 0.36 (1:2 hexanes/Et2O); 1H NMR (600 MHz, 

CDCl3)  7.06 (ABq, ΔδAB = 0.04, JAB = 7.9 Hz, 4H), 4.69 (s, 1H), 4.58 (dd, J = 4.8, 3.8 Hz, 1H), 

3.87 (ABq, ΔδAB = 0.01, JAB = 9.2 Hz, 2H), 3.67 (s, 3H), 3.51 (s, 3H), 3.39 (s, 3H), 3.36 (ddd, J = 

10.7, 7.4, 3.8 Hz, 1H), 3.23 (dd, J = 8.6, 5.3 Hz, 1H), 2.93 (ddd, J = 8.8, 5.4, 3.6 Hz, 1H), 2.82 (d, 
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J = 5.7 Hz, 1H), 2.60 (dd, J = 14.1, 7.4 Hz, 1H), 2.30 (s, 3H), 1.75 (ddd, J = 14.1, 10.4, 3.6 Hz, 

1H); 13C{1H} NMR (126 MHz, CDCl3)  174.1, 142.7, 135.6, 129.2, 127.1, 105.0, 85.8, 75.0, 

58.3, 56.6, 54.5, 52.1, 51.7, 51.4, 49.4, 45.0, 42.4, 21.1; IR (Neat Film NaCl) 2952, 1727, 1515, 

1435, 1362, 1210, 1069, 1042, 977, 813 cm-1; HRMS (FAB+) m/z: [M + H – H2]
+ calc’d for 

C20H25O5 345.1702, found 345.1701. 

 

Model acid 33. To a solution of olefin 25 (162.2 mg, 0.544 mmol, 1.0 equiv) in THF (10.9 

mL, 0.05 M) at 0 °C was added KOTMS (698 mg, 5.44 mmol, 10 equiv) in one portion. The 

cooling bath was removed and the reaction was stirred until consumption by TLC analysis 

(typically 5–6 h). The reaction was then cooled to 0 °C and slowly quenched with 1 N HCl (10 

mL), diluted with EtOAc (20 mL) and brine (5 mL). The layers were separated, the aq was 

extracted with EtOAc (3 x 20 mL), the combined organics were dried over Na2SO4, filtered, and 

concentrated to a pale yellow semisolid. The crude material was purified by flash chromatography 

on SiO2 (1:1 hexanes/EtOAc) to give 33 (148.7 mg, 0.523 mmol, 96% yield) as a white solid. Rf = 

0.23 (2:1 hexanes/EtOAc); 1H NMR (500 MHz, CDCl3)  7.06 (ABq, ΔδAB = 0.04, JAB = 8.0 Hz, 

4H), 6.00 (dd, J = 17.5, 10.8 Hz, 1H), 5.21 (dd, J = 10.8, 1.1 Hz, 1H), 5.17 (dd, J = 17.6, 1.2 Hz, 

1H), 4.64 (dd, J = 4.8, 3.6 Hz, 1H), 4.04 (d, J = 9.3 Hz, 1H), 3.57 (d, J = 9.3 Hz, 1H), 3.40 (ddd, 

J = 10.5, 7.2, 3.5 Hz, 1H), 3.26 (dd, J = 8.2, 5.2 Hz, 1H), 3.00–2.95 (comp m, 2H), 2.64 (d, J = 

14.2, 7.3 Hz, 1H), 2.31 (s, 3H), 1.78 (ddd, J = 14.0, 10.6, 3.4 Hz, 1H); 13C{1H} NMR (126 MHz, 

CDCl3)  177.7, 142.6, 135.7, 134.4, 139.3, 127.7, 116.6, 86.6, 79.0, 54.9, 53.2, 51.14, 51.10, 44.9, 

40.8, 21.1; IR (Neat Film NaCl) 2923, 1729, 1700, 1515, 1418, 1223, 1053, 992, 918, 812 cm-1; 

HRMS (FAB+) m/z: [M + H]+ calc’d for C18H21O3 285.1491, found 285.1495. 

 

Model α-diazo cyclobutyl ketone 34. To a solution of acid 33 (14.7 mg, 51.7 mol, 1.0 equiv) 

in CH2Cl2 (2 mL, 0.025 M) at 0 °C was added a solution of oxalyl chloride (107 L of a 1.45 M 

solution in CH2Cl2, 155 mol, 3.0 equiv), followed by 1 drop of DMF. The reaction was stirred 

for 1 h, at which point the stir bar was removed and the volatiles were removed on a rotovap purged 

with argon. The septum and stir bar were replaced and the crude material was further dried under 

high vacuum for 10 min. The resulting crude semisolid was partially dissolved in CH2Cl2 (1 mL) 

and transferred quantitatively via Teflon cannula to a vigorously stirring solution of excess 

diazomethane (5–8 mL) at 0 °C. After 30 min the cooling bath was removed, and after a further 
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hour the diazomethane was pulled off via water aspirator. The pale yellow solution was filtered 

through a small SiO2 plug (Et2O) and concentrated in vacuo. The crude material was purified by 

flash chromatography on SiO2 (9:1  3:1 hexanes/EtOAc) to afford 34 (13.2 mg, 42.8 mol, 83% 

yield) as a bright yellow oil that solidified in a –20 °C freezer. Rf = 0.31 (2:1 hexanes/EtOAc); 1H 

NMR (500 MHz, CDCl3)  7.05 (ABq, ΔδAB = 0.04, JAB = 7.9 Hz, 4H), 6.01 (dd, 17.5, 10.8 Hz, 

1H), 5.17 (d, J = 10.8 Hz, 1H), 5.11–5.06 (br m, 2H), 4.64 (app t, J = 4.0 Hz, 1H), 3.97 (br d, J = 

9.1 Hz, 1H), 3.66 (br d, J = 8.6 Hz, 1H), 3.36 (ddd, J = 10.6, 7.7, 3.5 Hz, 1H), 3.19 (br s, 1H), 3.11 

(br s, 1H), 2.92 (br s, 1H), 2.64 (dd, J = 14.1, 7.3 Hz, 1H), 2.30 (s, 3H), 1.78 (ddd, J = 13.7, 10.5, 

3.0 Hz, 1H); 13C{1H} NMR (126 MHz, CDCl3)  193.6, 142.5, 135.7, 134.9, 129.3, 127.1, 116.0, 

86.5, 78.6, 60.8, 55.3, 53.6, 51.4, 44.9, 40.5, 30.4, 21.1; IR (Neat Film NaCl) 2955, 2921, 2100, 

1633, 1514, 1370, 1352, 1048, 812 cm-1; HRMS (FAB+) m/z: [M + H]+ calc’d for C19H21O2N2 

309.1603, found 309.1619. 

 

Model homologated ester 37. A solution of -diazo cyclobutyl ketone 34 (3.2 mg, 104 mol) 

in MeOH (5.2 mL, 2 mM) in a dried quartz tube was irradiated in a Luzchem rayonette ( = 350 

nm) for 1.5 h. The solution was concentrated in vacuo and revealed homologated ester 37 as the 

sole product by crude 1H NMR. An analytical sample was obtained from purification by 

preparative TLC on SiO2 (2:1 hexanes/EtOAc) to give 37 (2.4 mg, 7.7 mol, 74% yield) as a 

colorless oil. Rf = 0.43 (2:1 hexanes/EtOAc); 1H NMR (500 MHz, CDCl3)  7.04 (ABq, ΔδAB = 

0.04, JAB = 5 Hz, 4H), 5.89 (dd, J = 16.9, 10.2 Hz, 1H), 5.22 (d, J = 10.7 Hz, 1H), 5.13 (d, J = 17.5 

Hz, 1H), 4.64 (app t, J = 3.9 Hz, 1H), 3.97 (d, J = 8.7 Hz, 1H), 3.51 (s, 3H), 3.50 (d, J = 8.7 Hz, 

1H), 3.46–3.42 (m, 1H), 3.23 (dd, J = 7.9, 5.8 Hz, 1H), 2.61 (dd, J = 14.1, 7.3 Hz, 1H), 2.54–2.36 

(comp m, 3H), 2.30 (s, 3H), 2.11 (app dt, J = 7.7, 3.8 Hz, 1H), 1.78 (ddd, J = 12.7, 10.4, 2.1 Hz, 

1H); 13C{1H} NMR (126 MHz, CDCl3)  173.1, 143.6, 135.5, 135.3, 129.2, 127.1, 116.4, 86.7, 

79.2, 52.4, 51.9, 51.6, 50.1, 47.0, 46.9, 45.0, 37.2, 21.1; IR (Neat Film NaCl) 2951, 2922, 1736, 

1514, 1435, 1207, 1163, 1041, 916, 808 cm-1; HRMS (EI+) m/z: [M]+ calc’d for C20H24O3 

312.1726, found 312.1725. 

 

Wolff/Cope rearrangement to cyclooctadienone 35. Photochemical/Thermal: A solution of 

-diazo cyclobutyl ketone 34 (3.5 mg, 11.4 mol) in benzene (5.7 mL, 2 mM) in a dried quartz 

tube was irradiated in a Luzchem photochemical reactor ( = 310 nm) for 10 min, and then the 
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lamp was turned off and the quartz tube was placed in an 80 °C oil bath for 2 h. The reaction was 

concentrated in vacuo and purified by preparative TLC on SiO2 (1:1 hexanes/Et2O, developed 

twice) to give model cyclooctadienone 35 (1.9 mg, 6.8 mol, 59% yield) as a colorless oil. 

Microwave (thermal): A solution of -diazo cyclobutyl ketone 34 (2.3 mg, 7.5 mol) in 

toluene (1.5 mL, 5 mM) was prepared in a non-dried microwave vial containing a stir bar under 

ambient atmosphere. The vial was sealed and irradiated in a Biotage Initiator microwave reactor 

at 400 W until the temperature reached 140 °C, and the temperature was maintained for 20 min. 

The vial was cooled to room temperature, the seal was removed, and the contents were 

concentrated in vacuo. Reaction conversion was monitored by 1H NMR analysis (C6D6). The crude 

material was purified by preparative TLC on SiO2 (2:1 hexanes/EtOAc) to give 35 (2.0 mg, 7.1 

mol, 95% yield) as a colorless oil that solidified in a –20 °C freezer. Rf = 0.32 (3:1 

hexanes/EtOAc); 1H NMR (CDCl3, 500 MHz)  7.15 (ABq, ΔδAB = 0.02, JAB = 8.3 Hz, 4H), 5.80–

5.73 (comp m, 2H), 5.63–5.59 (m, 1H), 4.76 (app t, J = 5.2 Hz, 1H), 4.49 (dd, J = 13.1, 1.5 Hz, 

1H), 4.40 (dd, J = 13.2, 1.0 Hz, 1H), 3.66 (td, J = 6.8, 4.0 Hz, 1H), 3.41 (dd, J = 14.7, 8.1 Hz, 1H), 

3.23 (app t, J = 11.3 Hz, 1H), 3.13–3.05 (comp m, 2H), 2.34 (s, 3H), 2.30 (dd, J = 13.8, 5.9 Hz, 

1H), 1.93 (ddd, J = 13.8, 12.1, 4.6 Hz, 1H); 13C{1H} NMR (126 MHz, CDCl3)  203.3, 146.8, 

139.7, 138.4, 136.9, 129.7, 129.2, 127.9, 144.2, 85.3, 72.2, 53.9, 50.6, 48.1, 45.4, 41.4, 21.2; 1H 

NMR (500 MHz, C6D6)  6.99 (d, J = 7.7 Hz, 2H), 6.86 (d, J = 6.9 Hz, 2H), 5.77 (dt, J = 13.5, 1.3 

Hz, 1H), 5.56 (d, J = 13.6 Hz, 1H), 5.11–5.08 (m, 1H), 4.35 (app t, J = 5.1 Hz, 1H), 4.24 (d, J = 

13.1 Hz, 1H), 4.11 (d, J = 13.2 Hz, 1H), 3.04–2.89 (comp m, 4H), 2.70 (app t, J = 11.3 Hz, 1H), 

2.20 (dd, J = 13.6, 5.9 Hz, 1H), 2.15 (s, 3H), 1.53–1.46 (m, 1H); 13C{1H} NMR (126 MHz, C6D6) 

 201.9, 147.2, 139.2, 138.6, 136.8, 130.1, 130.0, 128.7, 114.4, 85.5, 72.5, 53.8, 51.2, 48.3, 45.9, 

41.9, 21.3; IR (Neat Film NaCl) 3015, 2922, 1693, 1661, 1516, 1435, 1318, 1208, 1062, 1030, 817 

cm-1; HRMS (MM: ESI/APCI) m/z: [M – H]– calc’d for C19H19O2 279.1391, found 279.1384. 

 

Anti-cyclopentenol 38. A 2 L, 3-neck flask was charged with CuCN (2.01 g, 112.2 mmol. 0.2 

equiv) and THF (280 mL), and the suspension was cooled to ca. –20 °C (internal) using a cryocool. 

To this was added a solution of MeMgCl (109 mL, 337 mmol of a 3.1 M solution in THF) and the 

internal temperature warmed to –14 °C. After 30 min at –20 °C, a solution of monoacetate (+)-

1735 (15.95 g, 112.2 mmol, 1.0 equiv) in THF (40 mL) was slowly transferred (quantitative) via 

cannulation at such a rate that the internal temperature does not rise above –10 °C (required ca. 1 
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h). After 30 min the reaction was slowly quenched with sat. aq NH4Cl (100 mL), 50% sat. brine 

(100 mL), the cooling bath was removed and the viscous suspension was stirred vigorously for 

several hours. Additional water (200 mL) and 3% HCl (100 mL) was added and the layers were 

separated. The aq layer was extracted with Et2O (3 x 200 mL), the combined organics were dried 

over MgSO4, filtered, and concentrated carefully (water bath = 5 °C, down to 30 torr) to a pale 

yellow oil. The crude material was purified by short path distillation (bp = 88–92 °C, 40 torr) to 

afford a 95:5 mixture of 38 and 39 (8.847 g, 90.2 mmol, 80% yield). The early distillation fractions 

and Et2O washings from the apparatus were combined and purified by flash chromatography on 

SiO2 (2.5 x 27 cm, 6:1  1:1 pentane/Et2O) to provide another 1.049 g of 38 and 39 (combined 

9.996 g, 101.9 mmol, 91% yield). Rf (38) = 0.35 (1:1 hexanes/EtOAc); Rf (39) = 0.29 (1:1 

hexanes/EtOAc); bp = 88–92 °C (40 torr). An analytical sample of 38 was obtained from the 

column conditions above. 1H NMR (500 MHz, CDCl3)  5.89 (dd, J = 5.5, 1.9 Hz, 1H), 5.79 (dt, 

J = 4.8, 2.3 Hz, 1H), 4.87 (dt, J = 4.8, 2.3 Hz, 1H), 2.95 (dqdt, J = 9.5, 7.2, 4.9, 2.3 Hz, 1H), 1.96 

(ddd, J = 14.0, 7.5, 2.6 Hz, 1H), 1.71 (ddd, J = 14.0, 7.1, 5.2 Hz, 1H), 1.48 (br s, 1H), 1.03 (d, J = 

7.1 Hz, 3H); 13C{1H} NMR (126 MHz, CDCl3)  142.0, 132.1, 77.6, 42.7, 38.5, 21.0; IR (Neat 

Film NaCl) 3338 (br), 2956, 2870, 1354, 1088, 1017, 982, 742 cm-1; HRMS (EI+) m/z: [M]+ calc’d 

for C6H10O 98.07317, found 98.07171; []D
21 –272.2 (c 0.39, CHCl3, 99% ee). GC conditions: 45 

°C isothermal, GTA column, tR (min): major = 37.7, minor = 36.7. 

 

Syn-cyclopentenol 16. To a suspension of Ph3P (13.41 g, 51.12 mmol, 1.2 equiv) and benzoic 

acid (6.243 g, 51.12 mmol, 1.2 equiv) in toluene (237 mL) at –75 °C (internal) was added DIAD 

(10.1 mL, 51.12 mmol, 1.2 equiv) dropwise, neat over 15 min. The resulting yellow suspension 

was stirred vigorously for 30 min, at which point a solution of 38 and 39 (4.1806 g, 42.60 mmol, 

1.0 equiv) in toluene (47 mL, 0.15 M total) was transferred via cannula quantitatively over 30 min 

(observed maximum temperature increase to –70 °C). When ca. 1/3 of this solution was added, the 

reaction mixture turned homogeneous. After complete addition of 38 and 39, the reaction was 

stirred for an additional 30 min (white precipitate had formed) and quenched with sat. aq NaHCO3 

(100 mL) and water (100 mL) and the contents were warmed to room temperature. The layers were 

separated, the aq was extracted with Et2O (2 x 50 mL), and the combined organics were shaken 

with 3% aq H2O2 until TLC showed disappearance of Ph3P. The layers were separated, the aq was 

extracted with Et2O (1 x 50 mL), and the combined organics were dried over MgSO4, filtered, and 
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concentrated to a pale yellow solid. The crude material was purified by flash chromatography on 

SiO2 (7 x 7.5 cm, 1:0  24:1 hexanes/Et2O, dry loaded onto SiO2) to give the expected syn-

benzoate (60, 7.792 g, 38.53 mmol, 90% yield) as a pale yellow oil. Rf = 0.57 (3:1 hexanes/EtOAc); 

1H NMR (500 MHz, CDCl3)  8.05-8.03 (m, 2H), 7.56–7.53 (m, 1H), 7.44–7.41 (m, 2H), 6.03 (dd, 

J = 4.4, 2.0 Hz, 1H), 5.90–5.86 (comp m, 2H), 2.80–2.73 (m, 1H), 2.65 (dt, J = 14.0, 7.8 Hz, 1H), 

1.51 (dq, J = 12.5, 3.7 Hz, 1H), 1.16 (d, J = 7.0 Hz, 3H); 13C{1H} NMR (126 MHz, CDCl3)  

166.6, 142.9, 132.9, 130.8, 129.7, 128.6, 128.4, 80.9, 38.9, 38.7, 21.7; IR (Neat Film NaCl) 2961, 

1716, 1451, 1340, 1315, 1272, 1110, 711 cm-1; HRMS (EI+) m/z: [M]+ calc’d for C13H14O2 

202.0994, found 202.1019; []D
25.7 +123.8 (c 1.175, CHCl3, 98–99% ee). 

 

To a solution of syn-benzoate 60 (6.255g, 30.93 mmol, 1.0 equiv) in MeOH (62 mL, 0.5 M) 

was added K2CO3 (8.549 g, 61.85 mmol, 2.0 equiv) in one portion. After completion as judged by 

TLC analysis (3 h, 3:1 hexanes/EtOAc), the reaction was concentrated carefully in vacuo to a 

slurry (ca. 5–10 mL). The white slurry was diluted with brine (25 mL) and extracted with Et2O (4 

x 25 mL, follow by TLC), the organics were dried over MgSO4, filtered, and concentrated carefully 

in vacuo. The crude material was purified by flash chromatography on SiO2 (5 x 12 cm, 6:1  1:1 

pentane/Et2O) and concentrated down to 100 torr until 1H NMR analysis revealed the absence of 

solvent to afford 16 (2.728 g, 27.79 mmol, 90% yield) as a colorless oil. Rf = 0.25 (3:1 

hexanes/EtOAc); 1H NMR (500 MHz, CDCl3)  5.82 (dt, J = 5.5, 1.5 Hz, 1H), 5.73 (dt, J = 5.5, 

2.0 Hz, 1H), 4.79 (br s, 1H), 2.66–2.59 (m, 1H), 2.52 (dt, J = 13.4, 7.6 Hz, 1H), 1.79 (br s, 1H), 

1.17 (dt, 13.4, 5.4 Hz, 1H), 1.09 (d, J = 7.0 Hz, 3H); 13C{1H} NMR (126 MHz, CDCl3)  140.4, 

132.8, 77.8, 42.6, 39.0, 22.0; IR (Neat Film NaCl) 3338 (br), 3048, 2959, 2870, 1456, 1356, 1322, 

1115, 1051, 755 cm-1; HRMS (EI+) m/z: [M]+ calc’d for C6H10O 98.07317, found 98.07135; []D
27 

–23.0 (c 0.475, CHCl3, 98.2% ee). GC conditions: 50 °C isothermal, GTA column, tR (min): major 

= 21.2, minor = 20.7. 

 

Cycloaddition substrate 40. To a round-bottom flask containing Zn(OTf)2 (271 mg, 0.745 

mmol, 0.05 equiv) and toluene (3.7 mL) at 0 °C was added cyclopentenol 16 (1.45 g, 14.8 mmol, 
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1.0 equiv) by syringe. To this suspension was added a solution of cyclobutadiene 

trichloroacetimidate 19 (6.38 g, 17.4 mmol, 1.2 equiv) in toluene (2.0 mL) by cannula transfer, 

with further washing by toluene (1.7 mL). A yellow precipitate was observed at the beginning of 

the addition, and this turned into a viscous slurry upon completion of the addition. The ice bath 

was allowed to expire over 1.5 h and the reaction was stirred for an additional 0.5 h at ambient 

temperature. The crude reaction mixture was transferred directly onto a 25 g silica gel loading 

cartridge and purified by automated flash chromatography using a 125 g silica column (1:0  19:1 

hexanes/EtOAc) to afford 40 (3.65 g, 12.2 mmol, 82% yield) as a pale yellow oil. Rf = 0.73 (4:1 

hexanes/EtOAc); 1H NMR (500 MHz, C6D6)  5.72 (app dt, J = 5.6, 1.9 Hz, 1H), 5.66 (app dt, J 

= 5.6, 1.6 Hz, 1H), 4.27–4.24 (m, 1H), 3.53 (ABq, ΔδAB = 0.01, JAB = 9.1 Hz, 2H), 3.48 (s, 2H), 

3.32 (s, 1H), 2.43–2.39 (m, 1H), 2.15 (app dt, J = 13.3, 7.6 Hz, 1H), 1.26 (ddd, J = 17.0, 11.2, 6.9 

Hz, 1H), 0.98 (d, J = 7.0 Hz, 3H); 13C{1H} NMR (126 MHz, C6D6)  215.0, 140.5, 130.5, 85.2, 

82.6, 64.64, 64.58, 64.0, 62.2, 39.1, 38.9, 21.6; IR (Neat Film NaCl) 2961, 2871, 2046, 1965, 1359, 

1076, 1055, 757 cm-1; HRMS (FAB+) m/z: [M]+calc’d for C14H14FeO4 302.0242, found 302.0244; 

[]D
25 +22.7 (c 0.86, hexane, 98% ee). 

 

Cycloadduct 41.29 A solution of cycloaddition substrate 40 (2.3582 g, 7.806 mmol, 1.0 equiv) 

dissolved in acetone (780 mL, 10 mM) in a 1 L round-bottom flask fitted with a reflux condenser 

was warmed in a 70 °C oil bath. When the solution approached reflux, the condenser was 

momentarily removed and Me3NO•2H2O (8.77 g, 78.9 mmol, 10 equiv) was added in a single 

portion. The solution was allowed to reflux and within 10 min the reaction vessel was filled with 

a rust colored precipitate. After 4 h a second portion of Me3NO•2H2O (4.35 g, 45.9 mmol, 5.8 

equiv) was added. The solution was heated at reflux for an additional 17 h after which the reaction 

was judged to be complete by TLC analysis (4:1 hexanes/EtOAc). The solution was cooled to 

room temperature and poured directly onto a SiO2 column (25 x 5 cm) packed in pentane. The 

column was washed with 0  10% Et2O in pentane, and all fractions containing cyclobutene 41 

were combined and concentrated carefully to a volume of ca. 30 mL by atmospheric pressure 

distillation. This solution was purified by flash chromatography on SiO2 (packed with pentane, 

eluted with 20:1 pentane/Et2O). The fractions containing 41 were combined and concentrated to a 

volume of ca. 10 mL by atmospheric pressure distillation. This pale yellow cyclobutene solution 

in pentane was used directly in the following reaction. An analytical sample of cyclobutene 41 
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could be prepared by further chromatography and exhaustive distillation of solvent. Rf = 0.39 (3:1 

hexanes/Et2O); 1H NMR (500 MHz, CDCl3)  6.27 (d, J = 2.2 Hz, 1H), 6.22 (s, 1H), 4.84 (app q, 

J = 7.2 Hz, 1H), 4.04 (d, J = 9.1 Hz, 1H), 3.94 (d, J = 8.6 Hz, 1H), 3.00 (s, 1H), 2.89 (app t, J = 

5.8 Hz, 1H), 2.23 (tq, J = 12.7, 6.4 Hz, 1H), 2.10–2.05 (comp m, 2H), 1.37 (ddd, J = 13.0, 13.0, 

7.0 Hz, 1H), 0.97 (d, J = 6.7 Hz, 3H); 13C{1H} NMR (126 MHz, CDCl3)  140.2, 138.4, 84.7, 

70.3, 57.9, 52.0, 47.8, 44.8, 39.0, 37.3, 14.3; IR (Neat Film NaCl) 2955, 2865, 1458, 1334, 1089, 

1075, 1057, 1032, 931, 740 cm-1; HRMS (EI+) m/z: [M]+ calc’d for C11H14O 162.1045, found 

162.1026; an optical rotation was not obtained due to the volatility of this compound. Cyclobutene 

41 was found to possess an optical purity (ee) of 98% by chiral GC analysis; GC conditions: 110 

°C isothermal, GTA column, tR (min): major = 13.6, minor = 13.3. 

 

Oxidative cleavage of 41, equilibration and olefination. In a 250 mL round-bottom flask, 

the cyclobutene 41 solution prepared above was diluted with CH2Cl2 (130 mL) and methanol (26 

mL, 5:1, 0.05 M total). To this was added NaHCO3 (205.2 mg, 2.44 mmol, 0.3 equiv) and a few 

drops of Sudan Red (0.05 wt % in MeOH) until the solution became a pale pink color (ca. 10 

drops). The reaction vessel was cooled to –78 °C and the solution was sparged with O2 gas 

(0.5 L/min) for 2 min. The reaction was then ozonolyzed (setting the ozone generator to “5” with 

an O2 flow rate of 0.5 L/min) for 60 min, at which point the pink color of the solution had 

disappeared and the reaction was judged to be complete by TLC analysis. The ozone was sparged 

with O2 gas (1 L/min) through the solution for 2 min, and the pale yellow solution was warmed to 

room temperature and filtered through a cotton plug to remove the solid NaHCO3. The cotton plug 

was washed with benzene (10 mL) and the filtrate was concentrated to a small volume (ca. 3–4 

mL). The resulting crude yellow oil was dissolved in CH2Cl2 (78 mL), cooled to 0 °C, and to this 

was added Et3N (1.63 mL, 11.7 mmol, 1.5 equiv) and Ac2O (2.21 mL, 23.4 mmol, 3.0 equiv) 

dropwise via syringe. After 6 h, the reaction was quenched by the addition of 2 M HCl (25 mL), 

the organic layer was separated and washed with 2 M NaOH (25 mL), and the combined aqueous 

layers were extracted with CH2Cl2 (5 x 25 mL). The organics were dried over MgSO4, filtered, 

and concentrated to afford a pale brown oil which was passed through a SiO2 plug eluting with 

EtOAc, and concentrated to afford a pale yellow oil (0.8504 g, 3.8 mmol, three steps, 48% crude 

yield) containing mostly acetals 42 and 43.  
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The crude pale yellow oil prepared above was azeotroped from benzene (2 x 10 mL) in a 250 

mL round-bottom flask and dissolved in MeOH (76 mL, 0.05 M). To this was added oven dried 4 

Å MS (1.90 g, 0.5 g/mmol) and the flask was fitted with a reflux condenser and heated to reflux 

using an 80 °C oil bath. After 6 h, the reaction was judged complete by 1H NMR analysis of a 

reaction aliquot and the reaction was cooled to room temperature. Most of the 4 Å MS were 

removed by filtration through Celite eluting with EtOAc. The filtrate was concentrated and the 

resultant turbid oil was further purified by filtration through a SiO2 plug with EtOAc. This filtrate 

was concentrated to afford a yellow oil (0.8420 g) containing mostly aldehydes derived from 42 

and 43 with the requisite acetals. This mixture was used directly in the following reaction. 

A flask containing Ph3P•CH3Br (1.62 g, 4.54 mmol, 1.2 equiv) was partially dissolved with 

THF (15 mL) and cooled to 0 °C. To this was added KOt-Bu (423 mg, 3.77 mmol, 1.0 equiv) in 

one portion, and the solution immediately displayed a bright yellow color. The crude yellow oil of 

aldehydes/acetals (0.8420 g, ca. 3.7 mmol) prepared above was azeotroped from benzene (2 x 10 

mL), dissolved in THF (7.5 mL), cooled to 0 °C, and transferred dropwise via positive pressure 

cannulation into the solution of phosphorane over ca. 10 min. The flask was then washed with a 

second portion of THF (7.5 mL) to ensure quantitative transfer. The reaction was gradually 

allowed to warm to room temperature. After 18 h the reaction was quenched by the addition of 

H2O (25 mL) and extracted with Et2O (4 x 20 mL) then EtOAc (2 x 20 mL). The combined organics 

were dried with MgSO4, filtered and concentrated in vacuo. The crude yellow residue was purified 

flash chromatography on SiO2 (15 x 2 cm, 20:1  4:1 hexanes/EtOAc) to afford olefins 44 and 

45 (384.4 mg, 1.729 mmol, 2.7:1 ratio, 22.2% yield over four steps from cycloaddition substrate 

40) as a colorless oil and acetals 42 and 43 (400.5 mg, 1.786 mmol; 2.7:1 ratio, 22.9% yield over 

four steps from 40) as pale yellow oil. Olefins 44 and 45 could be separated by further flash 

chromatography on SiO2 (20:1  9:1 hexanes/EtOAc), and acetals 42 and 43 could be separated 

by further flash chromatography on SiO2 (3:1  1:1 hexanes/EtOAc). 

Olefin 44. Rf = 0.46 (9:1 hexanes/EtOAc, developed thrice); 1H NMR (500 MHz, CDCl3)  

5.95 (dd, J = 17.5, 10.8 Hz, 1H), 5.15 (dd, J = 10.8, 1.2 Hz, 1H), 5.11 (dd, J = 17.5, 1.2 Hz, 1H), 

4.59 (ddd, J = 6.3, 6.3, 1.5 Hz, 1H), 3.99 (d, J = 9.0 Hz, 1H), 3.64 (s, 3H), 3.54 (d, J = 9.0 Hz, 

1H), 3.16 (d, J = 7.1 Hz, 1H), 3.02 (app t, 7.1 Hz, 1H), 2.95 (app q, J = 7.4 Hz, 1H). 2.39 (ddq, J 

= 14.0, 10.4, 7.0 Hz, 1H), 2.18 (ddd, J = 14.6, 10.4, 5.7 Hz, 1H), 1.71 (ddd, J = 14.6, 6.3, 1.7 Hz, 

1H), 1.02 (d, J = 7.0 Hz, 3H); 13C{1H} NMR (126 MHz, CDCl3)  173.6, 134.9, 115.9, 87.1, 78.7, 
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52.6, 51.6, 51.4, 44.8, 42.5, 38.9, 37.2, 17.2; IR (Neat Film NaCl) 2954, 1736, 1436, 1363, 1236, 

1206, 1162, 1042, 920 cm-1; HRMS (MM: ESI/APCI) m/z: [M + H]+ calc’d for C13H19O3 

223.13287, found 223.13255; []D
16.8 –4.73 (c 1.18, CH2Cl2, 98% ee). 

Olefin 45. Rf = 0.39 (9:1 hexanes/EtOAc, developed thrice); 1H NMR (500 MHz, CDCl3)  

5.86 (ddd, J = 17.3, 10.3, 7.5 Hz, 1H), 5.05 (ddd, J = 17.1, 1.5, 1.5 Hz, 1H), 5.02 (ddd, J = 10.3, 

1.4, 1.4 Hz, 1H), 4.67 (td, J = 6.6, 2.8 Hz, 1H), 4.02 (d, J = 9.4 Hz, 1H), 3.88 (d, J = 9.4 Hz, 1H), 

3.68 (s, 3H), 3.30 (app t, J = 7.2 Hz, 1H), 3.00 (app t, J = 7.2 Hz, 1H), 2.54 (app q, 7.2 Hz, 1H), 

2.35 (d sextets, J = 9.6, 7.2 Hz, 1H), 2.18 (ddd, J = 14.5, 9.7, 6.3 Hz, 1H), 1.67 (ddd, J = 14.5, 7.7, 

2.8 Hz, 1H), 1.01 (d, J = 7.0 Hz, 3H); 13C{1H} NMR (126 MHz, CDCl3)  172.3, 137.9, 115.9, 

87.1, 76.0, 55.8, 51.7, 48.9, 44.9, 43.6, 41.8, 38.0, 16.2; IR (Neat Film NaCl) 2953, 5873, 1731, 

1436, 1295, 1207, 1041, 917 cm-1; HRMS (EI+) m/z: [M]+ calc’d for C13H18O3 222.1256, found 

222.1267; []D
15.1 –0.49 (c 0.72, CH2Cl2, 98% ee). 

Acetal 42.29 Rf = 0.29 (2:1 hexanes/EtOAc); 1H NMR (500 MHz, CDCl3)  5.39 (s, 1H), 4.80 

(ddd, J = 6.5, 6.5, 4.5 Hz, 1H), 3.99 (ABq, ΔδAB = 0.01, JAB = 10.5 Hz, 2H), 3.48 (s, 3H), 3.13 

(app t, J = 6.7 Hz, 1H), 2.89 (d, J = 3.3 Hz, 1H), 2.61 (ddd, J = 6.9, 6.9, 3.3 Hz, 1H), 2.39–2.30 

(m, 1H), 2.06 (ddd, J = 14.4, 8.4, 6.3 Hz, 1H), 1.60 (ddd, J = 13.3, 8.5, 4.5 Hz, 1H), 1.11 (d, J = 

7.0 Hz, 3H); 13C{1H} NMR (126 MHz, CDCl3)  179.0, 107.4, 86.7, 70.9, 56.8, 52.4, 51.5, 44.7, 

40.8, 38.6, 37.2, 16.9; IR (Neat Film NaCl) 2961, 2877, 1772, 1353, 1150, 1128, 1100, 1062, 936, 

710 cm-1; HRMS (EI+) m/z: [M]+ calc’d for C12H16O4 224.1049, found 224.1052; []D
18.3 +73.0 

(c 1.13, CH2Cl2, 98% ee).  

Acetal 43.29 Rf = 0.19 (2:1 hexanes/EtOAc); mp = 151.5–153 °C (Et2O); 1H NMR (600 MHz, 

CDCl3)  5.30 (s, 1H), 4.89 (td, J = 7.2, 5.8 Hz, 1H), 4.19 (d, J = 9.6 Hz, 1H), 4.11 (d, J = 9.6 Hz, 

1H), 3.49 (s, 3H), 3.33 (dd, J = 7.0, 6.3 Hz, 1H), 2.58 (d, J = 4.0 Hz, 1H), 2.40 (td, J = 6.0, 4.0, 

Hz, 1H), 2.26 (ddq, J = 13.7, 11.1, 6.8 Hz, 1H), 2.16 (dt, J = 14.1, 7.1 Hz, 1H), 1.55 (ddd, J = 14.0, 

11.1, 5.7 Hz, 1H), 1.03 (d, J = 6.8 Hz, 3H); 13C{1H} NMR (126 MHz, CDCl3)  177.2, 108.4, 

86.6, 73.2, 56.5, 55.5, 50.1, 42.8, 41.2, 38.7, 38.2, 15.3; IR (Neat Film NaCl) 2934, 1766, 1460, 

1359, 1199, 1171, 1143, 1130, 1115, 1063, 1045, 916, 904, 691 cm-1; HRMS (EI+) m/z: [M]+ 

calc’d for C12H16O4 224.1049, found 224.1044; []D
17.9 –56.7 (c 0.62, CH2Cl2, 98% ee). Crystals 

suitable for X-ray analysis were obtained by slow evaporation from Et2O. 
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Acid 46. To a solution of olefin 44 (41.0 mg, 0.184 mmol, 1.0 equiv) in THF (3.7 mL, 0.05 

M) cooled to 0 °C was added KOTMS (236 mg, 1.84 mmol, 10 equiv) in one portion. After 5 min 

the reaction was warmed to room temperature. At 12 h the reaction was cooled to 0 °C and slowly 

quenched with 10% HCl (4 mL) and diluted with brine (4 mL) and EtOAc (10 mL). The layers 

were separated and the aq layer was extracted with EtOAc (3 x 10 mL), the combined organics 

were dried over Na2SO4, filtered, and concentrated to a pale yellow oil. The crude was purified by 

flash chromatography on SiO2 (6:1  3:1 hexanes/EtOAc, CH2Cl2 load) to afford 46 (35.2 mg, 

0.169 mmol, 92% yield) as a white solid. Rf = 0.21 (2:1 hexanes/EtOAc); 1H NMR (600 MHz, 

CDCl3)  6.04 (dd, J = 17.5, 10.8 Hz, 1H), 5.20 (dd, J = 10.8, 1.2 Hz, 1H), 5.17 (dd, J = 17.5, 1.2 

Hz, 1H), 4.61 (td, J = 6.4, 1.6 Hz, 1H), 4.02 (d, J = 9.1 Hz, 1H), 3.54 (d, J = 9.1 Hz, 1H), 3.22 (d, 

J = 7.3 Hz, 1H), 3.05 (app t, J = 7.1 Hz, 1H), 2.91 (app q, J = 7.6 Hz, 1H), 2.40 (d sextets, J = 

10.4, 7.0 Hz, 1H), 2.20 (ddd, J = 14.7, 10.4, 5.8 Hz, 1H), 1.73 (ddd, J = 14.7, 6.3, 1.7 Hz, 1H), 

1.05 (d, J = 7.1 Hz, 3H); 13C{1H} NMR (126 MHz, CDCl3)  178.6, 134.5, 116.2, 87.2, 78.8, 52.8, 

51.2, 44.7, 42.5, 39.0, 37.2, 17.2; IR (Neat Film NaCl) 3085 (br), 2958, 2930, 1731, 1704, 1418, 

1283, 1241, 1086, 1041, 996, 921 cm-1; HRMS (EI+) m/z: [M]+ calc’d for C12H16O3 208.1100, 

found 208.1094; []D
15.3 +28.3 (c 0.97, CH2Cl2, 98% ee). 

 

α-Diazo cyclobutyl ketone 47. To a solution of acid 46 (62.5 mg, 0.300 mmol, 1.0 equiv) in 

CH2Cl2 (6.0 mL, 0.05 M) at 0 °C was added a solution of oxalyl chloride (353 L of a 1.7 M 

solution in CH2Cl2, 0.600 mmol, 2.0 equiv), followed by 1 drop of DMF. The reaction was stirred 

for 45 min at 0 °C, at which point the stir bar was removed, toluene was added (6 mL), and the 

volatiles were removed on a rotovap purged with argon. The septum and stir bar were replaced 

and the crude material was further dried under high vacuum for 10 min. The resulting crude 

semisolid was partially dissolved in CH2Cl2 (2 mL) and THF (4 mL) and transferred quantitatively 

via Teflon cannula to a vigorously stirring solution of excess diazomethane (ca. 30 mL) containing 

IRA-67 (161 mg, ca. 0.9 mmol, 3.0 equiv) at 0 °C. The flask was further washed with CH2Cl2 (4 

mL) and THF (2 mL) and quantitatively transferred. After 3.5 h the cooling bath was removed and 

the diazomethane was pulled off via water aspirator. The pale yellow solution was filtered through 

a small SiO2 plug (Et2O) and concentrated in vacuo. The crude material was purified by flash 

chromatography on SiO2 (6:1  2:1 hexanes/Et2O) to afford 47 (63.2 mg, 0.272 mmol, 91% yield) 

as a bright yellow oil that solidifies in a –20 °C freezer. Rf = 0.24 (3:1 hexanes/EtOAc); 1H NMR 
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(500 MHz, CDCl3)  6.01 (dd, J = 17.5, 10.8 Hz, 1H), 5.15 (dt, J = 10.9, 1.1 Hz, 1H), 5.10 (br s, 

1H), 5.05 (d, J = 17.5 Hz, 1H), 4.59 (app t, J = 6.1 Hz, 1H), 3.92 (d, J = 9.0 Hz, 1H), 3.63 (d, J = 

9.0 Hz, 1H), 3.11 (br d, J = 14.8, 2H), 2.96 (app t, J = 6.9 Hz, 1H), 2.44–2.35 (m, 1H), 2.20 (td, J 

= 12.6, 5.5 Hz, 1H), 1.70 (dd, J = 14.7, 6.3 Hz, 1H), 0.99 (d, J = 7.0 Hz, 3H); 13C{1H} NMR (126 

MHz, CDCl3)  193.7, 134.9, 115.7, 87.2, 78.3, 54.8, 53.3, 51.9, 50.4, 42.6, 38.3, 37.3, 17.2; IR 

(Neat Film NaCl) 3081, 2956, 2100, 1635, 1373, 1047, 919 cm-1; HRMS (FAB+) m/z: [M + H]+ 

calc’d for C13H17N2O2 233.1290, found 233.1296; []D
20.2 –66.3 (c 0.99, CH2Cl2, 98% ee). 

 

α-Diazo cyclobutyl ketone 48. -Diazoketone 48 was prepared by the same procedure as 

described for 47 using acid 46 (17.3 mg, 83.1 mol, 1.0 equiv), but with freshly prepared and 

KOH-dried diazoethane (ca. 20 mL). After 4 h at 0 °C the excess diazoethane was removed via 

water aspirator. The pale orange solution was filtered through a small SiO2 plug (Et2O) and 

concentrated in vacuo. The crude material was purified by flash chromatography on SiO2 (6:1  

4:1 hexanes/Et2O, CH2Cl2 load) to afford 48 (13.0 mg, 52.8 mol, 64% yield) as a bright yellow 

oil. Rf = 0.38 (2:1 hexanes/Et2O); 1H NMR (500 MHz, CDCl3)  5.95 (dd, J = 17.5, 10.9 Hz, 1H), 

5.10 (d, J = 10.8 Hz, 1H), 5.05 (d, J = 17.6 Hz, 1H), 4.57 (app t, J = 5.7 Hz, 1H), 3.86 (d, J = 9.3 

Hz, 1H), 3.66 (d, J = 9.3 Hz, 1H), 3.34 (d, J = 6.8 Hz, 1H), 3.28 (app q, J = 7.5 Hz, 1H), 2.93 (app 

t, J = 6.9 Hz, 1H), 2.45–2.36 (m, 1H), 2.16 (ddd, J = 14.9, 10.1, 5.2 Hz, 1H), 1.94 (s, 3H), 1.70 

(dd, J = 14.5, 5.9 Hz, 1H), 0.98 (d, J = 7.1 Hz, 3H); 13C{1H} NMR (126 MHz, CDCl3)  14.3, 

134.8, 115.5, 87.0, 77.3, 53.0, 52.5, 47.7, 42.3, 36.7, 36.3, 17.3, 8.3; IR (Neat Film NaCl) 2957, 

2926, 2064, 1631, 1286, 1050 cm-1; HRMS (FAB+) m/z: [M + H]+ calc’d for C14H19O2N2 

247.1447, found 247.1457; []D
19.9 +71.6 (c 0.57, CH2Cl2, 98% ee). 

 

Cyclooctadienone 49. A solution of -diazo cyclobutyl ketone 47 (69.2 mg, 0.271 mmol) in 

toluene (54 mL, 5 mM) was partitioned equally into three non-dried 20 mL microwave reaction 

vessels containing a stir bar under ambient atmosphere. Each vial was sealed and irradiated in a 

Biotage Initiator microwave reactor at 400 W until the temperature reached 160 °C, and the 

temperature was maintained for 15 min. The vial was cooled to room temperature, the seal was 

removed, and the contents were concentrated in vacuo. Reaction conversion was monitored by 

crude 1H NMR analysis (CDCl3). The crude material was purified by flash chromatography on 

Page 34 of 40

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 35 

SiO2 (9:1  6:1  3:1 hexanes/EtOAc) to give 49 (43.9 mg, 0.215 mmol, 79% yield) as a colorless 

oil that solidifies in a –20 °C freezer. Rf = 0.35 (3:1 hexanes/EtOAc); 1H NMR (500 MHz, CDCl3) 

 6.08 (dd, J = 12.4, 6.5 Hz, 1H), 5.93 (app dt, J = 12.4, 1.9 Hz, 1H), 5.56–5.51 (m, 1H), 4.59 (dd, 

J = 14.1, 6.9 Hz, 1H), 4.38 (d, = 12.1 Hz, 1H), 4.32 (m, 1H), 3.44 (m, 1H), 3.28 (dd, J = 14.3, 9.8 

Hz, 1H), 3.18–3.13 (m, 1H), 2.99 (ddd, J = 14.3, 6.2, 1.1 Hz, 1H), 2.36 (tq, J = 12.9, 6.5 Hz 1H), 

2.18 (dtd, J = 13.2, 6.5, 1.1 Hz, 1H), 1.44 (td, J = 13.2, 5.9 Hz, 1H), 1.11 (d, J = 7.0 Hz, 3H); 

13C{1H} NMR (126 MHz, CDCl3)  204.4, 146.1, 139.2, 131.6, 114.2, 85.1, 74.6, 52.9, 47.8, 40.1, 

38.9, 15.0; IR (Neat Film NaCl) 2958, 2874, 1691, 1666, 1116, 1064, 1032, 974, 867 cm-1; HRMS 

(FAB+) m/z: [M + H]+ calc’d for C13H17O2 205.1229, found 205.1223; []D
20.4 –642 (c 1.38, 

CH2Cl2, 98% ee). 

 

Wolff/Cope rearrangement of 48. A solution of -diazo cyclobutyl ketone 48 (17.7 mg, 71.9 

mol) in heptane (14.4 mL, 5 mM) was prepared in a non-dried 20 mL microwave reaction vessel 

under ambient atmosphere and sealed. The contents were irradiated in a Biotage Initiator 

microwave reactor at 400 W until the temperature reached 150 °C, and the temperature was 

maintained for 10 min. The reaction was cooled to room temperature and TLC analysis showed 

consumption of 221. The solution was concentrated in vacuo and purified by preparative TLC on 

SiO2 (3:1 hexanes/EtOAc, develop twice) to afford -methyl cyclooctadienone 50 (6.6 mg, 30.2 

mol, 42% yield) as a colorless oil and cyclopropane 51 as a single diastereomer. 

Cyclooctadienone 50. Rf = 0.41 (3:1 hexanes/EtOAc); 1H NMR (600 MHz, CDCl3)  5.80 

(app dq, J = 7.2, 1.3 Hz, 1H), 5.52–5.48 (m, 1H), 4.58 (td, J = 7.3, 6.2 Hz, 1H), 4.38 (d, J = 12.1 

Hz, 1H), 4.31 (m, 1H), 3.36 (td, J = 8.2, 1.2 Hz, 1H), 3.24 (dd, J = 15.6, 9.5 Hz, 1H), 3.02–2.98 

(comp m, 2H), 2.32 (td, J = 13.0, 6.2 Hz, 1H), 2.16 (ddd, J = 13.2, 7.1, 1.0 Hz, 1H), 1.84 (t, J = 

1.5 Hz, 3H), 1.47 (td, J = 13.3, 5.9 Hz, 1H), 1.08 (d, J = 6.9 Hz, 3H). 13C{1H} NMR (126 MHz, 

CDCl3)  207.6, 146.6, 137.2, 132.5, 113.7, 85.1, 74.5, 53.3, 47.0, 46.8, 40.3, 38.9, 20.8, 15.0; IR 

(Neat Film NaCl) 2956, 2923, 2874, 1693, 1667, 1452, 1375, 1076, 1045, 1020, 973, 873, 838 cm-

1; HRMS (MM: ESI/APCI) m/z: [M + H]+calc’d for C14H19O2 219.1380, found 219.1379; []D
25 

–573 (c 0.35, CHCl3, 98% ee) 

Cyclopropane 51.29 Rf = 0.36 (3:1 hexanes/EtOAc); 1H NMR (500 MHz, CDCl3)  4.80 (dt, 

J = 7.2, 6.0 Hz, 1H), 3.94 (d, J = 9.3 Hz, 1H), 3.84 (d, J = 9.3 Hz, 1H), 2.86 (d, J = 1.8 Hz, 1H), 
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2.84 (dd, J = 7.4, 5.8 Hz, 1H), 2.25 (d, J = 2.9 Hz, 1H), 2.16 (dddd, J = 10.5, 10.5, 8.6, 4.1 Hz, 

1H), 2.12–2.07 (m, 1H), 2.04 (ddd, J = 8.7, 5.8, 2.8 Hz, 1H), 1.56–1.54 (comp m, 2H), 1.49 (dddd, 

J = 13.6, 10.2, 5.5, 4.1 Hz, 1H), 1.22 (s, 3H), 0.96 (d, J = 6.7 Hz, 3H); 13C{1H} NMR (126 MHz, 

CDCl3)  198.7, 86.3, 74.3, 67.1, 57.9, 51.0, 49.7, 46.7, 43.1, 38.8, 37.4, 32.7, 15.2, 9.4; IR (Neat 

Film NaCl) 2953, 2923, 2868, 1776, 1449, 1073, 1015, 937 cm-1; HRMS (MM: ESI/APCI) m/z: 

[M + H]+ calc’d for C14H19O2 219.1380, found 219.1382; []D
25 +46.1 (c 0.38, CHCl3, 98% ee) 
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