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Cobaltaelectro-Catalyzed Oxidative Allene Annulation by Electro-
Removable Hydrazides 
Ruhuai Mei,*a,b Xinyue Fang,b Liang He,a Junmei Sun,a Liang Zou,c Wenbo Mab and Lutz 
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An efficient C−H/N−H functionalization with allenes was enabled 
via versatile electro-oxidative cobalt catalysis. Thus, 
electrochemical C−H activations were accomplished with high 
levels of chemoselectivity and regioselectivity in an operationally 
simple undivided cell setup. The user-friendly nature of this 
protocol was highlighted by excellent functional group tolerance, 
electro-reductive removable hydrazide directing group and easy 
scalability. Experimental mechanistic studies were indicative of a 
facile BIES C−H cobaltation event.

Inexpensive cobalt-catalyzed oxidative C−H functionalization1 
becomes as an increasingly competent tool for the 
construction of C−C and C−Het bonds in modern synthetic 
organic chemistry. In this context, Daugulis uncovered an 
oxidative cobalt-catalyzed C−H/N−H functionalization with 
alkynes with the aid of chemical oxidants.2 Thereafter, a 
variety of oxidative C−H activations were achieved via cobalt 
catalysis.3 Despite significant progress, these transformations 
generally required excess of chemical oxidants, such as 
silver(I),4 copper(II),5 cerium(IV),6 manganese(II/III),7 and 
molecular oxygen,8 among others. Therefore, byproduct 
formation was inevitable, which is jeopardizing the sustainable 
nature of the C−H activation strategy. By contrast, the 
Ackermann group devised the first electrochemical cobalt-
catalyzed C−H activation in 2017.9 Thus, electrons were 
directly utilized as redox reagents10 to avoid the consumption 

of external oxidants and prevent the formation of undesired 
byproducts.11

Allenes have been widely employed in molecular 
assembling,12 functional material,13 medicines and natural 
products.14 Recently, significant advance has been made in the 
field of transition metal catalyzed C−H functionalization with 
allenes exploring, inter alia, iridium,15 rhodium,16 palladium,17 
ruthenium,18 manganese,19 cobalt20 and nickel21 catalyst. In 
this regard, the Zhai group very recently disclosed a novel 
cobalt-catalyzed trifunctionalization of allenes by a hydrazide 
directing group (Figure 1a).20b Thus, various 3-acylquinolines 
were accessed step-economically with Ag2CO3 as the chemical 
co-oxidant. As a part of our program on sustainable cobalt-
catalyzed C−H activation,8b, 11c, 22 we have now reported here in 
a novel electrochemical C−H annulation with allenes (Figure 
1b). Notable features of our finding include (a) regioselective 
electrocatalytic C−H/N−H annulation with allenes, (b) 
inexpensive, Cp*-free cobalt catalyst, (c) operationally 
convenient undivided cell setup under mild conditions, (d) 
electro-removable hydrazide directing group,11c and (e) 
experimental mechanistic studies towards electrocatalytic 
allene functionalization.
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Figure 1. Cobaltaelectro-catalyzed C−H/N−H functionalization 
with allenes by electro-removable hydrazides 

We started to investigate the cobaltaelectro-catalyzed 
oxidative C−H/N−H annuation with allenes utilizing hydrazide 
1a and diphenyl(propa-1,2-dien-1-yl)phosphine oxide 2a as the 
model substrates(Table 1 and Table S1 in the Supporting 
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Information).23 To our delight, with an user-friendly undivided 
cell setup, the desired regioselective C−H annulation product 
3aa was obtained in good yield when MeOH or TFE was used 
as solvent (entries 1-2). While other commonly used aprotic 
solvents, H2O or HFIP led to no product formation or 
diminished yields. 24 The yield was further improved when the 
reaction was performed at 40 °C (entry 3). Evaluation of 
alternative additives revealed that NaOAc was slightly better 
than NaOPiv and PivOH (entries 4-5). A lower yield was 
observed when a higher current of 4 mA was applied (entry 7). 
Control experiments demonstrated the key importance of the 
carboxylate additive, the cobalt catalyst and the electricity 
(entries 6, 8-9).
Table 1. Optimization of cobaltaelectro-catalyzed C−H 
activation with allene 2a

N

O

N

H

N

O

+
H

2-Py

NMe
2-Py

Me

Co(OAc)2 (10 mol %)

RVC Pt

additive
solvent, 15 h,
T, Ar, 2.0 mA P

Ph Ph

O
P

O

Ph
Ph

1a 2a 3aa

Entry Solvent Additive t (℃) Yield (%)a

1 MeOH NaOPiv 23 81
2 TFE NaOPiv 23 84
3 TFE NaOPiv 40 87
4 TFE NaOAc 40 91
5 TFE PivOH 40 81
6 TFE --- 40 48
7 TFE NaOAc 40 69b

8 TFE NaOAc 40 ---c

9 TFE NaOAc 40 Traced

aReaction conditions: 1a (0.55 mmol), 2a (0.50 mmol), 
Co(OAc)2 (10 mol %), additive (2.0 equiv), solvent (3.5 mL), 
undivided cell, CCE at 2.0 mA, 15 h, Pt-plate cathode (1.0 × 1.0 
cm), RVC anode (1.0 × 1.5 cm), under Ar. b4.0 mA, 8.0 h. c 

Without cobalt. d Without electricity.
Thereafter, to verify the robustness and versatility of the 

cobaltaelectro-catalyzed C−H annulation approach, a variety of 
substituted hydrazides 1a were tested under the optimal 
reaction condition being identified (Scheme 1). Thus, the 
benzhydrazides bearing electron-donating (e.g. methyl, i-
propyl, methoxy, benzyloxy, methylthio) or electron-deficient 
(e.g. fluoro, chloro, trifluoromethyl, benzyloxy) substituents in 
the para position were efficiently transformed within the 
allene annulation manifold (3aa-3na). A set of synthetically 
useful electrophilic functional groups, such as iodo, bromo, 
cyano, ketone, amide and ester, was fully compatible, thus 
enabling further diversification of thus-obtained products. 
Exclusive site selectivity was observed for the meta-
substituted hydrazides, thus only the less sterically hindered o-
C−H bond was exclusively functionalized (3oa-3ra). Moreover, 
the ortho-substituted hydrazides also proved to be amenable 
substrates, albeit gave slightly lower yields, compared with 
their para- or meta- analogues (3sa-3wa). In addition, arenes 
bearing multiple electron-rich substituents also furnished the 
corresponding isoquinolin-1(2H)-one derivatives 3xa-3za with 
high efficacy.
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Scheme 1. Scope with respect to hydrazides 1

Next, the scope for the differently substituted allenes 2 was 
investigated for this transformation (Scheme 2). Generally, an 
excellent regio- and chemo-selectivity was observed, thus the 
annulation exclusively occurred at the terminal position of the 
allenes 2. Apart from diphenylphosphine oxide substituted 
allene 1a, diethyl phosphonate, arene and ester substituted 
allenes 2b-2f also proved to be viable coupling partners, 
furnishing the corresponding products in moderate to good 
yields. In addition, the challenging cyclonona-1,2-diene 2g also 
displayed good reactivity in this transformation, with two 
regioisomers observed in a 2.7:1 ratio.23 

Finally, the practical use of our electrocatalytic annulation 
protocol was further illustrated with its easy scalability. Thus, 
product 3aa was prepared in a comparable yield in a gram-
scale reaction with an operationally simple undivided cell 
setup (3aa in Scheme 1). In addition, following our previous 
reports,11c the N-methyl pyridine motif in annulation products 
3 was smoothly removed by cathodic electro-reduction via 
SmI2 catalysis in an operationally simple undivided cell 
(Scheme 3).24 

N

O

N

H

N

O

3

Co(OAc)2 (10 mol %)
+

RVC Pt

H

1

Py

N
Me

Py

Me

NaOAc (2.0 equiv)
TFE, 15 h, 40 °C

Ar, 2.0 mA
2

R2

N

O

N
Py

Me

PEtO O

OEt

N

O

N
Py

Me

N

O

N
Py

Me

3ae: 58%

3af: 66%

R1
R1

R2

CO2Bn CO2Et

N

O

N
Py

Me

Ph

N

O

N
Py

Me

CF3

3ab: 55% 3ac: 75% 3ad: 96%

N

O

N
Py

Me

CO2Et

3nd: 92%

AcHN

4ag: 19%

N

O

4ag': 50%

N

O

+

N N
Py

Me

Py

Me

N

O

N
Py

Me

N

O

N
Py

Me

nC9H19 nButBu

3ah: complex mixture 3ai: n.d.
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Inspired by the outstanding versatility of the cobalt-
catalyzed electrooxidative C−H/N−H activation with allenes, a 
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set of experiments were performed to rationalize its 
mechanism(Scheme S1 in the Supporting Information).23 To 
this end, electron-rich hydrazide 1b exhibited better reactivity 
in an intermolecular competition experiment, which may 
indicated that a base-assisted internal electrophilic type 
substitution (BIES) metalation is operative.25 However, this 
result can also be rationalized by preferential binding of the 
electron-rich ligand to cobalt(III) species. Moreover, electron 
withdrawing trifluromethyl substituted allene 2f displayed a 
relatively lower reactivity as compared with its analogue 2e. 
Interestingly, no H/D scrambling was observed in either the 
product 3aa or the re-isolated hydrazide 1a when dueterated 
methanol was used as a co-solvent. Furthermore, a minor 
kinetic isotope effect (KIE) was obtained by a parallel 
experiment, which is indicative of a facile C−H cleavage 
process.
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Scheme 3. Electro-reductive removal of directing group

Next, a series of cyclic voltammetric analyses was performed 
to investigate the electrochemical C−H activation (Figure 2). 
Hydrazide 1a exhibited oxidative peaks at 1.0 VSCE and 1.3 VSCE 
with an onset potential at 0.76 VSCE (curve b, Figure 2), while 
no obvious oxidation peaks were observed for allene 2a (curve 
c, Figure 2). Notably, the onset potential for oxidation of 
cobalt(II) precatalyst shifted from 0.77 VSCE (curve d, Figure 2) 
to 0.60 V SCE and an obvious catalytic current was detected in 
the presence of hydrazide 1a (curve e, Figure 2). These 
observations clearly indicated substrate 1a being coordinated 
to cobalt(II), which could facilitate the key anodic oxidation 
toward cobalt(III) carboxylate complex. No significant 
quenching was observed for the introduction of allene 2a into 
the mixture (curve f, Figure 2). 

Based on the above mentioned mechanistic findings and our 
previous reports, a plausible catalytic cycle was proposed as 
depicted in Scheme 4. The electrooxidative C−H activation was 
initiated via the anodic oxidation, which was followed by a 
carboxylated assisted BIES C−H cobaltation to furnish cobalt (III) 
complex 7. Then, the regioselective allene insertion and 
subsequent reductive elimination delivered cobalt(I) complex 
10 and the exo-methylene isoquinolone 9, which could 
transformed to the desired product 3 via isomerization. Next, 
the catalytically competent cobalt(III) complex 6 was reformed 
by the key anode oxidation to close the catalytic cycle. Overall, 
the coboltaelectrocatalysis strategy avoided the consumption 
of chemical oxidants and molecular hydrogen was released as 
the only byproduct.

Figure 2. Cyclic voltammograms of n-Bu4NPF6 (0.1 M) solutions 
in MeOH at 0.1 V/s. [Co] = Co(OAc)2.23
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Scheme 4. Plausible catalytic cycle

In conclusion, we have devised a highly atom-economical 
electocatalytic C−H annulation with allenes. Thus, C−H/N−H 
annulations were achieved with remarkable levels of regio- 
and chemo-selectivity via an earth-abundant Cp*-free cobalt 
catalyst. The synthetic power of this protocol was further 
illustrated by the excellent functional group tolerance, electro-
reductive removable hydrazide directing group, and easy-
scalability. Detailed experimental mechanistic studies revealed 
a facile carboxylate-assisted BIES C−H cleavage event.
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