Tetrahedron Letters 52 (2011) 853-858

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

One pot synthesis of α,α -bis(N-arylamido) lactams via iodide-catalyzed rearrangement of B,B-bis(N-arylamido) cyclic ketene-N,O-acetals

Yingguan Song *, William P. Henry, Hondamuni I. De Silva, Guozhong Ye, Charles U. Pittman Jr.*

Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA

ARTICLE INFO

Article history: Received 12 October 2010 Revised 25 November 2010 Accepted 29 November 2010 Available online 4 December 2010

Keywords: Rearrangement Cvclic ketene acetal Lactam

ABSTRACT

Five and six-membered cyclic ketene-N,O-acetals, generated in situ from 2,3-dimethyl-2-oxazolinium iodide or 2,3-dimethyl-2-oxazinium iodide and triethylamine, reacted with aryl isocyanates in refluxing THF producing α, α -bis(*N*-arylamido) lactams via the iodide-catalyzed rearrangement of β, β -bis(*N*-arylamido) cyclic ketene-N,O-acetal intermediates. The cyclic ketene-N,O-acetal generated in situ from 2,3,4,4-tetramethyl-2-oxazolinium iodide reacted with isocyanates to give $\beta_i\beta_i$ -bis(N-arylamido) cyclic ketene-N,O-acetals, which do not readily rearrange. The two methyls at C-4 hindered the nucleophilic attack of iodide on C-5, which is required for rearrangement.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Cyclic ketene acetals (Fig. 1) with two electron-donating heteroatoms are nucleophiles.¹ These two heteroatoms make the β-carbon more electron rich and nucleophilic than vinyl ethers or enamines. Cyclic ketene-N,O-acetals react with both aroyl and aliphatic acid chlorides,² isocyanates,³ and isothiocyanates.^{3a,b} Cyclic ketene-N.Oacetals were generated first in these previous reactions^{2,3a,b} by reacting 2,3,4,4-tetramethyl-2-oxazolinium iodide 1 or 2,3-dimethyl-2-oxazinium iodide with sodium hydride. For example, an acidic 2-methyl proton of **1** was quantitatively deprotonated by NaH to form cyclic ketene-N,O-acetal 2 (Eq. 1). After purification of **2** by distillation, conversion into β_{β} -bis(*N*-arylamido) cyclic ketene-*N*,*O*-acetals **3** was performed by reacting **2** with 2 equiv aryl isocyanates.

Figure 1. Five-membered cyclic ketene-0,0- and -N,0-acetals.

The 2-methyl group of 1 may also be reversibly deprotonated by triethylamine. Thus, we have now reacted **1** or its analog **4**, triethylamine and an aryl isocyanate in one pot to generate cyclic ketene-N,O-acetals 2 or 5 in situ (Scheme 1). Compound 2 or 5 then react further with the aryl isocyanate to form β , β -bis(*N*-arylamido) cyclic ketene-*N*,*O*-acetals **3** or **6** without isolation and purification of 2 or 5. A mechanism accounting for this substitution reaction is suggested below.

Scheme 1. Suggested mechanism for the one pot process to generate $\beta_i\beta_i$ -bis (N-arylamido) cyclic ketene-N,O-acetals 3 or 6.

Corresponding authors. Tel.: +1 662 325 7616; fax: +1 662 325 7611.

E-mail addresses: yingquan@gmail.com (Y. Song), cpittman@chemistry.msstate. edu (C.U. Pittman Jr.).

^{0040-4039/\$ -} see front matter © 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2010.11.148

2. Results

Three cyclic ketene-*N*,*O*-acetals and eight aryl isocyanates were employed to explore this reaction. Selected results from these reactions are given in Table 1 and Table 2. All reactions in Table 1 proceeded through the 4,4-dimethyl-substituted cyclic ketene-N,O-acetal 2.

The reaction sequence (Table 1) generated β_{β} -bis(*N*-arylamido) cyclic ketene-*N*,*O*-acetals **3** nicely after 5 h refluxing in THF where

Table 1

-

Reactions of in situ generated cyclic ketene-N,O-acetal 2 with isocyanates to form N,N'-diaryl-2-(3,4,4-trimethyl-oxazolidin-2-ylidene)-malonamide 3ª

$I \xrightarrow{-N} 0 \xrightarrow{\text{ArNCO, Et_3N}} 1 \xrightarrow{-N} 0 \xrightarrow{-N} 0 \xrightarrow{-N} 0 \xrightarrow{-N} 0 \xrightarrow{-N} 3$					
Entry	Iodide salt	Isocyanate	Product		Yield ^b (%)
1		NCO		3a	79
2		NCO		3b	76
3		F NCO		3c	76
4		MeO		3d	64
5		NCO		3e	69
6		NCO		3f	36
7		F ₃ C NCO	F ₃ C CF ₃	3g	82
8		NCO Br		3h	76

^a Reactions were run in refluxing THF for 5 h. Reactant molar ratio 1/Et₃N/isocyanate = 1:1.3–1.5:2.2–2.3. Column chromatography (stationary phase: silica gel, eluting solvent: acetone/hexanes or ethyl acetate/hexanes) was used for purification.

^b Isolated yield.

Table 2

Reactions of in situ generated cyclic ketene-N,O-acetals 5 and 9 with isocyanates^a

ge) s

Y. Song et al./Tetrahedron Letters 52 (2011) 853-858

^a Reactions were run in refluxing THF for 5 h. Reactant molar ratio 4 (or 8)/Et₃N/isocyanate = 1:1.3-1.5:2.2-2.3. Column chromatography (stationary phase: silica gel, eluting solvent: acetone/hexanes or ethyl acetate/hexanes) was used for purification.

^b Isolated yield.

^c Reactant molar ratio: **4**/Et₃N/isocyanate = 1:1.3:1.1.

^d Reaction was run in THF at room temperature where rearrangement to lactam is exceedingly slow. The product was purified by recrystallization from DCM.

^e Reaction was run in refluxing THF for 13.5 h.

^f Reaction was run in refluxing anhydrous 1,4-dioxane for 11.5 h.

Y. Song et al./Tetrahedron Letters 52 (2011) 853-858

R = methyl (Table 1, product **3**, entries 1–8). However, when R = H, the corresponding β,β-bis(*N*-arylamido) cyclic ketene-*N*,*O*-acetals **6** were not observed (Table 2, entries 1, 3–6) or only obtained in small amounts (Table 2, entries 7,8,10) after 5 h refluxing in THF. Unexpectedly, the rearranged α, α -bis(*N*-arylamido) lactams **7** (Table 2, entries 1, 3–8, 10) resulted when cyclic ketene-*N*,*O*-acetal **5**, without two methyl substituents on C-4, was used. The lactams were obtained even when using only 1 equiv of aryl isocyanate. This is shown for the reaction of phenyl isocyanate with 2,3-dimethyl-2-oxazolinium iodide **4** (Table 2, entry 1).

The lactams were readily characterized by NMR and FTIR spectroscopy. The ring methylene hydrogens adjacent to nitrogen of α , α -bis-substituted *N*-methyl-lactam **7a** (Ar = Ph) exhibited an NMR chemical shift at 2.7 ppm, sharply upfield from their original chemical shift of 4.1 ppm at the C-5 position of the precursor, 2-(3-methyl-oxazolidin-2-ylidene)-*N*,*N*'-diphenyl-malonamide, **6a**. This was characteristic of all the lactams **7a**-**h**. The FTIR spectrum of **7a** (Ar = Ph) exhibited a characteristic tertiary amide carbonyl stretching band⁴ at 1696 cm⁻¹. X-ray crystallography confirmed this lactam's structure (Fig. 2).

Figure 2. Crystal structure of α , α -bis(*N*-phenylamido)- γ -lactam **7a**, CCDC number 794113.

Rearrangement to lactam **7a** did not readily occur at room temperature. Cyclic ketene-*N*,O-acetal **5** reacted with 2 equiv of phenyl isocyanate (Table 2, entry 2) to give the $\beta_i\beta_i$ -bis(*N*-phenylamido) cyclic ketene-*N*,O-acetal **6a** almost exclusively at room temperature in THF. Only traces of the rearranged lactam **7a** were detected by TLC. The structure of **6a** was confirmed by X-ray crystallography (Fig. 3).

Somewhat slower rearrangement rates to lactams were found with aryl isocyanates carrying an electron withdrawing group on the phenyl ring (*p*-NC-PhNCO (Table 2, entry 7) and *p*-CF₃PhNCO (Table 2, entry 8)). Longer reaction times led to a higher rearrangement yield (*p*-CF₃PhNCO, Table 2, entry 9). *o*-Br-PhNCO also gave incomplete rearrangement after 5 h refluxing in THF (Table 2, entry 10). Using 1,4-dioxane, which has a higher boiling point (101 °C) than THF (66 °C), and longer reaction times drove the rearrangement of β_{β} -bis(*N*-*o*-bromophenyl amido) cyclic ketene-*N*,*O*-acetal **6h** to the lactam **7h** quantitatively (Table 2, entry 11).

Figure 3. Crystal structure of 2-(3-methyl-oxazolidin-2-ylidene)-*N*,*N*'-diphenylmalonamide 6a, CCDC number 794114.

Six-membered ring cyclic ketene-*N*,*O*-acetal **9**, generated in situ from 2,3-dimethyl-2-oxazinium iodide **8**, reacted with aryl isocyanates giving rise to the rearranged lactams **10a–c** in refluxing THF (Table 2, entries 12–14) but in much lower yields compared to their five-membered ring analog **5**.

3. Discussion

To see if the rearrangement is a pure thermal process, the β , β -bis(*N*-phenylamido) cyclic ketene-*N*,*O*-acetal **6a** was refluxed in THF for 3 h, but **6a** was recovered and no **7a** formed. Thus, heating alone does not cause the rearrangement. Is this rearrangement catalyzed by a reaction component (triethylamine, iodide, triethylamine hydrochloride salt, 2,3-dimethyl-2-oxazolinium ion, and isocyanate)? Refluxing **6a** for 5 h in THF with triethylamine gave only recovered starting material. In contrast, refluxing **6a** in THF, in the presence of a catalytic amount (0.08 equiv) of tetrabutylammonium iodide, generated the rearranged product **7a** in 59% yield after 17 h (Eq. 2). Hence, this process is catalytic in iodide.

A mechanism is proposed in Scheme 2. lodide attacks C-5 next to the ring oxygen in **6a**. This carbon is susceptible to nucleophilic attack by nucleophiles.⁵ The negative charge on the ring-opened anion **11** is distributed over three oxygens and the β -carbon. After bond rotation, the negatively charged β -carbon of **11** does an S_N2 attack on the primary iodide-bearing carbon, displacing iodide, and generating the five-membered ring lactam **7a**. This catalytic process finds analogy to the iodide-induced rearrangement of [(*N*-aziridinomethylthio)methylene]-2-oxindoles to spiropyrrolidinyl-oxindoles,⁶ where iodide attack on an aziridine ring set off a rearrangement process.

Scheme 2. Proposed mechanism for iodide-catalyzed rearrangement of 2-(3-methyl-oxazolidin-2-ylidene)-N,N-diphenyl-malonamide 6a.

It is likely that iodide attack is rate determining since the ring closure step is intramolecular. Reaction of **6a** with the cylindrical nucleophile, isothiocyanate, and SCN⁻ was conducted in refluxing THF (5 h). No ring opening was observed and **6a** was recovered. This emphasizes that a high anion nucleophilicity is needed to catalyze this conversion. Electron withdrawing groups on the aryl rings of **6f** (Ar = *p*-NC-Ph) and **6g** (Ar = *p*-CF₃-Ph) may stabilize the ring-opened anion **11** by slightly reducing the negative charge density on the nucleophilic β -carbon of **11**. However, these are distant functions and the anion is already highly stabilized. Compound **6h** with an *o*-Br-Ph function also rearranged to the lactam **7h** more slowly, perhaps due to steric or stereoelectronic factors.

In the presence of the two methyl groups on C-4, the incoming iodide is sterically hindered from attacking C-5 of **3a** (Fig. 4). The large iodide radius enhances this steric hindrance during nucleophilic attack on C-5. Thus, rearrangement in refluxing THF is not readily achieved.

Figure 4. The 4,4-dimethyl groups prevent the iodide attack on C-5 of 3a.

The formation of α, α -bis(*N*-phenylamido) lactam **7a** in the presence of only 1 equiv of phenyl isocyanate occurs because cyclic ketene-*N*,*O*-acetal **5** was generated in situ from **4** during the reaction. Thus, excess phenyl isocyanate was present as intermediate **5** was formed. Under these conditions the second substitution occurred to form β,β -bis(*N*-phenylamido) cyclic ketene-*N*,*O*-acetal **6a**, which rearranged to **7a**.

Whether this rearrangement reaction can be extended to aliphatic isocyanates and other electrophiles will be studied.

Acknowledgment

The authors acknowledge the educational and general funds of Mississippi State University for the partial financial support of this work.

Supplementary data

Supplementary data associated with (complete experimental synthetic descriptions and full characterizations of all the compounds) this article can be found, in the online version, at doi:10.1016/j.tetlet.2010.11.148.

References and notes

- (a) McElvain, S. M. Chem. Rev. 1949, 45, 453–492; (b) Zhu, P. C.; Pittman, C. U., Jr. J. Polym. Sci., Part A: Polym. Chem. 1996, 34, 169–174; (c) Cao, L.; Wu, Z.; Zhu, P. C., ; Pittman, C. U., Jr. Polym. Sci., Part A: Polym. Chem. 1999, 37, 2841–2852; (e) Cao, L.; ; Pittman, C. U., Jr. J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 2841–2852; (e) Cao, L.; ; Pittman, C. U., Jr. J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 2841–2852; (e) Cao, L.; ; Pittman, C. U., Jr. J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 2823–2840; (f) Wu, Z.; Cao, L; Pittman, C. U., Jr. J. Polym. Sci., Part A: Polym. Chem. 1998, 36, 861– 871; (g) Yokozawa, T.; Hayashi, R.; Endo, T. Macromolecules 1992, 25, 3313– 3314; (h) Fukuda, H.; Oda, M.; Endo, T. Macromolecules 1996, 29, 3043–3045; (i) Sanda, F.; Endo, T. J. Polym. Sci., Part A: Polym. Chem. 2000, 39, 265–276; (j) Huang, Z.; Wang, M. Synth. Commun. 1991, 21, 1177–1187; (k) Huang, Z.; Wang, M. J. Chem. Soc., Perkin Trans. 1 1993, 1085–1090; (l) Huang, Z.; Wang, M. Tetrahedron 1992, 48, 2325–2332; (m) Huang, Z.; Wang, M. J. Org. Chem. 1992, 57, 184–190.
- 2. Zhou, A.; Pittman, C. U., Jr. Synthesis 2006, 37-48.
- (a) Zhou, A.; Cao, L.; Li, H.; Liu, Z.; Cho, H.; Henry, W. P.; Pittman, C. U., Jr. Tetrahedron 2006, 62, 4188–4200; (b) Zhou, A.; Cao, L.; Li, H.; Liu, Z.; Pittman, C. U., Jr. Synlett 2006, 201–206; (c) Fukuda, H.; Oda, M.; Endo, T. J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 699–702.
- Pretsch, E.; Bühlmann, P.; Affolter, C. In Structure Determination of Organic Compounds, Tables of Spectral Data; Springer, 2000. p 296.
- For examples of nucleophilic attack on this carbon to form ring-opened amides, see: (a) Dreme, M.; Le Perchec, P.; Garapon, J.; Sillion, B. *Tetrahedron Lett.* **1982**, 23, 73–74; (b) Zhu, P. C.; Lin, J.; Pittman, C. U., Jr. *J. Org. Chem.* **1995**, 60, 5729– 5731; (c) Wu, Z.; Stanley, R. R.; Pittman, C. U., Jr. *J. Org. Chem.* **1999**, 64, 8386– 8395; (d) Zhou, A.; Pittman, U., Jr. *J. Comb. Chem.* **2006**, *8*, 262–267.
- 6. Kumar, U. K. S.; Ila, H.; Junjappa, H. Org. Lett. 2001, 3, 4193-4196.