Total Synthesis of the Novel NF-κB Inhibitor (–)-Cycloepoxydon

Goverdhan Mehta* and Kabirul Islam

Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India

gm@orgchem.iisc.ernet.in

Received December 29, 2003

An enantioselective total synthesis of the novel, biologically active epoxyquinone natural product (–)-cycloepoxydon has been accomplished from the readily available Diels–Alder adduct of cyclopentadiene and *p*-benzoquinone. A new cycloepoxydon related heptacyclic dimer has been prepared and characterized.

Polyketide-derived natural products, embodying an epoxyquinone core, are surfacing with increasing frequency from diverse natural sources, and have been found to exhibit promising, wide-ranging biological activity.¹ Cycloepoxydon **1** from a *deuteromycete* strain,^{1c} jesterone **2** from the fungal species *P. jesteri*,^{1f} panepoxydone **3** from basidiomycete *Lentinus* crinitus,^{1b} and yanuthone A **4** from a marine isolate of *Aspergillus niger*^{1d} constitute representative recent examples of the monomeric epoxyquinones encountered in nature. Among these, cycloepoxydon **1** has been shown to inhibit activation of NF- κ B, an inducible, ubiquitous transcription factor that regulates the expression of various cellular genes involved in immune and inflammation responses and apoptosis.^{1c}

10.1021/ol036521j CCC: \$27.50 © 200 Published on Web 02/05/2004

© 2004 American Chemical Society

Thus, **1** and its analogues have the potential for broad applications as novel therapeutic agents. As a result, synthetic protocols providing access to **1** through simple, flexible strategies from readily available building blocks hold special appeal. The research group of Porco has recently accomplished² the first total synthesis of (–)-cycloepoxydon **1** in which tartrate-mediated asymmetric epoxidation through nucleophilic addition was an important step. As part of our ongoing interest³ in the synthesis of (–)-cycloepoxydon **1**.

Recently, we have achieved convenient access to (+)-5 via enzymatic desymmetrization of 6,⁴ which in turn has been prepared from the readily available Diels-Alder adduct 7 of cyclopentadiene and benzoquinone.^{3a} Our synthetic pursuit

(2) Li, C.; Pace, E. A.; Liang, M.-C.; Lobkovsky, E.; Gilmore, T. D.; Porco, J. A., Jr. J. Am. Chem. Soc. **2001**, *123*, 11308.

(3) (a) Mehta, G.; Islam, K. *Tetrahedron lett.* **2003**, *44*, 3569. (b) Mehta, G.; Ramesh, S. S. *Tetrahedron Lett.* **2004**, *45*, 1985.

(4) Mehta, G.; Islam, K. To be submitted for publication.

 ^{(1) (}a) Oloigosporons: Anderson, M. G.; Jarman, T. B.; Rickards, R. W. J. Antibiot. 1995, 48, 391. (b) Panepoxydon: Erkel, G.; Anke, T.; Sterner, O. Biochem. Biophys. Res. Commun. 1996, 226, 214. (c) Cycloepoxydon: Gehrt, A.; Erkel, G.; Anke, H.; Anke, T.; Sterner, O. Nat. Prod. Lett. 1997, 9, 259. Gehrt, A.; Erkel, G.; Anke, T.; Sterner, O. J. Antibiot. 1998, 51, 455. (d) Yanuthones: Bugni, T. S.; Abbanat, D.; Bernan, V. S.; Maiese, W. M.; Greenstein, M.; Van Wagoner, R. M.; Ireland, C. M. J. Org. Chem. 2000, 65, 7195. (e) Ambuic acid: Li, J. Y.; Harper, J. K.; Grant, D. M.; Tombe, B. O.; Bashyal, B.; Hess, W. M.; Strobel, G. A. Phytochemistry 2001, 56, 463. (f) Jesterone: Li, J. Y.; Strobel, G. A.

of **1** emanated from the enantiomerically pure epoxyquinone (+)-**5**, which had two strategically placed and chemodifferentiated sidearms on the epoxyquinone core.

Dibal-H reduction in (+)-5 was both regio- and stereoselective to furnish (-)-9 through a chelation-controlled process involving the intermediacy of an aluminum chelate⁵ 8 and hydride delivery from the same face as the epoxide ring (Scheme 1).⁶ TEMPO-mediated oxidation⁷ in (-)-9 was chemoselective and exclusively furnished the aldehyde (-)- 10^6 through the oxidation of the allylic primary hydroxyl group. The secondary hydroxy group in (-)-10 was protected at this stage to give diacetate (-)-11 (Scheme 1). Four-carbon Wittig olefination in (-)-11 was chemoselective and engaged only the allylic aldehyde group but the stereoselectivity in this reaction was unsatisfactory and led to a cis:trans mixture of diastereomers **12a,b** (2.6:1) (Scheme 1). Since only the

(5) Kiyooka, S.-I.; Kuroda, H.; Shimasaki, Y. Tetrahedron Lett. 1986, 27, 3009.

(6) All new compounds were fully characterized on the basis of spectral data (IR, ¹H and ¹³C NMR, mass). Selected spectral data: (-)-9: $[\alpha]^{23}_{D}$ (-)176 (c 4.5, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 4.99 (1H, s), 4.88 (1H, d, J = 12.3 Hz), 4.77 (1H, d, J = 12.0 Hz), 4.55 (2H, br s), 4.04 (1H, d, J = 12.0 Hz), 4.55 (2H, br s), 4.55 (s), 3.84 (1H, s), 3.56 (1H, s), 3.46 (1H, s), 2.02 (3H, s), ¹³C NMR (75 MHz, CDCl₃) 193.2, 171.6, 154.5, 127.5, 64.3, 61.2, 56.6, 56.1, 52.6, 20.8; HRMS (ES) m/z calcd for $C_{10}H_{12}NaO_6$ [M + Na]⁺ 251.0532, found 251.0536. (-)-10: [α]²⁴_D (-)305 (c 2.36, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 10.33 (1H, s), 5.21 (1H, d, J = 12.6 Hz), 5.20 (1H, s), 5.14 (1H, d, J = 12.6 Hz), 3.88 (1H, d, J = 3.9 Hz), 3.66 (1H, d, J = 3.6 Hz), 2.05 (3H, s); ¹³C NMR (75 MHz, CDCl₃) 194.5, 192.7, 170.4, 144.0, 134.7, 60.8, 55.7, 54.8, 52.8, 20.6; HRMS (ES) m/z calcd for C₁₀H₁₀NaO6 [M + Na]⁺ 249.0375, found 249.0369. (-)-**12b**: [α]²⁴_D (-)194 (*c* 1.09, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 6.44 (1H, d, J = 15.9 Hz), 6.35 (1H, s), 6.29–6.21 (1H, m), 5.02 (1H, d, *J* = 11.7 Hz), 4.85 (1H, d, *J* = 11.7 Hz), 3.75 (1H, m), 3.57 (1H, d, J = 3.9 Hz), 2.21 (2H, q, J = 7.2 Hz), 2.13 (3H, s), 2.05 (3H, s), 1.47 (2H, sextate, J = 7.2 Hz), 0.92 (3H, t, J = 7.2 Hz)Hz); ¹³C NMR (75 MHz, CDCl₃) 193.1, 170.7, 169.9, 145.7, 142.5, 128.2, 125.0, 63.2, 56.4, 53.0, 52.0, 35.9, 21.9, 20.8, 20.7, 13.5; HRMS (ES) m/z calcd for $C_{16}H_{20}NaO_6$ [M + Na]⁺ 331.1158, found 331.1161. (-)-**13**: [α]²⁴_D (-)231 (c 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 6.56-6.48 (2H, m), 5.04 (1H, s), 4.37 (2H, s), 3.87 (1H, dd, J = 1.2, 3.6 Hz), 3.5 (1H, dd, J = 0.6, 3.6 Hz), 2.29–2.21 (2H, m), 1.51 (2H, sextate, J = 7.2 Hz), 0.95 (1H, t, J = 7.2 Hz); ¹³C NMR (75 MHz, CDCl₃) 196.2, 148.9, 143.4, 129.5, 125.2, 63.1, 55.8, 55.5, 52.4, 36.0, 22.0, 13.7; HRMS (ES) m/z calcd for $C_{12}H_{16}NaO_4 \ [M + Na]^+ \ 247.0946$, found 247.0950. (-)-15: $[\alpha]^{23}D$ (-)-140 (c 0.72, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 4.64 (1H, d, J = 12.6Hz), 4.43 (1H, d, J = 12.3 Hz), 4.36 (1H, br s), 3.97 (1H, d, J = 2.4 Hz), 3.78 (1H, dd, J = 1.5, 3.6 Hz), 3.53 (1H, dd, J = 0.6, 3.6 Hz), 3.19-3.15 (2H, m), 1.79–1.73 (1H, m), 1.68–1.46 (3H, m), 0.99 (3H, t, J = 7.2 Hz), 0.86 (9H, s), 0.02 (3H, s); 13C NMR (75 MHz, CDCl₃) 192.2, 150.4, 134.3, 61.5, 60.2, 56.4, 55.6, 55.5, 52.7, 33.9, 25.8 (3 C), 19.1, 18.2, 13.8, -5.2, -5.4; HRMS (ES) *m*/*z* calcd for C₁₈H₃₀NaO₅Si [M + Na]⁺ 377.1760, found 377.1743. (-)-1: [α]²³_D (-)135 (c 0.55, CHCl₃:MeOH 90:10); ¹H NMR [300 MHz, CDCl₃:MeOH- d_4 90:10] δ 4.92 (1H, s), 4.51 (1H, dd, J = 2.1, 17.1 Hz), 4.07-4.04 (2H, m), 3.77 (1H, dd, J = 1.2, 3.6 Hz), 3.40 (1H, dd, J = 0.9, 3.6 Hz), 3.30 (1H, m), 1.72 (1H, m), 1.52 (1H, m), 1.44-1.32 (2H, m), 0.9 (3H, t, J = 7.2 Hz); ¹³C NMR [75 MHz, CDCl₃:MeOH- d_4 90:10] 191.9, 150.5, 129.3, 77.7, 64.9, 62.0, 59.9, 57.0, 52.2, 33.9, 18.5, 13.9• (-)-19: [α]²⁵_D (-)159 (*c* 1.1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 6.61–6.51 (1H, m), 6.31 (1H, d, J = 16.2 Hz), 4.57 (1H, dd, J = 6.9, 12.9 Hz), 4.44 (1H, dd, J = 5.1, 12.6 Hz), 3.89 (1H, d, J = 4.2 Hz), 3.86 (1H, d, J = 3.9 Hz), 2.40 (1H, t, J = 6.3 Hz), 2.23 (2H, q, J = 7.2 Hz), 1.88 (2H, sextate, J = 7.2 Hz), 0.94 (3H, t, J = 7.2 Hz); ¹³C NMR (75 MHz, CDCl₃) 193.8, 192.9, 147.4, 141.6, 137.0, 120.5, 57.3, 54.0, 53.7, 36.5, 21.8, 13.7; HRMS (ES) m/z calcd for $C_{12}H_{14}NaO_4$ [M + Na]⁺ 245.0790, found 245.0779. (+)-**24**: $[\alpha]^{23}_{D}$ (+)-144 (*c* 0.90, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.89 (1H, s), 5.68 (1H, s), 4.37 (1H, q, *J* = 4.8 Hz), 4.18 (1H, t, J = 6.3 Hz), 3.88 (1H, d, J = 3.6 Hz), 3.84 (1H, d, J = 4.2Hz), 3.82 (1H, d, J = 3.6 Hz), 3.67 (1H, d, J = 3.6 Hz), 3.28 (1H, s), 2.64 (1H, d, J = 2.7 Hz), 1.35–1.17 (8H, m), 0.89–0.83 (6H, m); ¹³C NMR (75 MHz, CDCl₃) 199.9, 187.7, 187.6, 187.0, 159.3, 145.0, 143.5, 112.3, 81.4, 71.4, 69.5, 60.6, 55.7, 54.6, 54.2, 49.9, 38.8, 36.9, 36.4, 35.0, 18.9, 18.5, 13.8, 13.4; HRMS (ES) m/z calcd for C₂₄H₂₄NaO₈ [M + Na]⁺ 463.1369, found 463.1360.

(7) Semmelhack, M. F.; Schmid, C. R.; Cortes, D. A.; Chou, C. S. J. Am. Chem. Soc. 1984, 106, 3374.

^{*a*} Reagents and conditions: (a) DIBALH (2 equiv), THF, -78 °C, 74%; (b) TEMPO, O₂, CuCl, DMF, rt, 77%; (c) Ac₂O, pyridine, DMAP, DCM, 0 °C, 71%; (d) *n*-C₄H₉PPh₃Br, *t*-BuOK, THF, 0 °C, 54%; (e) *hv*, 450 W (Hanovia), I₂, CDCl₃, 2 h, quant.

trans-isomer **12b** was considered serviceable for further elaboration to the natural product **1**, considerable effort was expended toward improving the stereoselectivity of the Wittig reaction but without much success. However, a solution to this problem was devised by exploiting the possibility of photochemical cis-trans isomerization of the disubstituted double bond in the dienone chromophore present in **12a**,**b**. When the mixture of diastereomers **12a**,**b** was irradiated from a 450-W Hg lamp through Pyrex in the presence of iodine, it cleanly and quantitatively furnished the desired transisomer (-)-**12b** (Scheme 1).⁶

Acetate hydrolysis in (-)-12b led to the diol (-)-13 and the primary hydroxyl group was selectively protected as the TBS derivative (-)-14 (Scheme 2).⁶ Epoxidation of the trans double bond in the side chain with *m*-chloroperbenzoic acid in aqueous buffer was stereoselective and occurred exclusively from the face opposite to the neighboring secondary hydroxyl group to deliver the γ, δ -epoxyenone (-)-15,⁶ an outcome along the lines previously observed by Porco et al.² When (-)-15 was exposed to 40% HF in acetonitrile to remove the TBS protecting group, concomitant hydroxymediated endo-epoxide opening was also encountered to furnish (-)-cycloepoxydon **1** as the predominant product.^{6,8} Our synthetic (-)-1 had spectral data (¹H and ¹³C NMR) identical with that reported in the literature^{1c} for the natural product and had an $[\alpha]_D$ value of -135° (CHCl₃-CH₃OH 90:10), lit. [α]_D -145° (CHCl₃-CH₃OH 95:5).^{1c}

It has been demonstrated recently that dimeric products derived from epoxyquinones, both of natural as well as synthetic origin, exhibit a notable and sometimes enhanced

^{*a*} Reagents and conditions: (a) LiOH, MeOH, 0 °C, 66%; (b) TBSCl, imidazole, DMAP, DCM, 0 °C, 92%; (c) MCPBA, DCM, pH 7, rt, 86%; (d) 40% HF, CH₃CN, 0 °C, 2 h, 69%.

biological activity profile.⁹ For example, a "jesterone dimer" **17**, prepared from epoxyquinone **16** via a 6π electrocyclization, [4+2]-cycloaddition cascade (Scheme 3), has been

shown to exhibit impressive anti-cancer activity against human breast and leukemia cell lines.¹⁰ In light of such observations, it was of interest to prepare a cycloepoxydon-

⁽⁸⁾ Porco et al.² have reported the formation of 1 and regioisomeric exocyclized product isocycloepoxydon i in a ratio of 3:2 during the hydroxylmediated opening of the epoxide closely related to (-)-15. However, in our case, employing (-)-15 and slightly different reaction conditions, 1 was obtained as the major product with isocycloepoxydon i constituting about 10% of the reaction mixture.

related dimer. Consequently, (-)-14 was oxidized with TPAP to the epoxyquinone (-)-18 and the TBS deprotection led to (-)-19 (Scheme 4).⁶ Dess-Martin oxidation¹¹ furnished the intermediate aldehyde 20, which underwent concomitant 6π electron cyclization to 21 and 22 and further endoselective intermolecular Diels-Alder heterodimerization (see 23) led to the "cycloepoxydon dimer" (+)-24 (Scheme 4).⁶ The stereostructure of (+)-24 follows from similar endodimerizations documented in the literature¹²⁻¹⁴ wherein the two alkyl chains are positioned to minimize steric interactions.

^{*a*} Reagents and conditions: (a) TPAP, NMMO, mol. Sieve, DCM, rt, 82%; (b) HF•Py, CH₃CN, 0 °C, 91%; (c) Dess–Martin periodinane, DCM, rt; (d) SiO₂, DCM, rt, 70% (in two steps).

In summary, we have achieved a simple and effective enantioselective synthesis of the novel epoxyquinone natural

^{(9) (}a) Torreyanic acid: Lee, J. C.; Strobel, G. A.; Lobkovsky, E.; Clardy, J. J. Org. Chem. **1996**, *61*, 3232. (b) Epoxyquinol A: Kakeya, H.; Onose, R.; Koshino, H.; Yoshida, A.; Kobayashi, K.; Kageyama, S.-I.; Osada, H. J. Am. Chem. Soc. **2002**, *124*, 3496. (c) Epoxyquinol B: Kakeya, H.; Onose, R.; Yoshida, A.; Koshino, H.; Osada, H. J. Antibiot. **2002**, *55*, 829. (d) Panepophenanthrin: Sekiizawa, R.; Ikeno, S.; Nakamura, H.; Naganawa, H.; Matsui, S.; Iinuma, H.; Takeuchi, T. J. Nat. Prod. **2002**, *65*, 1491.

^{(10) (}a) Hu, Y.; Li, C.; Kulkarni, B. A.; Strobel, G.; Lobkovsky, E.; Torczynski, R. M.; Porco, J. A., Jr. *Org. Lett.* **2001**, *3*, 1649. (b) Liang, M.-C.; Bardhan, S.; Li, C.; Pace, E. A.; Porco, J. A., Jr.; Gilmore, T. D. *Mol. Pharmacol.* **2003**, *64*, 123.

^{(11) (}a) Dess, D. B.; Martin, J. C. J. Org. Chem. **1983**, 48, 4155. (b) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. **1991**, 113, 7277.

⁽¹²⁾ Li, C.; Johnson, R. P.; Porco, J. A., Jr. J. Am. Chem. Soc. 2003, 125, 5095–5106.

⁽¹³⁾ Transition state calculations^{12,14} for the Diels-Alder dimerization of several model epoxyquinones related to **21** and **22**, as well as mechanistic studies, support the assignment of endo-anti dimeric structure (+)-**24**.

⁽¹⁴⁾ Shoji, M.; Kishida, S.; Kodera, Y.; Shiina, I.; Kakeya, H.; Osada, H.; Hayashi, Y. *Tetrahdron. Lett.* **2003**, *44*, 7205.

product (-)-cycloepoxydon from the readily available Diels-Alder adduct of cyclopentadiene and *p*-benzoquinone. A cycloepoxydone related dimer with biological potential has also been prepared. Acknowledgment. K.I. thanks CSIR, India for the award of a research fellowship. This work was supported by the Chemical Biology Unit of JNCASR, Bangalore. OL036521J