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Abstract: The [4+2] cycloaddition of ortho-boronoanilide dieno-
phile 4 with cyclopentadiene was found to proceed faster than both
its para isomer 8 and the unsubstituted derivative 6, thereby con-
firming that self-activation by internal coordination is operative in
the case of 4. Chiral boronic esters derivatives 9 and 10 provided a
small level of remote 1,8-stereoinduction. These results show that
dialkoxyboronic esters can operate as weak, internal Lewis acids
and activate carbonyl-containing functionalities in cycloaddition re-
actions.
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Dialkoxyboronic esters are a priori very weak Lewis ac-
ids.1,2 The possibility of employing chiral diols as bor-
onate substituents, however, constitutes a significant
advantage in the use of boronic esters as Lewis acids for
cycloadditions and other reactions. We were interested in
investigating the potential role of a dialkoxyboronic ester
as an internal activator and as a source of 1,8-
stereoinduction3,4 in a model Diels–Alder reaction using
modified acrylamide dienophiles of type I (Figure 1).

Figure 1

The pinacolboronate-substituted dienophile 45 required
for studying the carbonyl activating effect of the boronic
ester was easily made in four steps from phenylboronic
acid (Scheme 1).6 The corresponding dienophile 65 lack-
ing the boronate group was also made as a reference com-
pound for a qualitative comparison of relative reaction
rates in a model Diels–Alder reaction with cyclopentadi-
ene.

Although dienophile 4 is more sterically hindered, the
data shows that it does react faster than 6 and with in-
creased endo/exo selectivity in the resulting adducts 5
(Table).5 These results are consistent with a small self-ac-
tivation effect by internal coordination between the bo-
ronic ester and the carbonyl group in dienophile 4. To rule

out the possibility that the activation may be due to the
electron-withdrawing effect of the boronate group on the
reactivity of the acrylamide dienophile, a competitive ki-
netic experiment was performed whereby 4 and the corre-
sponding para-substituted isomer 85,6 were allowed to
react simultaneously with excess cyclopentadiene
(Scheme 2). The proportion of components in the reaction
mixture confirmed the faster consumption of 4 and its
consequent faster conversion into cycloadducts.5 This re-
sult further confirms that self-activation by internal coor-
dination is operative in the case of ortho-substituted
dienophile 4.
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Scheme 1 Preparation of dienophile 4
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Table Relative Speed and endo/exo Ratios from Diels–Alder Reac-
tions of 4 and 6.a

6 4

Time (h) s.m.:adduct endo:exo s.m.:adduct endo:exo

1 no reactions 2.7:1 3.8:1

6 1:0.4 2.5:1 1.2:1 3.8:1

48 1:5 2.8:1 1:13 4.3:1

a Ratios of starting materials (s.m.) and cycloadducts were measured 
by proton NMR on the crude reaction mixtures.
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We then turned our attention towards the appealing possi-
bility that internal coordination could serve at communi-
cating stereochemistry in a long-range fashion. There are
very few examples on remote stereoinduction beyond a
1,7 relative relationship between the inducing center and
the reactive one.3 In the present case, 1,8-stereoinduction
could be transmitted via internal carbonyl coordination.
Thus, chiral dienophiles 9 and 10 (Figure 2) were synthe-
sized from the corresponding enantiopure diols in a man-
ner analogous to 4.

The level of 1,8-stereoinduction observed, however, was
only minimal. The highest value of 18% diastereomeric
excess originated from the exo cycloadduct of dienophile
10. Inspection of the X-ray crystal structure of dienophile
9, displayed as an ORTEP in Figure 3,7 provides some in-
sight on explaining the low level of 1,8-stereoinduction in
these systems. Although the boronic ester is coordinated
to the acrylamide carbonyl to form a tetrahedral bor-
onate,8 the ester substituents appear to be too distant from
the dienophile to allow effective transmission of stereo-

chemistry. Specifically in the case of 9, which provided
diastereoselectivities below 10%, Figure 3 shows that the
bulkiest part of the pinanedioxy group is pushed away
from the reaction center. This arrangement leaves only the
C3 hydrogen and the C2 methyl as discriminating groups
for effecting diastereofacial selectivity. Interestingly, this
observation suggests that the presence of a bulky group at
C16 (ortho to the boronic ester) could induce a preference
for the opposite boronate configuration. Such an arrange-
ment would place the bulk of the pinane group syn to the
acrylamide moiety, hence in closer proximity to induce a
potentially more effective transfer of chirality.

Although reaction acceleration and 1,8-stereoinduction
were modest in this particular example of Diels–Alder cy-
cloaddition, this work shows that non-activated dialkoxy-
boronic esters can operate as weak, internal Lewis acids
and activate carbonyl-containing functionalities towards
cycloaddition reactions.
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Scheme 2 Competitive kinetic experiment between dienophiles
4 and 8.
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Figure 3 Computer generated ORTEP drawing from the X-ray
coordinates of chiral dienophile 9.
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