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Abstract: Lithiated methoxyallene 1 and aldehydes 2 provided af-
ter base- or gold-catalyzed cyclization dihydrofurans 3 which were
oxidatively cleaved giving a,b-unsaturated g-ketoaldehydes 4 as
key intermediates. These smoothly underwent intramolecular aldol
addition to furnish highly substituted cyclopentene derivatives 5 in
good yields. Due to their dense pattern of functional groups com-
pounds 5 are versatile intermediates, suitable for subsequent elabo-
rations. This was demonstrated by transformation of 5e into enol
phosphate 8 and of 5c into tetracyclic nitrone cycloadduct 13.

Key words: allenes, gold catalysis, aldol reactions, cyclopenten-
ones, cycloadditions

Recently, we have demonstrated the versatility of a,b-un-
saturated g-ketoaldehydes 4 as useful building blocks for
the synthesis of different heterocycles1 as well as hetero-
cyclic natural products and their analogues.2 In this report
we expand this methodology to the synthesis of highly
functionalized carbocycles.3 The cyclopentenone ring
structure is present in a wide array of natural products and
interesting drug targets such as prostaglandins,4 penteno-
mycins,5 and methylenomycins.6 Methods to generate the
cyclopentenone core include intramolecular aldol and
Wittig-type reactions, Pauson–Khand reactions, Nazarov
cyclizations, and several other reactions.7 Here we would
like to report an efficient synthesis of densely substituted
cyclopentenone derivatives 5 starting from lithiated meth-
oxyallene 1 and aldehydes 2 bearing an a-C–H moiety
with dihydrofurans 3 and ketoaldehydes 4 as crucial inter-
mediates (Scheme 1).

Addition of lithiated methoxyallene 1 towards aldehydes
2a–e quantitatively furnishes the expected allenyl alco-
hols (purity generally >95% by 1H NMR).1,8 These inter-
mediates are subjected to a 5-endo-trig cyclization to
dihydrofurans 3a–c without further purification in the
presence of KOt-Bu (1 equiv, 60 °C in DMSO). This
method, developed by Brandsma and Arens,9 utilizes rath-
er harsh reaction conditions and therefore sensitive sub-
strates may provide considerably lower yields.
Alternative Lewis acid promoted cyclizations are also
known. The efficacy of Ag(I)-catalyzed cyclizations of a-
allenyl alcohols or amines was also found to be substrate
sensitive.1,10,11 Fortunately, a strongly improved protocol
for 5-endo-trig cyclization of a-allenyl alcohols has re-

cently been developed in our group.11 The method utilizes
AuCl (5 mol%), pyridine (15 mol%) in CH2Cl2 (the cata-
lytic system originally reported by Krause for 6-endo cy-
clization of b-allenyl alcohols to dihydropyrans)12 and
proved to be superior to all aforementioned reagent sys-
tems. All reactions investigated were completed very rap-
idly and products were formed with high yields and
perfect selectivity even in the case of sensitive sub-
strates.11 The corresponding dihydrofurans 3a–e were ob-
tained in good to excellent yields using either KOt-Bu-
(method A) or AuCl-mediated (method B) cyclizations
(Table 1).

Oxidative ring-opening reaction of dihydrofurans 3 with
DDQ in wet CH2Cl2 selectively affords E-isomers of a,b-
unsaturated g-ketoaldehydes 4 in good yields.1,2 The ke-
toaldehydes 4a–e derived from aldehydes 2a–e with a-C–
H units (Table 1, entries 1–5) smoothly undergo intramo-
lecular aldol addition either in the presence of MeONa in
MeOH (method C) or of saturated aqueous Na2CO3 solu-
tion in THF (method D) to generate highly substituted cy-
clopentenones 5a–e in good yields (Table 1).13 In the case
of aldehydes 4a,d,e, the intramolecular aldol reaction pro-
ceeds with high diastereoselectivity, preferentially giving
in all cases the more stable 4,5-trans configured cyclopen-
tenones 5a,d,e. This is clearly the result of a thermody-
namically controlled reaction, since treatment of pure
trans-5e or cis-5e with saturated aqueous Na2CO3 solu-
tion in THF resulted in both cases in the formation of the
mixture of diastereomers.14

Scheme 1 Synthesis of cyclopentenone derivatives 5
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It is worth to mention that the overall sequence does not
require any purification of intermediates 3 and 4, which in
fact tend to be rather unstable upon exposure to silica gel.
In the case of cyclopentenones 5c and 5e we were able to
obtain comparable overall yields (65% vs. 64% in the case
of 5c) or even higher yields (55% vs. 40% in the case of
5e) when no purification was performed. A further simpli-
fication of our protocol represents a one-pot transforma-
tion of crude primary allene adducts into ketoaldehydes 4.
Upon completion of the AuCl-catalyzed 5-endo-trig cy-
clization of a-allenyl alcohols, just H2O and DDQ were
added to the reaction mixture and after usual workup15 the
resulting a,b-unsaturated g-ketoaldehydes 4 were isolat-
ed.

We were then interested in selective transformations of
the enol ether moiety of the cyclopentenones prepared.
This, however, proved to be an arduous task as different

attempts failed. After protection of the hydroxyl group of
5e and chromatographic separation of diastereomers, we
finally succeeded to convert compound 6 into 3-bromo-2-
hydroxycyclopent-2-enone 7 using NBS in MeCN and
H2O (Scheme 2).16 This opened us access to enol phos-
phate 817 and bromo triflate 9 in moderate yields.18 These
intermediates may be suitable for cross-coupling reac-
tions.

Next, we wanted to demonstrate the potential of our high-
ly substituted cyclopentenones as precursors of unusual
amino acid derivatives. This goal should be achieved by
1,3-dipolar cycloaddition19 of nitrone 12 (Scheme 3). The
thermal intermolecular cycloaddition of cyclopentenone
5c and nitrone 12 did not yield any product, whereas the
more reactive nitrile oxide, generated in situ from the cor-
responding chloroxime 10, provided at least 28% of the
expected cycloadduct 11 (60:40 mixture of two diaste-

Table 1 Addition of Lithiated Methoxyallene 1 to Aldehydes 2 Followed by Cyclization to Dihydrofurans 3, Oxidative Ring Opening to 4 
and Intramolecular Aldol Addition to Cyclopentenones 5

Entry Aldehyde Cyclization 
conditionsa

Yield of 3 
(%)

Yield of 4 
(%)b

Aldol 
conditionsa

Yield of 5 
(%)
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a Conditions A: KOt-Bu (1 equiv), DMSO, 60 °C, 1–2 h. Conditions B: AuCl (0.05 equiv), pyridine (0.15 equiv), CH2Cl2, r.t., 0.5–5 h. Condi-
tions C: MeONa (0.1 equiv), MeOH, r.t., 2–15 h. Conditions D: sat. aq Na2CO3 solution, THF (1:3), r.t., 2 d.
b Conditions: DDQ (2 equiv), H2O, CH2Cl2 (1:20), r.t., 30 min to 1 h.
c Ketoaldehyde 4d spontaneously undergoes intramolecular aldol reaction during flash chromatography on silica gel.
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reomers). The low reactivity of cyclopentenone 5c is
probably due to the fact that electron-donating and elec-
tron-withdrawing substituents are geminally attached to
double bond.20 It is well known that nitrone cycloaddi-
tions can be strongly accelerated in the presence of Lewis
acids.21 Tamura et al. reported that treatment of a-meth-
oxycarbonyl-substituted nitrones with allyl alcohols in the
presence of Ti(Oi-Pr)4 resulted in tandem transesterifica-
tion, E/Z-isomerization and an intramolecular cycloaddi-
tion to provide polycyclic compounds in a
stereocontrolled manner.22 Gratifyingly, the Ti(Oi-Pr)4-
promoted cycloaddition of nitrone 12 to cyclopentenone
5c, gave a single tetracyclic product 13 in 75% yield.23

This interestingly functionalized cycloadduct offers many
options for further synthetic endeavors.

Scheme 3 1,3-Dipolar cycloadditions of cyclopentenone 5c.
Reagents and conditions: a) Et3N, Et2O, r.t., 17 h, 28%; b) Ti(Oi-Pr)4

(1 equiv), CH2Cl2, r.t., 2 d, 75%.

In conclusion, we have reported a simple and efficient
synthesis of highly substituted cyclopentenones starting
from lithiated methoxyallene as C3 building block and al-
dehydes with a-C–H moiety as C2 unit.24 Easy access,
unique substitution pattern, and structural variability pre-

destine them as interesting substrates for diversity orient-
ed synthesis.
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cyclopentenone 5c disappeared (monitored by TLC, 2 d). 
The reaction mixture was poured onto silica gel, which was 
then washed with EtOAc–hexane (1:3). After removal of 
solvents the crude product was recrystallized (EtOAc–
hexane, 1:3) to provide 0.62 g (75%) of 13 as colorless solid.
Mp 148–152 °C. 1H NMR (500 MHz, CDCl3): d = 1.36–
1.54, 1.61–1.66, 1.73–1.81 (3 m, 4 H, 2 × 3 H, CH2), 3.49 (s, 
3 H, OCH3), 4.00 (sbr, 1 H, 4-H), 4.25 (d, J = 13.3 Hz, 1 H, 
CH2Ph), 4.30 (d, J = 7.7 Hz, 1 H, 3-H), 4.48 (dbr, J = 13.3 
Hz, 1 H, CH2Ph), 4.84 [d, J = 6.9 Hz, 1 H, CHOC(O)], 7.29 
(d, J = 7.2 Hz, 1 H, Ph), 7.34 (t, J = 7.2 Hz, 2 H, Ph), 7.44 (d, 
J = 7.2 Hz, 2 H, Ph) ppm. 13C NMR (100 MHz, CDCl3): 
d = 21.0, 21.5, 25.0, 26.5, 30.9 (5 × t, CH2), 52.8 (q, OCH3), 

54.1 (d, C-4), 57.4 [s, C(CH2)2], 67.3 (dbr, C-3), 79.7 [d, 
CHOC(O)] 127.7, 128.5, 128.8, 135.9 (3 × d, s, Ph), 172.4 
[sbr, OC(O)], 206.2 (s, C=O) ppm; signals of C-5 and 
NCH2Ph are not visible, according to HMBC C-5, d ca. 
110.2, NCH2Ph, d ca. 67.3 ppm. IR (KBr): n = 3110–2840 
(=CH, CH), 1790, 1750 (C=O) cm–1. HRMS (ESI-TOF): 
m/z calcd for C20H24NO5

+ [M + H]+: 358.1655; found: 
358.1687. Anal. calcd for C8H12O3 (357.4): C, 67.21, H, 
6.49; N, 3.92. Found: C, 67.03; H, 6.46; N, 3.95.

(24) For an interesting alternative approach to cyclopentene 
derivatives employing lithiated allenyl MOM ethers, see: 
Huang, X.; Zhang, L. J. Am. Chem. Soc. 2007, 129, 6398.
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