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Abstract: tert-Butyl nitrite (TBN) promoted oxidative intermolecular
sulfonamination of alkynes to synthesize substituted sulfonyl pyrroles
from the alkynylamines and sulfinic acids via tandem addition/cyclization
has been developed. This reaction is performed well by employing
tert-butyl nitrite as the oxidant, and various substituted sulfonyl pyrroles
are formed in moderate to good yields with no requirement of metal

catalysis.
The reaction of radical-based tandem cyclization offers a strategic
platform for the construction of polysubstituted heterocyclic structures in

convergent manners through orchestrated multiple C—C/C—X bonds
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formation. Sulfonyl radical, as intriguing sulfur-centered radical, which
can be initiated from the common sulfinic acid, has received tremendous
attentions in radical-based reactions due to its greater synthetic value.' In
recent years, the pioneering studies about sulfonylation reactions using
sulfinic acids as sulfonylating agents, mainly focus on direct
sulfonylation of olefins or alkynes and decarboxylative sulfonylation of
a,f-unsaturated carboxylic acids.” Despite the reactions of direct
sulfonylation have been well exploited so far, the sulfonylation and
cyclization to generate heterocyclic compound with benzenesulfinic acid
through radical tandem reaction are very rare. Efforts from the Han’ and
Zhu* groups have demonstrated sulfonamination of alkynes to construct
3-sulfonylindoles and sulfone-containing 4-quinolones with sulfinic acids
through radical tandem cyclization. Recently, the group of Wang provides
a direct method for the preparation of 3-sulfonated coumarins with
sulfinic acids and phenyl propiolates by visible-light initiated oxidative
cyclization under metal-free conditions.” Notwithstanding the impressive
advances, the obvious drawback of these approaches is only generation
the sulfonyl benzo-heterocyclic compounds. Therefore, the formation of
sulfonyl pyrroles from sulfinic acid in facial and mild strategy manner is
still highly desirable.

The substituted pyrroles are privileged heterocyclic scaffold prevalent

in many different fields, incorporating smart materials, pharmaceuticals,
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a) Traditional methods for the synthesis sulfonyl pyrroles via sulfonyl migration
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Scheme 1. Reactions for the Synthesis of Sulfonyl Pyrroles
and natural products.® Moreover, the sulfonyl substituted pyrroles play
significant influence in organic synthesis and medicinal chemistry.” While
the research on the synthesis of sulfonyl substituted pyrroles is limited to
only a few reports.® These methods for the synthesis sulfonyl pyrroles are
mainly based on sulfonyl migration. The group of Chan develops
gold(I)-catalyzed cycloisomerization of N-substituted
N-sulfonyl-aminobut-3-yn-2-ols through regioselectivity migration of the
sulfonyl group to synthesize 3-sulfonyl-[NH]-pyrroles.” Recently, a
one-pot synthesis of sulfonyl pyrroles is reported by Laha's group via
sulfonyl migration and oxidative arylation.'” But these methods still
suffer from harsh reaction conditions, multi-step synthesis of precursors,
expensive transition metal catalysts.'' Inspired by recent studies in
construction heterocyclic scaffolds and C-S bond formation,'* herein, we
disclose a direct method to synthesize 3-sulfonyl pyrroles from

alkynylamines and sulfinic acids via sulfonamination of alkyne and
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Table 1. Optimization of Reaction Condition”

SO,Ph

By . Ph—S//O oxidant /\
PN, o e TP
1a 2a 3aa
Entry Solvent  Oxidant Acid (%) ?{Z;f
1 THF DTBP - 54
2 DCE DTBP - 62
3 DMSO DTBP - 0
4 DMF DTBP - trace
5 MeCN DTBP - 46
6° DCE DTBP - 57
7 DCE DTBP - 58
8 DCE TBN - 67
9 DCE K2S,04 - 21
10 DCE TBHP - 45
11 DCE BQ - 0
12 DCE DDQ - 0
13 DCE PIDA - 33

14 DCE TBN  CFsSO:H 60
15 DCE TBN  CFsCOOH 65
16 DCE TBN  BF;-OEt, 57
17 DCE TBN AcOH 73
18 DCE TBN  AcOH (20) 88
19 DCE TBN  AcOH (40) 64

@ All reactions were carried out in argon atmosphere using 1a (0.30
mmol), 2a (0.60 mmol), oxidant (2.2 equiv.), acid (10 mol %) at 100
°C in 2 mL solvent for 10 h.”Isolated yield. “80°C.“120 °C.

tandem oxidation/cyclization. (Scheme 1).

Initially, the substrates N-(4-phenylbut-3-yn-1-yl) aniline (1a) and
benzenesulfinic acid (2a) were selected as the model for this reaction.
Treating the substrate 1a and 2a with DTBP (di-fert-butyl peroxide) in

THF at 100 °C under argon, the desired
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1,2-diphenyl-3-(phenylsulfonyl)-1H-pyrrole (3aa) was obtained in 54%
yield (Table 1, entry 1). The absolute stereochemistries of the product
was determined by X-ray analysis of a single crystal of 3ab" (in the
Supporting Information). The DCE (1,2-dichloroethane) as solvent gave a
higher = yield than DMSO  (dimethyl  sulfoxide), @ DMF
(dimethylformamide), MeCN and THF (entries 1-5). Changing the
reaction temperature did not increase the yield of product 3aa (entries
6-7). Then various oxidants were examined for this reaction, TBN
(tert-butyl nitrite) showed better efficiency for this process and gave the
desired product 3aa in 67% (entry 2, entries 8-13). Meanwhile, it was
found that the acid significantly influenced the reaction and the yield was
increased to 73% when 10 mmol % AcOH was introduced (Table 1,
entries 14-17). Luckily, increasing the AcOH loading to 20 mol %, the
yield was improved to 88%. (Table 1, entries 17-19). So the optimized
reaction system was established as Table 1, entry 18.

With the optimized conditions in hand, the scope and generality of this
reaction were investigated, and the results were illustrated in Scheme 2.
The optimized conditions were proved to be effective for the generation
of sunfonyl pyrroles and various alkynylarylamines  with
electron-donating or withdrawing groups on benzene rings reacted with
substrate 2a smoothly, giving the desired sulfonyl pyrroles in moderate to

excellent yields. Therefore, the results demonstrated that the reaction was
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Scheme 2. Scope of Aminoalkynes”

O\\ //O
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3-F, 3fa (67%) 3ga (65%)

3pa (62%)

S0O,Ph

SO,Ph
SO,Ph 2
27" R? = 3-Me, 3ha (85%), 7
I\ on 4-Me, 3ia (90%), N »
N 4.Et, 3ja (92%), N
_di 0,
N o 3,5-diMe, 3Ka (87%),
X 1

2-F, 3la (65%),
4-Cl, 3ma (85%), )
4-Ph, 3na (79%), ~ Cl

3-Cl4-Me, 30a (B3%)  3qa (66%) 3ra (69%)

SO,Ph SO,Ph SO,Ph SOPh SO,Ph
J\ /\

N

I
Ph
“en BN © »
3sa (46%) 3 3wa (45%)

s 3ua (78%)  3va (75%)
SO,Ph SO,Ph SO,Ph
8 \/\/m\ m\/\
; N7 Ph N7 PR N
1l Ph Ph Ph
! 3xa (0%) 3ya (0%) 3za (0%)

¢ Reaction conditions: 1 (0.30 mmol), 2a (0.60 mmol), AcOH (20
mol %) and TBN (0.66 mmol ) in DCE (2.0 mL) at 100 °C under Ar.

sensitive to the steric effect of the ortho-position and the products 3ea

and 3la were obtained only in 58% and 65%

N-(4-(thiophen-2-yl)but-3-yn-1-yl)aniline 1g was also tolerated in this
reaction, producing the desired pyrrole 3ga in 65% yield. The substrate 1s
of N-(but-3-yn-1-yl)aniline genenrated the corresponding product 3sa in
46% yield under the standard conditions. Furthermore, homopropargylic
amines with N-substituent as alkyl substituents also performed well and
the desired products were isolated in ideal yields (3ta-3wa). In addition

the alkynylarylamines with groups at 4-position or alkyl group at
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Scheme 3. Scope of Sulfinic Acids”
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“Reaction conditions: 1a (0.30 mmol), 2 (0.60 mmol), AcOH (20
mol %) and TBN (0.66 mmol) in DCE (2.0 mL) at 100 °C under Ar.

I-position performed unsuccessfully in this process and no products were

detected (3xa-3za).

Having successfully achieved the cascade sequence with
homopropargylic amines, we shifted our attention to explore the scope of
sulfinic acids 2. The reactions of a variety of sulfinic acids with 1a were
tested, and the results were illustrated in Scheme 3. Arylsulfinic acids
bearing substituents such as p-Me, p-OMe, p-CF;, p-OCF;, p-Cl, p-F,
p-CN (2¢-2i) on the phenyl ring gave the corresponding sulfonyl
substituted pyrroles in high yields. Obviously, 2-methylbenzenesulfinic

acid reacted with 1a to afford 3ab in 67% yield, suggesting that the

Scheme 4. Scalable Experiment of Substituted Sulfonyl Pyrroles

O
Oy 7
o S\F’h
: o mmn  of
_N /7 .2 equiv
Ph N + Ph—S — Ph
V\Ph oy DCE.Ar, 10h N
Ph
1a (5mmol, 1.10g) 2a 3aa (68%)
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reaction was influenced by the steric effect. More challenging substrate 2j
was also tolerated well, generating the desired product in 79% yield. The
methanesulfinic acid 21 performed unsuccessfully in this process and only

trace desired product was detected.

It was worth mention that scalable experiment of substituted sulfonyl
pyrroles had been performed with optimized conditions and the desired
product 3aa was obtained in 68% when the amount of substrate 1a was
increased to Smmol (1.10g) (Scheme 4).

In order to gain further insight into this reaction and verify the reaction
mechanism, 3.0 equiv the radical scavenge of 2,2,6,6-tetramethyl-1-piperi
dinyl-oxy (TEMPO) was added to the standard reaction system and no
desired product 3aa was detected. The result demonstrated that the
reaction underwent radical pathway (Scheme 5, entry 1). When the
radical scavenger of 2,6-di-tert-butyl-4-methyl-phenol (BHT) was used
for this reaction, the product 3aa was almost not detected and a product
4'* (in the Supporting Information), which was confirmed by NMR,
HMRS and XRD spectroscopy, was isolated in 52% yield (Scheme 5,
entry 2). This result suggested that sulfonyl radical should be the
important radical intermediate for this transformation.

Based on the above control experiment and the literature,”” a plausible
mechanism is proposed in Scheme 6. Initially, sulfinic acids 2a reacts

with TBN to generate the corresponding radical A, which could
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Scheme 5. Control Experiments

o 0
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equilibrates to intermediate B under optimized conditions. Subsequently,
the sulfonyl radical adds to the alkynyl moiety of substrate 1a to afford
the vinyl radical intermediate C under acidic and oxidative conditions.
The intermediate D is easily gained from C via intramolecular radical
addition and cyclization process. Finally, D is oxidized to give the desired
product 3aa.

In summary, we have demonstrated a metal-free and direct annulation
method for the synthesis of 3-substituted pyrrole sulfones from
Scheme 6. Proposed Mechanism

+ HNO
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alkynylarylamines and sulfinic acids via radical cascade
sulfonation/cyclization process. This protocol not only provides a novel
method for the efficient C-S bond formation but also provides a general
approach for the synthesis of 3-sulfonylpyrrole frameworks. In addition,
various substituted homopropargylic amines proceed smoothly with
sulfinic acids and the desired products are obtained in moderate to good
yields.

Experimental Section

General remarks. 'H NMR and "C NMR spectra of materials and
products were respectively recorded on 300MHz and 75SMHz (VARIAN
300M), 400MHz and 100MHz (BRUKER 400M or JNM-ECS 400M) in
CDCIl;. All chemical shifts are given as 6 value (ppm) with reference to
tetramethylsilane (TMS) as an internal standard. All compounds were
further characterized by HRMS; HRMS was performed on an FT-ICRMS
mass instrument and measured with electrospray ionization (ESI). Copies
of their '"H NMR and “C NMR spectra are provided in Supporting
Information. Products were purified by flash chromatography on 200-300
mesh silica gels. All melting points were determined without correction.
Unless otherwise noted, commercially available reagents and solvents
were used without further purification. In addition, it is important to note

that tert-butyl nitrite (TBN) is toxic and easily to decompose.
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General procedure for the synthesis of aminoalkynes la-1w and
1z"7". For the reaction scheme, see Scheme S1 in the Supporting
Information.

To a suspension of Pd(PPh;),Cl, (21 mg, 0.03 mmol), Cul (5.7 mg,
0.03 mmol) in Et;N (1.5 mL) was added a solution of R*I (1.2 eq) and
but-3-yn-1-ol (210 mg, 3.0 mmol, 1.0 eq) in Et;N (15 mL). The mixture
was stirred at room temperature for 12 h and then was diluted with
EtOAc (20 mL), filtered off and evaporated under reduced pressure. The
residue was purified through column chromatography on silica gel
(petroleum ether/EtOAc = 15/1 to 5/1) to afford substituted S; in 90%
yields as yellow oil.

To a solution of S; (3 mmol), triethylamine (0.52 mL, 3.6 mmol), and
4-(dimethylamino)pyridine (7.8 mg, 0.05 mmol) in DCM (18 mL) at 0 °C
was added p-toluenesulfonyl chloride (0.6 g, 3.1 mmol) in three portions.
The reaction mixture was brought to room temperature and stirred for 15
h. Aq. NaOH (1 N, 5.7 mL) was added, and the mixture was vigorously
stirred for 15 min at rt. The usual workup (DCM, brine) gave
p-toluenesulfonate derivatives S, in 80% yields as yellowish oil.

To a solution of R'NH, (3.0 mmol, 1.5 eq), the above obtained S, (2.0
mmol, 1 eq) and KI (0.2 mmol, 0.1 eq) in DMF (4 mL) was added K,CO;
(6.0 mmol, 3 eq). The mixture was heated to 90 °C. After the complete

consumption of S, (TLC), the reaction mixture was cooled to room
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temperature, quenched with a saturated solution of NH,Cl, extracted with
AcOEt three times (3%X20 mL), washed with small amounts of water (100
mL). The combined organic layers were dried with anhydrous Na,SO,
and the solvent was removed in vacuo to afford a residue. The residue
was purified by column chromatography on silica gel using petroleum
ether/EtOAc (40:1) as eluent to provide the desired compounds 1a-1w in
35%-80% yields as a yellow oil.

N-(3-phenylprop-2-yn-1-yl)aniline (1a). Yellow oil (397.8 mg, 60%
yield). '"H NMR (300 MHz, CDCl;, ppm): & = 7.42-7.39 (m, 2 H),
7.30-7.28 (m, 3 H), 7.22-7.18 (m, 2 H), 6.75-6.72 (m, 1 H), 6.68-6.66 (m,
2 H), 3.99 (s, 1 H), 3.42-3.38 (m, 2 H), 2.75-2.71 (m, 2 H); °C NMR (75
MHz, CDCl;, ppm): 6 = 147.7, 131.6, 129.3, 128.3, 127.9, 123.4, 117.8,
113.2, 87.2, 82.3, 42.8, 20.2.

N-(4-(p-tolyl)but-3-yn-1-yl)aniline (1b). Yellow oil (458.2 mg, 65%
yield). '"H NMR (300 MHz, CDCl;, ppm): & = 7.31-7.28 (m, 2 H),
7.19-7.15 (m, 2 H), 7.07-7.06 (m, 2 H), 6.73-7.69 (m, 1 H), 6.62-6.60 (m,
2 H),3.92 (s, 1 H), 3.34-3.30 (m, 2 H), 2.67-2.63 (m, 2 H), 2.30 (s, 3 H);
BC NMR (75 MHz, CDCl;, ppm): & = 147.5, 137.8, 131.4, 129.2, 128.9,
120.2, 117.6, 113.0, 86.4, 82.2, 42.6, 21.3, 20.0.
N-(4-(3,4-dimethylphenyl)but-3-yn-1-yl)aniline (1¢). Yellow oil (410.9
mg, 55% yield). '"H NMR (300 MHz, CDCl;, ppm): & = 7.20-7.13 (m, 4

H), 7.05-7.03 (m, 1 H), 6.74-6.70 (m, 1 H), 6.65-6.63 (m, 2 H), 3.96 (s, 1

ACS Paragon Plus Environment

Page 12 of 40



Page 13 of 40

oNOYTULT D WN =

The Journal of Organic Chemistry

H), 3.37-3.34 (m, 2 H), 2.70-2.67 (m, 2 H), 2.23 (s, 3 H), 2.21 (s, 3 H);
C NMR (75 MHz, CDCl;, ppm): & = 147.7, 136.7, 136.5, 132.6, 129.5,
129.3, 129.0, 120.6, 117.7, 113.1, 86.1, 82.3, 42.7, 20.1, 19.6, 19.5.
N-(4-(3,5-dimethylphenyl)but-3-yn-1-yl)aniline (1d). Yellow oil (433.3
mg, 58% yield). '"H NMR (300 MHz, CDCl;, ppm): & = 7.21-7.16 (m, 2
H), 7.04 (s, 2 H), 6.92 (s, 1 H), 6.75-6.71 (m, 1 H), 6.66-6.64 (d, J = 6.0
Hz, 2 H), 3.96 (s, 1 H), 3.37-3.34 (m, 2 H), 2.70-2.67 (m, 2 H), 2.27 (s, 6
H); °C NMR (75 MHz, CDCl;, ppm): & = 147.7, 137.8, 129.8, 129.3,
123.0, 117.7, 113.1, 86.4, 82.5, 42.7, 21.1, 20.1.
N-(4-(2-fluorophenyl)but-3-yn-1-yl)aniline (1e). Yellow oil (487.7 mg,
68% yield). 'H NMR (400 MHz, CDCl;, ppm): & = 7.40-7.36 (m, 1 H),
7.26-7.17 (m, 3 H), 7.07-7.02 (m, 2 H), 6.75-6.70 (m, 1 H), 6.67-6.65 (m,
2 H), 4.02 (s, 1 H), 3.40-3.37 (m, 2 H), 2.75-2.72 (m, 2 H); °C NMR
(100 MHz, CDCls, ppm): 8 = 162.9 (d, J = 249.0 Hz, 1 C), 147.6, 133.4,
129.5 (d,J=8.0 Hz, 1 C), 129.3, 123.8 (d, J=4.0 Hz, 1 C), 117.7, 115.3
(d,J=19.0Hz, 1 C), 113.1, 111.9 (d, /= 16.0 Hz, 1 C), 92.7, 75.6, 42.5,
20.2.

N-(4-(3-fluorophenyl)but-3-yn-1-yl)aniline (1f). Yellow oil (430.2 mg,
60% yield). '"H NMR (400 MHz, CDCls, ppm): & = 7.25-7.16 (m, 4 H),
7.11-7.07 (m, 1 H), 7.01-6.96 (m, 1 H), 6.75-6.72 (m, 1 H), 6.66-6.64 (m,
2 H), 3.93 (s, 1 H), 3.39-3.36 (m, 2 H), 2.71-2.68 (m, 2 H); °C NMR

(100 MHz, CDCl;, ppm): 6 = 162.3 (d, J = 245.0 Hz, 1 C), 147.5, 129.8,
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129.3, 127.8, 125.3 (d, J = 10.0 Hz, 1 C), 118.5 (d, J = 30.0 Hz, 1 C),
117.8,115.2(d,J=22.0Hz, 1 C), 113.1, 88.4, 81.1, 42.5, 20.1.
N-(4-(thiophen-2-yl)but-3-yn-1-yl)aniline (1g). Yellow oil (306.5 mg,
45% yield). '"H NMR (300 MHz, CDCls, ppm): & = 7.23-7.16 (m, 4 H),
7.01 (m, 1 H), 6.77-6.58 (m, 3 H), 4.32-4.30 (m, 2 H), 3.93 (s, 1 H),
2.26-2.23 (m, 2 H); °C NMR (75 MHz, CDCl;, ppm): & = 147.6, 132.0,
129.5,127.8, 127.2, 122.5, 120.9, 113.6, 96.3, 84.0, 50.3, 18.9.
3-methyl-NV-(4-phenylbut-3-yn-1-yl)aniline (1h). Yellow oil (444.2 mg,
63% yield). '"H NMR (300 MHz, CDCls, ppm): & = 7.42-7.39 (m, 2 H),
7.30-7.24 (m, 3 H), 7.11-7.06 (m, 1 H), 6.58-6.56 (d, J = 6.0 Hz, 1 H),
6.49-6.47 (d, J = 6.0 Hz, 2 H), 3.93 (s, 1 H), 3.41-3.36 (m, 2 H),
2.74-2.69 (m, 2 H), 2.29 (s, 3 H); ”C NMR (75 MHz, CDCl;, ppm): & =
147.7,139.1, 131.6, 129.2, 128.2, 127.9, 123.4, 118.7, 113.9, 110.2, 87.2,
82.2,42.7,21.6,20.2.

4-methyl-/N-(4-phenylbut-3-yn-1-yl)aniline (1i). Yellow oil (472.4 mg,
67% yield). 'H NMR (300 MHz, CDCl;, ppm): & = 7.42-7.39 (m, 2 H),
7.29-7.26 (m, 3 H), 7.01-6.99 (d, J = 6.0 Hz, 2 H), 6.60-6.57 (m, 2 H),
3.84 (s, 1 H), 3.37-3.33 (m, 2 H), 2.71-2.67 (m, 2 H), 2.24 (s, 3 H); °C
NMR (75 MHz, CDCl;, ppm): & = 145.3, 131.6, 129.8, 128.2, 127.8,
127.0, 123.4, 113.5, 87.3, 82.1, 43.0, 20.4, 20.1.
4-ethyl-N-(4-phenylbut-3-yn-1-yl)aniline (1j). Yellow oil (470.6 mg,

63% yield). 'H NMR (300 MHz, CDCl;, ppm): & = 7.42-7.39 (m, 2 H),
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7.29-7.26 (m, 3 H), 7.04-7.02 (m, 2 H), 6.61-6.59 (m, 2 H), 3.85 (s, 1 H),
3.37-3.33 (m, 2 H), 2.71-2.66 (m, 2 H), 2.58-2.50 (m, 2 H ), 1.22-1.16 (m,
3 H); °C NMR (75 MHz, CDCl;, ppm): & = 145.5, 133.6, 131.6, 128.6,
128.2, 127.8, 123.4, 113.3, 87.3, 82.1, 43.0, 27.9, 20.1, 16.0.
3,5-dimethyl-/V-(4-phenylbut-3-yn-1-yl)aniline (1k). Yellow oil (515.4
mg, 69% yield). '"H NMR (300 MHz, CDCl;, ppm): & = 7.42-7.39 (m, 2
H), 7.30-7.28 (m, 3 H), 6.40 (s, 1 H), 6.30 (s, 2 H), 3.87 (s, 1 H),
3.39-3.35 (m, 2 H), 2.73-2.68 (m, 2 H), 2.22 (s, 6 H); °C NMR (75 MHz,
CDCls, ppm): & = 147.7, 139.0, 131.6, 128.2, 127.8, 123.4, 119.8, 111.1,
87.3,82.1,42.7,21.5,20.2.

2-fluoro-N-(4-phenylbut-3-yn-1-yl)aniline (1I). Yellow oil (351.3 mg,
49% vyield). "H NMR (300 MHz, CDCls, ppm): & = 7.42-7.40 (m, 2 H),
7.30-7.28 (m, 3 H), 7.01-6.96 (m, 2 H), 6.78-6.73 (m, 1 H), 6.67-6.62 (m,
1 H), 4.27 (s, 1 H), 3.45-3.41 (m, 2 H), 2.76-2.73 (m, 2 H); °C NMR (75
MHz, CDCls, ppm): 8 = 153.3 (J=178.5 Hz, 1 C), 137.8 (d,J=9.0 Hz, 1
C), 133.2,129.8, 129.5, 126.1, 124.9, 118.6 (d, /= 6.8 Hz, 1 C), 116.2 (d,
J=13.5Hz,1C), 113.9 (d,J=3.0 Hz, 1 C), 88.3, 84.0, 43.9, 21.7.
4-chloro-N-(4-phenylbut-3-yn-1-yl)aniline (1m). Yellow oil (382.5 mg,
50% yield). '"H NMR (300 MHz, CDCls, ppm): & = 7.42-7.38 (m, 2 H),
7.31-7.28 (m, 3 H), 7.15-7.12 (m, 2 H), 6.60-6.55 (m, 2 H), 3.40 (s, 1 H),

3.37-3.33 (m, 2 H), 2.73-2.68 (m, 2 H); °C NMR (75 MHz, CDCls, ppm):

ACS Paragon Plus Environment



oNOYTULT D WN =

The Journal of Organic Chemistry

o = 146.2, 131.6, 129.1, 128.3, 128.0, 123.3, 122.3, 114.2, 86.8, 82.4,
42.7,20.0.

N-(4-phenylbut-3-yn-1-yl)-[1,1'-biphenyl]-4-amine (In). Yellow oil
(356.4 mg, 40% yield). '"H NMR (300 MHz, CDCl;, ppm): & = 7.54-7.52
(d, J= 6.0 Hz, 2 H), 7.46-7.36 (m, 6 H), 7.28-7.22 (m, 4 H), 6.71-6.69 (d,
J=6.0 Hz, 2 H), 4.03 (s, 1 H), 3.41-3.37 (m, 2 H), 2.72-2.69 (m, 2 H);
C NMR (75 MHz, CDCl;, ppm): & = 147.1, 141.1, 131.6, 130.6, 128.6,
128.2,127.9,127.9, 126.2, 126.1, 123.4, 113.3, 87.1, 82.3, 42.7, 20.2.
3-chloro-4-methyl-N-(4-phenylbut-3-yn-1-yl)aniline (10). Yellow oil
(339.3 mg, 43% yield). '"H NMR (300 MHz, CDCls, ppm): & = 7.41-7.39
(m, 2 H), 7.30-7.28 (m, 3 H), 7.02-7.00 (d, J = 6.0 Hz, 1 H), 6.67 (d, J =
0.5 Hz, 1 H), 6.49-6.46 (m, 1 H), 3.91 (s, 1 H), 3.36-3.32 (m, 2 H),
2.72-2.68 (m, 2 H), 2.25 (s, 3 H); >C NMR (75 MHz, CDCl;, ppm): & =
146.8, 134.9, 131.6, 131.3, 128.3, 127.9, 124.6, 123.3, 113.4, 112.0, 86.9,
82.3,42.8,20.1, 18.9.

2-methoxy-N-(4-(p-tolyl)but-3-yn-1-yl)aniline (1p). Yellow oil (349.8
mg, 44% yield). '"H NMR (300 MHz, CDCl;, ppm): & = 7.31-7.29 (m, 2
H), 7.09-7.07 (d, J = 6.0 Hz, 2 H), 6.90-6.86 (m, 1 H), 6.77-6.75 (m, 1 H),
6.70-6.64 (m, 2 H), 4.57 (s, 1 H), 3.81 (s, 3 H), 3.40-3.37 (m, 2 H),
2.73-2.69 (m, 2 H), 2.32 (s, 3 H); °C NMR (75 MHz, CDCl;, ppm): & =
146.9, 137.7, 137.6, 131.4, 128.9, 121.2, 120.4, 116.7, 109.9, 109.5, 86.5,

82.1,55.3,42.5,21.3,20.1.
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N-(4-(3,5-dimethylphenyl)but-3-yn-1-yl)-2-methoxyaniline (1q).
Yellow oil (334.8 mg, 40% yield). '"H NMR (300 MHz, CDCls, ppm): & =
7.04 (s, 2 H), 6.90-6.86 (m, 2 H), 6.77-6.76 (d, J = 3.0 Hz, 1 H),
6.70-6.64 (m, 2 H), 4.57 (s, 1 H), 3.82 (s, 3 H), 3.40-3.37 (m, 2 H),
2.72-2.69 (m, 2 H), 2.26 (s, 6 H); °C NMR (75 MHz, CDCl;, ppm): & =
146.9, 137.6, 137.6, 129.6, 129.2, 123.1, 121.2, 116.7, 109.9, 109.5, 86.5,
82.3,55.3, 42.5,21.0, 20.1.
4-chloro-N-(4-(3,5-dimethylphenyl)but-3-yn-1-yl)aniline (1r). Yellow
oil (297.2 mg, 35% yield). 'H NMR (300 MHz, CDCl;, ppm): & =
7.13-7.11 (m, 2 H), 7.03 (s, 2 H), 6.92 (s, 1 H), 6.56-6.54 (m, 2 H), 4.52
(s, 1 H), 3.33-3.29 (m, 2 H), 2.69-2.65 (m, 2 H), 2.27 (s, 6 H); °C NMR
(75 MHz, CDCl;, ppm): & = 146.3, 137.8, 129.8, 129.3, 129.0, 122.8,
122.1, 114.1, 86.1, 52.6, 42.7, 21.0, 20.0.

N-(but-3-yn-1-yDaniline (1s). Yellow oil (355.2 mg, 80% vyield). 'H
NMR (300 MHz, CDCl;, ppm): & =7.18-7.14 (m, 2 H) , 6.73-6.69 (m, 1
H), 6.60-6.58 (m, 2 H), 3.88 (s, | H), 3.27 (m, 1 H), 2.45-2.41 (m, 2 H),
2.05-2.00 (m, 2 H); °C NMR (75 MHz, CDCl;, ppm): & = 147.4, 129.2,
117.7,113.0, 81.7, 70.0, 42.3, 19.0.
N-benzyl-4-phenylbut-3-yn-1-amine (1t). Yellow oil (493.5 mg, 70%
yield). '"H NMR (300 MHz, CDCl;, ppm): & = 7.40-7.38 (m, 2 H),
7.36-7.31(m, 4 H), 7.29-7.25 (m, 4 H), 3.86 (s, 2 H), 2.89-2.86 (m, 2 H),

2.66-2.62 (m, 2 H), 2.09 (s, 1 H); ”C NMR (75 MHz, CDCl;, ppm): & =
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140.0, 131.7, 131.4, 128.6, 128.3, 127.9, 127.5, 123.6, 87.8, 81.8, 53.3,
47.5, 20.5.

N-butyl-4-phenylbut-3-yn-1-amine (1u). Yellow oil (434.2 mg, 72%
yield). '"H NMR (400 MHz, CDCl;, ppm): & = 7.41-7.39 (m, 2 H),
7.28-7.27 (m, 3 H), 2.87-2.84 (m, 2 H), 2.66-2.60 (m, 4 H), 1.71 (s, 1 H),
1.52-1.48 (m, 2 H), 1.39-1.35 (m, 2 H), 0.94-0.91 (m, 3 H); °C NMR
(100 MHz, CDCl;, ppm): 6 = 131.8, 128.5, 127.6, 123.8, 88.1, 81.8, 49.2,
48.7,47.9,32.3,20.6, 14.1.

N-(4-phenylbut-3-yn-1-yl)cyclohexanamine (1v). Yellow oil (469.9 mg,
69% yield). "H NMR (400 MHz, CDCls, ppm): 8 = 7.41-7.38 (m, 2 H),
7.30-7.27 (m, 3 H), 2.90-2.85 (m, 2 H), 2.62-2.58 (m, 2 H), 2.53-2.46 (m,
1 H), 1.92-1.88 (d, J=16.0 Hz, 2 H), 1.76-1.61 (m, 4 H), 1.33-1.07 (m, 5
H); C NMR (100 MHz, CDCls, ppm): & = 131.5, 128.2, 127.6, 123.6,
88.0, 81.7, 56.2, 45.2, 33.56, 26.1, 25.0, 20.8.
N-(4-phenylbut-3-yn-1-yl)octadecan-1-amine (1w). Yellow oil (547.9
mg, 46% yield). '"H NMR (400 MHz, CDCl;, ppm): & = 7.42-7.38 (m, 2
H), 7.29-7.26 (m, 3 H), 2.88-2.83 (m, 2 H), 2.68-2.60 (m, 4 H), 1.67 (s, 1
H), 1.51-1.49 (m, 2 H), 1.25 (m, 30 H), 0.89-0.88 (m, 3 H); °C NMR
(100 MHz, CDCl;, ppm): & = 131.6, 128.2, 127.7, 123.6, 87.9, 81.7, 49.4,
48.2,31.9,30.1, 29.7, 29.6, 29.4, 27.3,22.7, 20.5, 14.1.
N-(hept-3-yn-1-ylaniline (1z). Yellow oil (415.1 mg, 74% yield). 'H

NMR (400 MHz, CDCls, ppm): & = 7.19-7.14 (m, 2 H), 6.72-6.68 (m, 1
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H), 6.62-6.60 (m, 2 H), 3.91 (s, 1 H), 3.32-3.20 (m, 2 H), 2.47-2.42 (m, 2
H), 2.16-2.11 (m, 2 H), 1.55-1.46 (m, 2 H), 0.99-0.95 (m, 3 H); °C NMR
(100 MHz, CDCls, ppm): & = 147.8, 129.2, 117.5, 113.0, 82.0, 77.2, 42.9,
22.3,20.7,19.4, 13.4.

819 For the reaction

General procedure for the synthesis of 1x-1y
scheme, see Scheme S2 in the Supporting Information.

A dried round-bottom flask was charged with benzaldehyde (8.0
mmol), the aniline (8.0 mmol), molecular sieves 4A (1mg /1.0 mmol
aldehyde) and dichloromethane. The reaction mixture was stirred at room
temperature and traced by TLC until the reaction finished. Then the
mixture was filtered and the filtrate was concentrated under reduced
pressure, gave the pure imines without additional purification.

An aluminum amalgam was prepared from aluminum powder (0.5 g,
18.0 mmol) and a catalytic amount of mercuric chloride (10 mg) in 7.5
mL anhydrous THF by vigorously stirring at room temperature for 1 h
under a N, atmosphere. A solution of propargyl bromide (18.0 mmol ) in
12.5 mL of anhydrous THF was then slowly added to the suspension at
such a rate as to maintain the temperature between 30-40°C. After the
addition, the reaction mixture was continued to stir until a dark grey
solution was obtained. The generated propargyl aluminum sesquibromide

solution was added to a solution of imine (6.0 mmol) in 20.0 mL of

anhydrous THF at -78°C under N, atmosphere. The reaction mixture was
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stirred at -78°C for about 1 h, then warmed to room temperature and
continue to stir for additional 3-4 h (monitored by TLC). The mixture was
quenched by adding saturated NH4Cl (aq), and extracted with EtOAc (3
x20 mL), and washed with brine, combined organic extracts, dried over
MgSO,, and concentrated in vacuo to give the residue. The residue was
purified by flash chromatography over silica gel (gradient elution of
EtOAc /petroleum ether, PE : EA =50: 1).
N-(1-(4-chlorophenyl)-4-phenylbut-3-yn-1-yl)aniline (1x). Yellow oil
(506.4mg, 51% yield). '"H NMR (400 MHz, CDCl;, ppm): & = 7.41-7.25
(m, 8 H), 7.14-7.08 (m, 2 H), 6.72-6.67 (m, 2 H), 6.55-6.52 (d, J = 12.0
Hz, 2 H), 4.61-4.55 (m, 1 H), 4.48 (s, 1 H), 3.00-2.81 (m, 2 H); °C NMR
(100 MHz, CDCl;, ppm): & = 146.8, 140.9, 133.1, 131.6, 129.2, 128.8,
128.3,128.1, 127.8, 123.0, 118.0, 113.7, 85.1, 56.2, 29.2.
N-(1-phenyloct-1-yn-4-yl)aniline (1y). Yellow solid (482.0 mg, 58%
yield). '"H NMR (400 MHz, CDCl;, ppm): & = 7.40-7.37 (m, 2 H),
7.28-7.25 (m, 3 H), 7.19-7.15 (m, 2 H), 6.71-6.67 (m, 1 H), 6.63-6.61 (m,
2 H), 3.71 (s, 1 H), 3.60-3.57 (m, 1 H), 1.81-1.77 (m, 1 H), 1.66-1.34 (m,
1 H), 1.46-1.34 (m, 4 H), 0.97-0.90 (m, 3 H); "C NMR (100 MHz,
CDCl;, ppm): 6 = 147.3, 131.6, 129.3, 128.2, 127.7, 123.6, 117.3, 113.4,
86.6, 82.7,51.7, 34.0, 28.4, 24.7,22.6, 14.0

General procedure for the synthesis of sulfinic acids®
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Benzenesulfinic acid and p-toluenesulfinic acid were obtained by
acidification of the commercially available sodium benzenesulfinate and
sodium p-toluenesulfinate, then the mixture was extracted by Et,O. After
dried by Na,SO,, the solvent was removed under vacuum at 0 °C to
provide pure product. Other arylsulfinic acids, heteroaromatic and
aliphatic sulfinic acids were prepared by the following procedures:
arylsulfonyl chloride (10 mmol) and anhydrous sodium sulfite (30 mmol)
were added into 20 mL of water. The reaction mixture was kept at 70-80
°C for 5 h. After the reaction was complete, the mixture was washed with
chloroform. The water phase was acidified with excess concentrated HCI
solution at 0 °C, then extracted by Et,0. After dried by Na,SO,, the
organic solvent was removed under vacuum at 0 °C to provide pure
products.

General procedure for synthesis of substituted sulfonyl pyrroles from
alkynylanilines and sulfinic acids:

The alkynylamines 1 (1 equiv, 0.3 mmol), sulfinic acids 2 (2 equiv, 0.6
mmol), TBN (2.2 equiv, 0.66 mmol) (TBN is very toxic and dangerous.
Caution!), AcOH (20 mol %, 0.06 mmol) were mixed in DCE (2 mL)
were stirred at 100 °C under argon atmosphere for 10 h (TLC monitored).
Then the reaction mixture was cooled to room temperature and the

solvent was evaporated in vacuo, the crude product was purified by
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column chromatography, eluting with petroleum ether/EtOAc (10:1) to
afford the desired 3.

1,2-diphenyl-3-(phenylsulfonyl)-1 H-pyrrole (3aa).

Yellow solid (94.8 mg, 88% yield), melting point: 94-96 °C. 'H NMR
(400 MHz, CDCl;, ppm): 6 7.52-7.50 (d, J = 8.0 Hz, 2 H), 7.41-7.38 (m,
1 H), 7.29-7.17 (m, 8 H), 7.09-7.07 (m, 2 H), 7.02-7.00 (m, 2 H),
6.91-6.89 (m, 2 H); °C NMR (100 MHz, CDCl;, ppm): & 143.1, 138.6,
135.5, 132.1, 131.4, 129.1, 129.0, 128.6, 128.4, 127.7, 127.6, 127.0,
125.8, 124.1, 122.4, 110.4; HRMS(ESD)m/z calcd for C,H;sNO,S
[M+H]" 360.1053; found: 360.1046.
1-phenyl-3-(phenylsulfonyl)-2-(p-tolyl)-1H-pyrrole (3ba).

Yellow solid (76.1 mg, 68% yield), melting point: 106-108 °C. "H NMR
(300 MHz, CDCl;, ppm): 6 7.55-7.53 (d, J = 6.0 Hz, 2 H), 7.43-7.38 (m,
1 H), 7.30-7.21 (m, 6 H), 7.03-6.97 (m, 5 H), 6.87 (s, 2 H), 2.31 (s, 3 H);
C NMR (75 MHz, CDCls, ppm): & 143.2, 138.7, 138.4, 135.7, 132.0,
131.4, 131.2, 128.9, 128.4, 127.6, 127.5, 126.9, 125.8, 123.7, 122.3,
110.4, 21.3; HRMS(ESI)m/z caled for C,3H,oNO,S [M+H]" 374.1209;
found: 374.1217.
2-(3,4-dimethylphenyl)-1-phenyl-3-(phenylsulfonyl)-1H-pyrrole (3ca).
Yellow solid (84.8 mg, 73% yield), melting point: 120-122 °C. '"H NMR
(300 MHz, CDCl;, ppm): & 7.58-7.55 (m, 2 H), 7.45-7.40 (m, 1 H),

7.32-7.22 (m, 6 H), 7.04-7.01 (m, 1 H), 6.95-6.92 (m, 1 H), 6.89-6.86 (m,

ACS Paragon Plus Environment

Page 22 of 40



Page 23 of 40 The Journal of Organic Chemistry

1

2

" 2 H), 6.80 (s, 1 H), 6.76-6.73 (d, J=9.0 Hz, 1 H), 2.21 (s, 3 H), 2.11 (s, 3
g H); °C NMR (75 MHz, CDCl;, ppm): § 143.3, 138.8, 137.1, 136.0, 135.7,
: 132.4, 132.0, 128.9, 128.7, 128.3, 127.6, 127.5, 127.1, 126.4, 125.9,
i 123.7, 122.1, 110.4, 19.6, 19.6; HRMS(ESI)m/z caled for Cp4Hp,NO,S
]j [M+H]" 388.1366; found: 388.1376.

12 2-(3,5-dimethylphenyl)-1-phenyl-3-(phenylsulfonyl)-1H-pyrrole (3da).
ié Yellow solid (90.6 mg, 78% vyield), melting point: 123-125 °C. '"H NMR
2 (300 MHz, CDCly, ppm): & 7.57-7.54 (m, 2 H), 7.45-7.40 (m, 1 H),
% 7.32-7.22 (m, 6 H), 7.04-7.01 (m, 2 H), 6.91-6.86 (m, 3 H), 6.60 (s, 2 H),
> 2.15 (s, 6 H); °C NMR (75 MHz, CDCl;, ppm): & 143.2, 138.8, 137.0,
gg 135.9, 132.0, 130.2, 129.0, 128.9, 128.3, 127.9, 127.5, 127.2, 125.8,
i 123.8, 122.0, 110.4, 21.1; HRMS(ESI)m/z caled for CosH,,NO,S [M+H]"
gg 388.1366; found: 388.1360.

22 2-(2-fluorophenyl)-1-phenyl-3-(phenylsulfonyl)-1H-pyrrole (3ea).

;73 Yellow solid (65.6 mg, 58% yield), melting point: 115-116 °C. '"H NMR
3‘19) (400 MHz, CDCl;, ppm): & 7.59-7.56 (m, 2 H), 7.46-7.44 (m, 1 H),
o 7.42-7.34 (m, 3 H), 7.31-7.23 (m, 4 H), 7.15-7.12 (m, 3 H), 7.10-7.05 (m,
E‘E 2 H), 6.95-6.76 (m, 1 H); °C NMR (100 MHz, CDCls, ppm): & 160.2 (d,
e J=247.0 Hz, 1 C), 142.9, 138.5, 134.1, 132.3, 131.4 (d, /= 8.0 Hz, 1 C),
g? 129.4, 129.0, 128.5, 128.0, 126.9, 125.4, 125.0, 123.6 (d, J=3.0 Hz, 1 C),
o 123.1, 117.3 (d, J = 16.0 Hz, 1 C), 115.1 (d, J = 20.0 Hz, 1 C), 110.4;
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HRMS(ESI)m/z caled for C,,H;;FNO,S [M+H]" 378.0959; found:
378.0950.

2-(3-fluorophenyl)-1-phenyl-3-(phenylsulfonyl)-1H-pyrrole (3fa).
Yellow solid (75.8 mg, 67% yield), melting point: 99-101 °C. '"H NMR
(400 MHz, CDCl;, ppm): 6 7.58-7.55 (m, 2 H), 7.46-7.40 (m, 1 H),
7.33-7.20 (m, 5 H), 7.18-7.13 (m, 1 H), 7.03-6.94 (m, 3 H), 6.91-6.88 (m,
3 H), 6.79-6.75 (m, 1 H); °C NMR (100 MHz, CDCls, ppm): & 163.3 (d,
J=327.0 Hz, 1 C), 142.8, 138.3, 133.6, 132.3, 131.1 (d, /= 11.0 Hz, 1
0), 129.2 (d, J=5.0 Hz, 1 C), 128.5, 127.9, 127.4 (d, J= 4.0 Hz, 1 C),
126.9, 125.7, 124.5, 122.8, 118.5, 118.2, 115.6 (d, /= 7.0 Hz, 1 C), 110.5;
HRMS(ESI)m/z caled for C,,H;FNO,S [M+H]" 378.0959; found:
378.0966.

1-phenyl-3-(phenylsulfonyl)-2-(thiophen-2-yl)-1 H-pyrrole (3ga).
Yellow solid (71.2 mg, 65% yield), melting point: 114-116 °C. "H NMR
(400 MHz, CDCl;, ppm): 6 7.60-7.57 (m, 2 H), 7.46-7.41 (m, 1 H),
7.33-7.27 (m, 6 H), 7.16-7.09 (m, 3 H), 7.00-6.91 (m, 3 H); °C NMR
(100 MHz, CDCl;, ppm): & 142.6, 138.5, 132.4, 132.3, 129.9, 129.0,
129.0, 128.8, 128.5, 128.1, 127.1, 126.6, 126.0, 125.8, 123.2, 110.7;
HRMS(ESDm/z calcd for C,0H;sNO,S, [MJrH]+ 366.0617; found:
366.0623.

2-phenyl-3-(phenylsulfonyl)-1-(m-tolyl)-1H-pyrrole (3ha).

ACS Paragon Plus Environment

Page 24 of 40



Page 25 of 40

oNOYTULT D WN =

The Journal of Organic Chemistry

Yellow solid (95.1 mg, 85% yield), melting point: 114-116 °C. "H NMR
(300 MHz, CDCl;, ppm): 6 7.52-7.49 (d, J = 9.0 Hz, 2 H), 7.42-7.27 (m,
1 H), 7.23-7.17 (m, 5 H), 7.09-7.00 (m, 4 H), 6.90-6.86 (m, 3 H),
6.77-6.75 (d, J = 6.0 Hz, 1 H); °C NMR (75 MHz, CDCl;, ppm): & 143.1,
139.1, 138.5, 135.5, 132.1, 131.4, 129.2, 128.7, 128.5, 128.4, 127.9,
127.6, 127.0, 126.4, 123.9, 122.9, 122.3, 110.3, 21.1; HRMS(ESI)m/z
calcd for C,3HyoNO,S [M+H]" 374.1209; found: 374.1213.
2-phenyl-3-(phenylsulfonyl)-1-(p-tolyl)-1H-pyrrole (3ia).

Yellow solid (100.7 mg, 90% yield), melting point: 116-118 °C. '"H NMR
(300 MHz, CDCl;, ppm): 6 7.52-7.49 (m, 2 H), 7.42-7.37 (m, 1 H),
7.29-7.17 (m, 5 H), 7.09-7.06 (m, 2 H), 7.03-7.00 (d, /= 9.0 Hz, 2 H) ,
6.90-6.85 (m, 4 H), 2.27 (s, 3 H); °C NMR (75 MHz, CDCl;, ppm): &
142.9, 137.2, 135.5, 133.6, 132.2, 131.4, 129.2, 128.8, 128.4, 127.9,
127.0, 126.8, 124.6, 122.2, 110.7; HRMS(ESI)m/z calcd for C,3H,)NO,S
[M+H]" 374.1209; found: 374.1206.
1-(4-ethylphenyl)-2-phenyl-3-(phenylsulfonyl)-1H-pyrrole (3ja).
Yellow solid (106.8 mg, 92% yield), melting point: 123-125 °C. '"H NMR
(400 MHz, CDCl;, ppm): 6 7.52-7.50 (d, J = 8.0 Hz, 2 H), 7.42-7.39 (m,
1 H), 7.29-7.17 (m, 6 H), 7.09-7.02 (m, 4 H), 6.93-6.86 (m, 4 H),
2.61-2.53 (m, 2 H), 1.19-1.14 (m, 3 H); ’C NMR (100 MHz, CDCl,
ppm): 6 143.8, 143.1, 136.3, 135.5, 132.1, 131.5, 129.3, 128.5, 128.4,

128.3, 127.6, 127.0, 125.7, 123.8, 122.4, 1103, 28.2, 15.2;
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HRMS(ESI)m/z caled for C,sH»nNO,S [M+H]" 388.1366; found:
388.1375.
1-(3,5-dimethylphenyl)-2-phenyl-3-(phenylsulfonyl)-1 H-pyrrole (3ka).
Yellow solid (101.0 mg, 87% yield), melting point: 131-133 °C. '"H NMR
(300 MHz, CDCl;, ppm): 6 7.52-7.49 (m, 2 H), 7.41-7.36 (m, 1 H),
7.30-7.17 (m, 5 H), 7.09-7.06 (m, 2 H), 6.88-6.83 (m, 3 H), 6.61 (s, 2 H),
2.15 (s, 6 H); °C NMR (75 MHz, CDCL;, ppm): & 143.2, 138.7, 138.5,
135.5, 132.0, 131.4, 128.5, 128.3, 127.5, 127.0, 123.7, 123.6, 122.3,
110.2, 21.0; HRMS(ESI)m/z calcd for C,4H;,NO,S [M+H]™ 388.1366;
found: 388.1373.
1-(2-fluorophenyl)-2-phenyl-3-(phenylsulfonyl)-1H-pyrrole (31a).
Yellow solid (73.5 mg, 65% yield), melting point: 119-121 °C. '"H NMR
(300 MHz, CDCl;, ppm): 6 8.01-7.98 (m, 2 H), 7.92-7.90 (m, 4 H),
7.78-7.68 (m, 3 H), 7.62-7.58 (m, 2 H), 7.55-7.51 (m, 4 H); °C NMR (75
MHz, CDCI;, ppm): 6 160.2 (d, J = 186.0 Hz, 1 C), 142.9, 138.5, 134.1,
132.3,131.4 (d, J=6.8 Hz, 1 C), 129.4, 129.0, 128.5, 128.0, 126.9, 125.5,
125.0, 123.6 (d, J = 3.0 Hz, 1 C), 123.1, 1173 (d, J = 11.3 Hz, 1 C),
115.1 (d, J = 165 Hz, 1 C), 110.4; HRMS(ESD)m/z calcd for
C,H;,FNO,S [M+H]" 378.0959; found: 378.0950.
1-(4-chlorophenyl)-2-phenyl-3-(phenylsulfonyl)-1H-pyrrole (3ma).
Yellow solid (100.2 mg, 85% yield), melting point: 135-137 °C. "H NMR

(300 MHz, CDCl;, ppm): & 7.51-7.48 (m, 2 H), 7.43-7.38 (m, 1 H),
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7.31-7.18 (m, 7 H), 7.08-7.05 (m, 2 H), 6.96-6.90 (m, 3 H), 6.87-6.86 (d,
J=3.0 Hz, 1 H); °C NMR (75 MHz, CDCl;, ppm): § 142.9, 137.2, 135.5,
133.6, 132.2, 131.4, 129.2, 128.8, 128.4, 127.9, 127.0, 126.9, 126.8,
124.6, 122.2, 110.7; HRMS(ESI)m/z calcd for C,H;;,CINO,S [M+H]"
394.0663; found: 394.0654.
1-([1,1'-biphenyl]-4-yl)-2-phenyl-3-(phenylsulfonyl)-1H-pyrrole (3na).
Yellow solid (103.1 mg, 79% yield), melting point: 159-161 °C. "H NMR
(400 MHz, CDCl;, ppm): 6 7.52-7.48 (m, 4 H), 7.45-7.38 (m, 5 H),
7.34-7.28 (m, 1 H), 7.27-7.19 (m, 5 H), 7.13-7.11 (m, 2 H), 7.07-7.05 (d,
J = 8.0 Hz, 2 H), 6.93 (s, 2 H); °C NMR (100 MHz, CDCl;, ppm): &
143.0, 140.4, 139.5, 137.7, 135.4, 132.1, 131.5, 129.1, 128.8, 128.6,
128.4, 127.7, 127.5, 127.0, 126.9, 126.0, 124.2, 1223, 110.5;
HRMS(ESD)m/z caled for C,sHp;pNO,S [M+H]" 436.1366; found:
436.1374.
1-(3-chloro-4-methylphenyl)-2-phenyl-3-(phenylsulfonyl)-1H-pyrrole
(30a).

Yellow solid (101.3 mg, 83% yield), melting point: 135-137 °C. '"H NMR
(400 MHz, CDCl;, ppm): 6 7.50-7.48 (m, 2 H), 7.42-7.38 (m, 1 H),
7.32-7.21 (m, 6 H), 7.09-7.07 (m, 3 H), 7.04-7.02 (d, J = 8.0 Hz, 1 H),
6.90-6.89 (m, 1 H), 6.86-6.85 (m, 1 H), 6.75-6.72 (m, 1 H), 2.28 (s, 3 H);
C NMR (100 MHz, CDCl;, ppm): & 143.0, 137.3, 135.8, 135.5, 134.5,

132.2, 131.4, 131.0, 128.8, 128.4, 127.8, 127.0, 126.2, 124.4, 124.1,
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122.2, 110.6, 19.6; HRMS(ESD)m/z caled for Ca3H;oCINO,S [M+H]"
408.0820; found: 408.0811.
1-(2-methoxyphenyl)-3-(phenylsulfonyl)-2-(p-tolyl)-1 H-pyrrole (3pa).
Yellow solid (75.0 mg, 62% yield), melting point: 160-162 °C. "H NMR
(300 MHz, CDCl;, ppm): 6 7.58-7.55 (m, 2 H), 7.42-7.39 (m, 1 H),
7.31-7.19 (m, 4 H), 7.06-7.03 (m, 1 H), 6.95 (s, 3 H), 6.85-6.82 (m, 2 H),
6.80-6.73 (m, 2 H), 3.55 (s, 3 H), 2.27 (s, 3 H); °C NMR (75 MHz,
CDCl;, ppm): 6 154.2, 143.5, 137.4, 136.4, 131.9, 129.9, 129.7, 129.2,
128.8, 128.6, 128.2, 127.6, 127.2, 122.6, 122.4, 120.2, 111.6, 109.8, 55.2,
21.1; HRMS(ESI)m/z caled for C,4H,,NO;S [M+H]" 404.1315; found:
404.1307.
2-(3,5-dimethylphenyl)-1-(2-methoxyphenyl)-3-(phenylsulfonyl)-1H-p
yrrole (3qa).

Yellow solid (82.6 mg, 66% yield), melting point: 168-169 °C. '"H NMR
(300 MHz, CDCl;, ppm): 6 7.61-7.58 (m, 2 H), 7.43-7.41 (m, 1 H),
7.37-7.24 (m, 2 H), 7.21-7.19 (d, J = 9.0 Hz, 1 H), 7.04-7.01 (d, J = 6.0
Hz, 1 H), 6.88-6.81 (m, 5 H), 6.79-6.58 (m, 2 H); °C NMR (75 MHz,
CDCl;, ppm): 6 154.2, 143.5, 137.4, 136.3, 131.9, 129.9, 129.7, 129.2,
128.8, 128.6, 128.2, 127.6, 127.2, 122.6, 122.4, 120.2, 111.6, 109.8, 55.2,
21.1; HRMS(ESI)m/z caled for CysH,yNOsS [M+H]" 418.1472; found:

418.1478.
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1-(4-chlorophenyl)-2-(3,5-dimethylphenyl)-3-(phenylsulfonyl)-1H-pyr
role (3ra).

Yellow solid (87.1 mg, 69% yield), melting point: 165-167 °C. "H NMR
(400 MHz, CDCl;, ppm): 6 7.55-7.52 (m, 2 H), 7.46-7.41 (m, 1 H),
7.32-7.30 (m, 2 H), 7.22-7.19 (m, 2 H), 6.98-6.95 (d, J = 12.0 Hz, 2 H),
6.91-6.90 (d, J=4.0 Hz, 2 H), 6.84 (s, 1 H), 6.59 (s, 2 H), 2.17 (s, 6 H);
C NMR (100 MHz, CDCl;, ppm): & 143.1, 137.2, 135.9, 133.6, 132.1,
130.5, 130.2, 129.1, 129.0, 128.3, 127.2, 127.0, 124.3, 121.9, 116.5,
110.6, 21.1; HRMS(ESI)m/z calcd for C,H,;CINO,S [M+H]" 422.0976;
found: 422.0981.

1-phenyl-3-(phenylsulfonyl)-1H-pyrrole (3sa).

Yellow solid (39.1 mg, 46% yield), melting point: 86-88 °C. '"H NMR
(400 MHz, CDCl;, ppm): 6 7.52-7.50 (m, 2 H), 7.41-7.38 (m, 1 H),
7.29-7.24 (m, 1 H), 7.22-7.17 (m, 4 H), 7.09-7.07 (m, d, J = 8.0 Hz, 2 H),
7.02-7.00 (m, 1 H), 6.91-6.89 (m, 2 H); °C NMR (100 MHz, CDCl;,
ppm): 6 143.1, 138.7, 132.1, 131.5, 129.0, 128.6, 128.4, 127.7, 127.0,
125.9, 1242, 1224, 110.5; HRMS(ESI)m/z caled for C;cH;4NO,S
[M+H]" 284.0740; found: 284.0736.
1-benzyl-2-phenyl-3-(phenylsulfonyl)-1H-pyrrole (3ta).

Yellow solid (98.5 mg, 88% yield), melting point: 92-94 °C. '"H NMR
(300 MHz, CDCl;, ppm): 6 7.51-7.48 (d, J = 9.0 Hz, 2 H), 7.43-7.34 (m,

2 H), 7.32-7.24 (m, 8 H), 7.12-7.09 (d, J = 9.0 Hz, 2 H), 6.89-6.87 (m, 2
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H), 6.80-6.79 (d, J= 3.0 Hz, 1 H), 6.69-6.68 (d, J = 3.0 Hz, 1 H), 4.81 (s,
2 H); ”C NMR (75 MHz, CDCls, ppm): & 143.5, 136.5, 136.2, 131.2,
129.2, 129.0, 128.7, 128.4, 128.0, 127.9, 127.0, 126.9, 121.0, 110.0, 51.1;
HRMS(ESI)m/z caled for Cy3H,NO,S [M+H]" 374.1209; found:
374.1200.

1-butyl-2-phenyl-3-(phenylsulfonyl)-1H-pyrrole (3ua).

Yellow solid (79.3 mg, 78% yield), melting point: 87-89 °C. '"H NMR
(400 MHz, CDCls, ppm): & 7.47-7.45 (m, 2 H), 7.43-7.35 (m, 4 H),
7.29-7.25 (m, 2 H), 7.16-7.13 (m, 2 H), 6.76 (d, J = 3.2 Hz, 1 H),
6.70-6.69 (d, J = 4.0 Hz, 1 H), 3.64-3.60 (m, 2 H), 1.53-1.47 (m, 2 H),
1.15-1.12 (m, 2 H), 0.78-0.74 (m, 3 H); °C NMR (100 MHz, CDCl,,
ppm): & 143.5, 135.7, 131.9, 131.2, 129.3, 129.0, 128.4, 128.0, 126.9,
122.1, 120.3, 109.6, 47.1, 33.0, 19.5, 13.4; HRMS(ESI)m/z calcd for
C20H,NO,S [M+H]" 340.1366; found: 340.1374.
1-cyclohexyl-2-phenyl-3-(phenylsulfonyl)-1H-pyrrole (3va)

Yellow solid (82.1 mg, 75% yield) , melting point: 91-92 °C. '"H NMR
(300 MHz, CDCl;, ppm): & 7.47-7.44 (m, 3 H), 7.42-7.35 (m, 3 H),
7.29-7.25 (m, 2 H), 7.13-7.10 (m, 2 H), 6.77 (s, 2 H), 3.56-3.50 (m, 1 H),
1.85-1.74 (m, 4 H) , 1.61-1.54 (m, 4 H), 1.13-1.11 (m, 2 H); “C NMR
(75 MHz, CDCls, ppm): & 143.5, 135.1, 131.9, 131.0, 129.5, 129.0, 128.3,
128.0, 126.9, 121.6, 116.9, 109.6, 56.0, 34.4, 25.5, 25.0; HRMS(ESI)m/z

calcd for C,,HouNO,S [M+H]" 366.1522; found: 366.1518.
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1-octadecyl--2-phenyl-3-(phenylsulfonyl)-1 H-pyrrole (3wa).

Yellow solid (72.4 mg, 45% yield) , melting point: 143-145 °C. '"H NMR
(300 MHz, CDCl;, ppm): 6 7.48-7.34 (m, 6 H), 7.29-7.24 (m, 2 H),
7.16-7.12 (m, 2 H), 6.76-6.68 (m, 2 H), 3.63-3.58 (m, 2 H), 1.54-1.49 (m,
2 H), 1.26-1.10 (m, 30 H), 0.90-0.86 (m, 3 H); °C NMR (75 MHz,
CDCl;, ppm): 6 143.5, 135.7, 131.9, 131.2, 129.3, 129.0, 138.3, 128.0,
126.9, 122.1, 120.3, 109.5, 47.3, 31.9, 30.9, 30.5, 29.7, 29.5, 29.4, 29.3,
29.2, 28.9, 283, 26.3, 22.7, 14.1, 1.0; HRMS(ESI)m/z caled for
C34Hs5oNO,S [M+H]" 536.3557; found: 536.3560.
1,2-diphenyl-3-(o-tolylsulfonyl)-1 H-pyrrole (3ab).

Yellow solid (75.0 mg, 67% yield). melting point: 115-117 °C. "H NMR
(300 MHz, CDCl;, ppm): 6 7.48-7.46 (d, J= 6.0 Hz, 1 H), 7.24-7.15 (m,
5 H), 7.10-7.00 (m, 5 H), 6.97-6.90 (m, 5 H), 2.45 (s, 3 H); °C NMR (75
MHz, CDCI;, ppm): & 140.2, 138.6, 137.3, 135.3, 132.3, 131.8, 131.2,
129.0, 128.4, 127.6, 127.5, 125.8, 125.3, 123.8, 121.9, 111.1, 20.1;
HRMS(ESI)m/z caled for CypH,0NO,S [M+H]" 374.1209; found:
374.1205.

1,2-diphenyl-3-tosyl-1 H-pyrrole (3ac).

Yellow solid (99.6 mg, 89% yield), melting point: 161-163 °C. "H NMR
(400 MHz, CDCl;, ppm): 6 7.40-7.38 (d, J = 8.0 Hz, 2 H), 7.30-7.26 (m,
1 H), 7.22-7.18 (m, 5 H), 7.11-7.06 (m, 4 H), 7.01-6.99 (m, 2 H), 6.88 (s,

2 H), 2.32 (s, 3 H); C NMR (100 MHz, CDCl;, ppm): & 142.8, 140.3,
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138.7, 135.3, 131.5, 129.2, 129.0, 129.0, 128.5, 127.6, 127.6, 127.0,
125.9, 124.5, 122.3, 110.4, 21.4; HRMS(ESD)m/z calcd for Cy;H,NO,S
[M+H]" 374.1209; found: 374.1216.
3-((4-methoxyphenyl)sulfonyl)-1,2-diphenyl-1H-pyrrole (3ad).

Yellow solid (109.7mg, 94% yield), melting point: 149-151 °C. '"H NMR
(300 MHz, CDCl;, ppm): & 7.45-7.43 (m, 2 H), 7.42-7.40 (m, 1 H),
7.25-7.20 (m, 4 H), 7.12-7.08 (m, 2 H), 7.02-6.99 (m, 2 H), 6.88 (s, 2 H),
6.75-6.70 (m, 2 H), 3.77 (s, 3 H); °C NMR (75 MHz, CDCl;, ppm): &
162.4, 138.7, 135.0, 134.9, 131.5, 129.2, 129.1, 128.9, 128.5, 127.6,
127.6, 125.8, 124.8, 122.2, 113.5, 110.2, 55.5; HRMS(ESI)m/z calcd for

C13HyNOsS [M+H]" 390.1159; found: 390.1168.

1,2-diphenyl-3-((4-(trifluoromethyl)phenyl)sulfonyl)-1 H-pyrrole (3ae).

Yellow solid (110.2 mg, 86% yield). melting point: 105-107 °C. '"H NMR
(300 MHz, CDCl;, ppm): 6 7.45-7.41 (m, 1 H), 7.37-7.32 (m, 2 H),
7.28-7.24 (m, 6 H), 7.12-6.98 (m, 5 H), 6.93-6.90 (m, 2 H); °C NMR (75
MHz, CDCl;, ppm): 6 161.8, 158.5, 139.9, 139.9, 138.4, 135.7, 1314,
130.1, 129.1, 129.0, 127.9, 127.8, 127.4, 125.8, 122.5, 116.7-116.3 (d, J
=3.0 Hz, 1 C), 110.3; HRMS(ES)m/z calcd for Co;H;,F3NO,S [M+H]"
428.0927; found: 428.0920.
1,2-diphenyl-3-((4-(trifluoromethoxy)phenyl)sulfonyl)-1 H-pyrrole

(3af).
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Yellow solid (106.3 mg, 80% yield). melting point: 291-292 °C. "H NMR
(300 MHz, CDCl;, ppm): 6 7.51-7.48 (d, J = 9.0 Hz, 2 H), 7.24-7.17 (m,
6 H), 7.07-7.01 (m, 6 H), 6.92 (s, 2 H); >C NMR (75 MHz, CDCl;, ppm):
o 151.7, 141.3, 138.5, 135.6, 131.4, 129.3, 129.2, 129.0, 129.0, 128.8,
127.8, 125.8, 123.8, 122.5, 120.3, 110.3, 77.2; HRMS(ESI)m/z calcd for
Cy3H,7F3NO;S [M+H] 444.0876; found: 444.0878.
3-((4-chlorophenyl)sulfonyl)-1,2-diphenyl-1H-pyrrole (3ag).

Yellow solid (108.5 mg, 92% yield). melting point: 144-146 °C. '"H NMR
(300 MHz, CDCl;, ppm): 6 7.41-7.38 (m, J = 9.0 Hz, 2 H), 7.33-7.20 (m,
8 H), 7.19 (m, 2 H), 7.10-7.00 (m, 2 H), 6.90 (s, 2 H); °C NMR (75 MHz,
CDCl;, ppm): 6 141.6, 138.6, 138.6, 135.6, 131.5, 129.0, 128.8, 128.6,
128.5, 127.8, 125.8, 123.8, 122.5, 110.4; HRMS(ESI)m/z calcd for
Cy,H7CINO,S [M+H]" 394.0663; found: 394.0669.
3-((3-chloro-4-fluorophenyl)sulfonyl)-1,2-diphenyl-1H-pyrrole (3ah).
Yellow solid (98.6 mg, 80% yield). melting point: 131-133 °C. '"H NMR
(300 MHz, CDCl;, ppm): 6 7.60-7.57 (d, J=9.0 Hz, 2 H), 7.52-7.49 (d, J
= 9.0 Hz, 2 H), 7.33-7.30 (m, 1 H), 7.24-7.21 (m, 4 H), 7.08-7.00 (m, 4
H), 6.92 (s, 2 H); >C NMR (75 MHz, CDCl;, ppm): & 146.4, 138.4, 136.0,
133.9, 133.5, 131.4, 129.1, 128.9, 128.5, 127.8, 127.5, 125.8, 125.5,
125.4, 123.2, 122.7, 110.5; HRMS(ESI)m/z caled for CpH;sCIFNO,S
[M+H]" 412.0569; found: 412.0565.

4-((1,2-diphenyl-1H-pyrrol-3-yl)sulfonyl)benzonitrile (3ai).

ACS Paragon Plus Environment



oNOYTULT D WN =

The Journal of Organic Chemistry

Yellow solid (94.5 mg, 82% yield). melting point: 172-174 °C. '"H NMR
(300 MHz, CDCl;, ppm): & 7.53 (m, 3 H), 7.34-7.29 (m, 1 H), 7.25-7.19
(m, 5 H), 7.07-7.00 (m, 4 H), 6.94-6.91 (m, 2 H); °C NMR (75 MHz,
CDCl;, ppm): 6 147.0, 138.3, 136.12, 132.2, 131.4, 129.3, 129.1, 129.0,
127.9, 127.9, 127.6, 125.8, 122.9, 117.4, 115.7, 110.5; HRMS(ESI)m/z
caled for C,3H7N,0,S [M+H]" 385.1005; found: 385.1010.

1,2-diphenyl-3-(thiophen-2-ylsulfonyl)-1H-pyrrole (3aj).

Yellow solid (86.5 mg, 79% yield). melting point: 106-108 °C. "H NMR
(300 MHz, CDCl;, ppm): 6 7.44-7.41 (m, 1 H), 7.30-7.25 (m, 6 H),

7.24-721 (m, 1 H), 7.21-7.20 (d, J = 3.0 Hz, 2 H), 7.18-7.13 (m, 2 H),

7.05-7.02 (m, 2 H), 6.90-6.83 (m, 1 H); °C NMR (75 MHz, CDCls, ppm):

o 144.9. 138.6, 135.5, 132.1, 131.9, 131.5, 129.0, 128.7, 127.8, 127.7,
126.9, 125.9, 124.5, 122.4, 110.2; HRMS(ESI)m/z calcd for C0H;sNO,S,
[M+H]" 366.0617; found: 366.0620.
2-(3,5-dimethylphenyl)-1-(p-tolyl)-3-tosyl-1 H-pyrrole (3ak).

Yellow solid (89.6 mg, 72% yield). melting point: 189-190 °C. '"H NMR
(400 MHz, CDCl;, ppm): & 7.44-7.42 (d, J= 8.0 Hz, 2 H), 7.10-7.08 (d, J
= 8.0 Hz, 2 H), 7.02-7.00 (d, J = 8.0 Hz, 2 H), 6.90-6.85 (m, 4 H), 6.81
(m, 1 H), 6.60 (s, 2 H), 2.34 (s, 3 H), 2.27 (s, 3 H), 2.16 (s, 6 H); °C
NMR (100 MHz, CDCl;, ppm): 6 142.6, 140.6, 137.4, 136.9, 136.4,

135.8, 130.1, 129.4, 129.1, 128.9, 127.3, 125.6, 124.0, 122.0, 110.1, 21.4,

ACS Paragon Plus Environment

Page 34 of 40



Page 35 of 40

oNOYTULT D WN =

The Journal of Organic Chemistry

21.1, 20.9; HRMS(ESI)m/z calcd for C,sH,sNO,S [MJrH]+ 416.1679;
found: 416.1670.
2,6-di-tert-butyl-4-methyl-4-(phenylsulfonyl)cyclohexa-2,5-dienone
4).

White solid (62.6 mg, 58% yield). "H NMR (300 MHz, CDCl;, ppm): &
7.66-7.64 (d, J= 6.0 Hz, 2 H), 7.57-7.55 (d, J = 6.0 Hz, 1 H), 7.43-7.38
(m, 2 H), 6.66 (s, 2 H), 1.83 (s, 3 H), 1.10 (s, 18 H); °C NMR (75 MHz,
CDCI;, ppm): 6 183.6, 151.3, 135.5, 134.1, 133.4, 130.2, 128.2, 65.8,
35.2,28.9, 18.4; HRMS(ESI)m/z calcd for C,;Hy005S [M+H]" 361.1832;

found: 361.1825.

Supporting Information The X-ray data for 3ab, 4 (CIF) and NMR
spectra of all compounds. This material is available free of charge via the

Internet at http://pubs.acs.org.
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