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Figure 1. Five-membered cyclic ketene-O,O
a b s t r a c t

Five and six-membered cyclic ketene-N,O-acetals, generated in situ from 2,3-dimethyl-2-oxazolinium
iodide or 2,3-dimethyl-2-oxazinium iodide and triethylamine, reacted with aryl isocyanates in refluxing
THF producing a,a-bis(N-arylamido) lactams via the iodide-catalyzed rearrangement of b,b-bis(N-ary-
lamido) cyclic ketene-N,O-acetal intermediates. The cyclic ketene-N,O-acetal generated in situ from
2,3,4,4-tetramethyl-2-oxazolinium iodide reacted with isocyanates to give b,b-bis(N-arylamido) cyclic
ketene-N,O-acetals, which do not readily rearrange. The two methyls at C-4 hindered the nucleophilic
attack of iodide on C-5, which is required for rearrangement.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction
Cyclic ketene acetals (Fig. 1) with two electron-donating hetero-
atoms are nucleophiles.1 These two heteroatoms make the b-carbon
more electron rich and nucleophilic than vinyl ethers or enamines.
Cyclic ketene-N,O-acetals react with both aroyl and aliphatic acid
chlorides,2 isocyanates,3 and isothiocyanates.3a,b Cyclic ketene-N,O-
acetals were generated first in these previous reactions2,3a,b by
reacting 2,3,4,4-tetramethyl-2-oxazolinium iodide 1 or 2,3-di-
methyl-2-oxazinium iodide with sodium hydride. For example, an
acidic 2-methyl proton of 1 was quantitatively deprotonated by
NaH to form cyclic ketene-N,O-acetal 2 (Eq. 1). After purification of
2 by distillation, conversion into b,b-bis(N-arylamido) cyclic
ketene-N,O-acetals 3 was performed by reacting 2 with 2 equiv aryl
isocyanates.
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The 2-methyl group of 1 may also be reversibly deprotonated by
triethylamine. Thus, we have now reacted 1 or its analog 4, trieth-
ylamine and an aryl isocyanate in one pot to generate cyclic
ketene-N,O-acetals 2 or 5 in situ (Scheme 1). Compound 2 or 5 then
react further with the aryl isocyanate to form b,b-bis(N-arylamido)
cyclic ketene-N,O-acetals 3 or 6 without isolation and purification
of 2 or 5. A mechanism accounting for this substitution reaction is
suggested below.
Scheme 1. Suggested mechanism for the one pot process to generate b,b-bis
(N-arylamido) cyclic ketene-N,O-acetals 3 or 6.
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2. Results

Three cyclic ketene-N,O-acetals and eight aryl isocyanates were
employed to explore this reaction. Selected results from these
Table 1
Reactions of in situ generated cyclic ketene-N,O-acetal 2 with isocyanates to form N,N0-di
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a Reactions were run in refluxing THF for 5 h. Reactant molar ratio 1/Et3N/isocyanate
solvent: acetone/hexanes or ethyl acetate/hexanes) was used for purification.

b Isolated yield.
reactions are given in Table 1 and Table 2. All reactions in Table 1 pro-
ceeded through the4,4-dimethyl-substituted cyclicketene-N,O-acetal2.

The reaction sequence (Table 1) generated b,b-bis(N-arylamido)
cyclic ketene-N,O-acetals 3 nicely after 5 h refluxing in THF where
aryl-2-(3,4,4-trimethyl-oxazolidin-2-ylidene)-malonamide 3a
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= 1:1.3–1.5:2.2–2.3. Column chromatography (stationary phase: silica gel, eluting



Table 2
Reactions of in situ generated cyclic ketene-N,O-acetals 5 and 9 with isocyanatesa

Entry Iodide salt Isocyanate Product 6 Yieldb (%) Product 7 or 10 Yieldb (%)
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Table 2 (continued)

Entry Iodide salt Isocyanate Product 6 Yieldb (%) Product 7 or 10 Yieldb (%)
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a Reactions were run in refluxing THF for 5 h. Reactant molar ratio 4 (or 8)/Et3N/isocyanate = 1:1.3–1.5:2.2–2.3. Column chromatography (stationary phase: silica gel, eluting solvent: acetone/hexanes or ethyl acetate/hexanes)
was used for purification.

b Isolated yield.
c Reactant molar ratio: 4/Et3N/isocyanate = 1:1.3:1.1.
d Reaction was run in THF at room temperature where rearrangement to lactam is exceedingly slow. The product was purified by recrystallization from DCM.
e Reaction was run in refluxing THF for 13.5 h.
f Reaction was run in refluxing anhydrous 1,4-dioxane for 11.5 h.
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Figure 3. Crystal structure of 2-(3-methyl-oxazolidin-2-ylidene)-N,N0-diphenyl-
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R = methyl (Table 1, product 3, entries 1–8). However, when R = H,
the corresponding b,b-bis(N-arylamido) cyclic ketene-N,O-acetals 6
were not observed (Table 2, entries 1, 3–6) or only obtained in
small amounts (Table 2, entries 7,8,10) after 5 h refluxing in THF.
Unexpectedly, the rearranged a,a-bis(N-arylamido) lactams 7
(Table 2, entries 1, 3–8, 10) resulted when cyclic ketene-N,O-acetal
5, without two methyl substituents on C-4, was used. The lactams
were obtained even when using only 1 equiv of aryl isocyanate.
This is shown for the reaction of phenyl isocyanate with 2,3-di-
methyl-2-oxazolinium iodide 4 (Table 2, entry 1).

The lactams were readily characterized by NMR and FTIR spec-
troscopy. The ring methylene hydrogens adjacent to nitrogen of
a,a-bis-substituted N-methyl-lactam 7a (Ar = Ph) exhibited an
NMR chemical shift at 2.7 ppm, sharply upfield from their original
chemical shift of 4.1 ppm at the C-5 position of the precursor, 2-(3-
methyl-oxazolidin-2-ylidene)-N,N0-diphenyl-malonamide, 6a. This
was characteristic of all the lactams 7a–h. The FTIR spectrum of 7a
(Ar = Ph) exhibited a characteristic tertiary amide carbonyl stretch-
ing band4 at 1696 cm�1. X-ray crystallography confirmed this lac-
tam’s structure (Fig. 2).
malonamide 6a, CCDC number 794114.

Figure 2. Crystal structure of a,a-bis(N-phenylamido)-c-lactam 7a, CCDC number
794113.
Rearrangement to lactam 7a did not readily occur at room tem-
perature. Cyclic ketene-N,O-acetal 5 reacted with 2 equiv of phenyl
isocyanate (Table 2, entry 2) to give the b,b-bis(N-phenylamido)
cyclic ketene-N,O-acetal 6a almost exclusively at room tempera-
ture in THF. Only traces of the rearranged lactam 7a were detected
by TLC. The structure of 6a was confirmed by X-ray crystallography
(Fig. 3).

Somewhat slower rearrangement rates to lactams were found
with aryl isocyanates carrying an electron withdrawing group on
the phenyl ring (p-NC-PhNCO (Table 2, entry 7) and p-CF3PhNCO
(Table 2, entry 8)). Longer reaction times led to a higher rearrange-
ment yield (p-CF3PhNCO, Table 2, entry 9). o-Br-PhNCO also gave
incomplete rearrangement after 5 h refluxing in THF (Table 2, entry
10). Using 1,4-dioxane, which has a higher boiling point (101 �C)
than THF (66 �C), and longer reaction times drove the rearrange-
ment of b,b-bis(N-o-bromophenyl amido) cyclic ketene-N,O-acetal
6h to the lactam 7h quantitatively (Table 2, entry 11).
Six-membered ring cyclic ketene-N,O-acetal 9, generated in situ
from 2,3-dimethyl-2-oxazinium iodide 8, reacted with aryl isocya-
nates giving rise to the rearranged lactams 10a–c in refluxing THF
(Table 2, entries 12–14) but in much lower yields compared to
their five-membered ring analog 5.
3. Discussion

To see if the rearrangement is a pure thermal process, the b,b-
bis(N-phenylamido) cyclic ketene-N,O-acetal 6a was refluxed in
THF for 3 h, but 6a was recovered and no 7a formed. Thus, heating
alone does not cause the rearrangement. Is this rearrangement cat-
alyzed by a reaction component (triethylamine, iodide, triethyl-
amine hydrochloride salt, 2,3-dimethyl-2-oxazolinium ion, and
isocyanate)? Refluxing 6a for 5 h in THF with triethylamine gave
only recovered starting material. In contrast, refluxing 6a in THF,
in the presence of a catalytic amount (0.08 equiv) of tetrabutylam-
monium iodide, generated the rearranged product 7a in 59% yield
after 17 h (Eq. 2). Hence, this process is catalytic in iodide.

+

ð2Þ

A mechanism is proposed in Scheme 2. Iodide attacks C-5 next
to the ring oxygen in 6a. This carbon is susceptible to nucleophilic
attack by nucleophiles.5 The negative charge on the ring-opened
anion 11 is distributed over three oxygens and the b-carbon. After
bond rotation, the negatively charged b-carbon of 11 does an SN2
attack on the primary iodide-bearing carbon, displacing iodide,
and generating the five-membered ring lactam 7a. This catalytic
process finds analogy to the iodide-induced rearrangement of
[(N-aziridinomethylthio)methylene]-2-oxindoles to spiropyrrolidi-
nyl-oxindoles,6 where iodide attack on an aziridine ring set off a
rearrangement process.
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Scheme 2. Proposed mechanism for iodide-catalyzed rearrangement of 2-(3-methyl-oxazolidin-2-ylidene)-N,N0-diphenyl-malonamide 6a.
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It is likely that iodide attack is rate determining since the ring
closure step is intramolecular. Reaction of 6a with the cylindrical
nucleophile, isothiocyanate, and SCN� was conducted in refluxing
THF (5 h). No ring opening was observed and 6a was recovered.
This emphasizes that a high anion nucleophilicity is needed to cat-
alyze this conversion. Electron withdrawing groups on the aryl
rings of 6f (Ar = p-NC-Ph) and 6g (Ar = p-CF3-Ph) may stabilize
the ring-opened anion 11 by slightly reducing the negative charge
density on the nucleophilic b-carbon of 11. However, these are dis-
tant functions and the anion is already highly stabilized. Com-
pound 6h with an o-Br-Ph function also rearranged to the lactam
7h more slowly, perhaps due to steric or stereoelectronic factors.

In the presence of the two methyl groups on C-4, the incoming
iodide is sterically hindered from attacking C-5 of 3a (Fig. 4). The
large iodide radius enhances this steric hindrance during nucleo-
philic attack on C-5. Thus, rearrangement in refluxing THF is not
readily achieved.
ON

NPhPhHN

O O

H

I-
H3C

H3C

Figure 4. The 4,4-dimethyl groups prevent the iodide attack on C-5 of 3a.
The formation of a,a-bis(N-phenylamido) lactam 7a in the pres-
ence of only 1 equiv of phenyl isocyanate occurs because cyclic ke-
tene-N,O-acetal 5 was generated in situ from 4 during the reaction.
Thus, excess phenyl isocyanate was present as intermediate 5 was
formed. Under these conditions the second substitution occurred
to form b,b-bis(N-phenylamido) cyclic ketene-N,O-acetal 6a, which
rearranged to 7a.

Whether this rearrangement reaction can be extended to ali-
phatic isocyanates and other electrophiles will be studied.
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