
LETTER 2967

Promotion of Asymmetric Aza-Claisen Rearrangement of N-Allylic 
Carboxamides Using Excess Base
Asymmetric Aza-Claisen Rearrangement of N-Allylic CarboxamidesMakoto Yoshizuka, Takeshi Nishii, Hiromi Sasaki, Junko Kitakado, Noriko Ishigaki, Shinobu Okugawa, 
Hiroto Kaku, Mitsuyo Horikawa, Makoto Inai, Tetsuto Tsunoda*
Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
Fax +81(88)6553051; E-mail: tsunoda@ph.bunri-u.ac.jp
Received 12 July 2011

SYNLETT 2011, No. 20, pp 2967–2970xx.xx.2011
Advanced online publication: 23.11.2011
DOI: 10.1055/s-0031-1289899; Art ID: U05211ST
© Georg Thieme Verlag Stuttgart · New York

Abstract: The aza-Claisen rearrangement of the enolate of N-(Z)-
crotyl-N-(S)-phenethylpropanamide did not proceed in the presence
of 1.5 equivalents of LHMDS as a base. However, the use of a large
excess of base (10 equiv) promoted the reaction to give N-(S)-phen-
ethyl-anti-2,3-dimethylpent-4-enamide with good stereoselectivi-
ties (anti/syn = ca. 95:5). An excess of base stabilized the amide
enolates and prevented the decomposition to the ketene to prompt
the rearrangement of various carboxamides with good stereoselec-
tivity. This reaction provided a new method for the construction of
asymmetric quaternary carbon centers. 

Key words: aza-Claisen rearrangement, amide enolate, asymmet-
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The aza-Claisen rearrangement is a powerful tool in syn-
thetic organic chemistry and has attracted much atten-
tion.1 Previously, we reported that the asymmetric aza-
Claisen rearrangement of the enolates of carboxamides 1
provided 2,3-syn stereochemistry with excellent stereose-
lectivities (syn/anti  99:1, 2/3 = ca. 89:11, Scheme 1).

This rearrangement was adaptable to carboxamides with
various substituents (X = Me, OH, or NH2 in Scheme 1),
and the major rearrangement products, 2,3-disubstituted
pent-4-enamides 2,2 could be used efficiently as synthetic
precursors for (–)-verrucarinolactone2b and D-allo-isoleu-
cine.2b This methodology was applied to the reactions of
carboxamides 6–8 to synthesize (–)-antimycin A3b,

2d,e (–)-
isoiridomyrmecin,2f (+)-a-skytanthine,2g and (+)-brefeldin
C.2h

Thus, the aza-Claisen rearrangement has potential for
broad use in the stereocontrolled construction of naturally
occurring carbon skeletons with 2,3-syn stereochemistry.
However, using the same conditions for the transforma-
tion of 1a, N-(Z)-crotyl propanamide 9a did not undergo
this rearrangement to afford the expected product with
2,3-anti stereochemistry. To overcome this problem, we
examined the reaction under various conditions (solvent,
temperature, additives, and amount of base), and found
that the use of excess base promoted the rearrangement
quite satisfactorily. Herein, we describe the results.

Scheme 1 Aza-Claisen rearrangement of carboxamides
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Table 1 Optimization of the Reaction Conditions for the Aza-
Claisen Rearrangement of 9a

Entry LHMDS 
(equiv)

Solvent Time 
(h)

Yield 
(%)

anti/syna (4a/5a)b

1 1.5 toluene–n-
hexane or toluene

6 –c –

2 3.0 toluene 6 38 74:26 (10:90)

3 5.0 toluene 6 42 94:6 (11:89)

4 5.0 toluene 15 58 93:7 (11:89)

5 10 toluene 15 63 95:5 (11:89)

a The ratio of (4a + 5a)/(2a + 3a).
b The ratio of anti isomers (4a/5a) is shown.
c Complex mixture.
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The rearrangement of the enolate of 1a took place in the
presence of 1.5 equivalents of LHMDS in toluene at
120 °C in 85% yield with excellent stereoselectivities
(Scheme 1). In contrast, the reaction of 9a afforded messy
products with no desired rearrangement products and the
starting material 9a under the same conditions (Table 1,
entry 1). However, the use of excess LHMDS led to some
improvement in the yields and/or stereoselectivities.
When three equivalents of LHMDS were used, 38% of re-
arranged products 2a–5a were obtained with moderate
stereoselectivities (anti/syn = ca. 74:26, 5a/4a = 90:10,3

Table 1, entry 2). The yield of the rearranged products in-
creased to 63% by using a greater excess of base and by
extending the reaction periods (Table 1, entries 3–5). Fur-
thermore, the anti vs. syn selectivity was also increased,
reaching a ratio of 95:5 in the presence of ten equivalents
of LHMDS.4 This good internal asymmetric induction
(anti selectivity) was dependent on the olefin geometry of
9a, and the high relative asymmetric induction (5a vs. 4a)
was due to a chiral auxiliary, the S-phenethyl group, on
the nitrogen atom. Thus, this reaction was very useful to
construct 2,3-anti stereochemistry.

On the basis of this finding, we then examined the rear-
rangement of carboxamides 9b–f,5 because the reaction
with 1.5 equivalents of LHMDS also gave messy products
with a small amount of the desired rearrangement prod-
ucts and none of the starting materials 9b–f. Actually, al-
though the reaction of 9b with 1.5 equivalents of LHMDS
gave a poor yield again (Table 2, entry 1), increasing the
amount of base (5 equiv) and prolonging the reaction pe-
riods (48 h) improved the yield (89%) and the stereoselec-
tivity (3S/3R = 88:12,8 Table 2, entry 2). In the cases of
9c–f, excess base also provided good results with high
yields and high stereoselectivities10 (Table 2, entries 3, 5,
7, 9 vs. entries 4, 6, 8, 10). The level of the stereoselectiv-
ity (about 90:10) was quite similar to those of the reac-
tions of 1 and 9a. Furthermore, the S-phenethyl group
controlled the absolute configurations at the C-2 and C-3
positions. The reaction of 9f indicated that this rearrange-
ment reaction could be applied to the construction of
asymmetric quaternary carbon centers with good selectiv-
ity.

Table 2 Scope and Limitation of the Aza-Claisen Rearrangement of 9b–f

Entry Substrate LHMDS 
(equiv)

Temp 
(°C)

Period 
(h)

Major product Minor product Yield 
(%)

Selectivity 
(10/11)

1
2

9b

1.5
5.0

120
120

48
48

10b 11b

18
89

75:12
88:12

3
4

9c

1.5
5.0

120
120

24
24

10c 11c

<30a

94
91:9
91:9

5
6

9d

1.5
5.0

120
100d

24
24

10d 11d

–b

84
–c

87:13

7
8

9e

1.5
5.0

120
120

12
12

10e 11e

–b

77
–c

89:11

9
10

9f

1.5
5.0

120
120

12
12

10f 11f

–b

98
–c

88:12e

a Difficult to purify.
b Complex mixture.
c Not determined.
d The reaction at 120 °C gave a lower yield (57%).
e 2R,3R and 2S,3S isomers were not detected.
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When the reaction gave poor results, we suspected that the
decomposition of the enolates of the carboxamides via the
ketene12 was one of the undesired reactions.13 However,
as the reaction of 9 with 1.5 equivalents of LHMDS gave
a complex mixture of products, no direct evidence for this
decomposition pathway could be found. So, N,N-dibenzyl
propanamide (12) was employed as a model compound
for studies of the decomposition pathways of the amide
enolate. First, N,N-dibenzyl propanamide (12) was treated
with 1.5 equivalents of LHMDS at 80 °C for one hour,
giving 83% of recovered 12. However, when the reaction
was conducted at 120 °C for one hour with 1.5 equivalents
of LHMDS, only 46% of 12 was recovered along with
some dibenzylamine. In contrast, use of five equivalents
of LHMDS (120 °C, 1 h) increased the recovery yield of
12 to 86%. These findings suggested the following: 1) de-
compositions occurred at around 120 °C, the temperature
at which the aza-Claisen rearrangement took place, and 2)
excess base stabilized the amide enolates and prevented
the decomposition to ketene and other undesirable side re-
actions (Scheme 2), although the reason was unclear.

Scheme 2 Decomposition of the lithium enolate of 12

Based on Ireland’s investigation14 of Claisen rearrange-
ment of silyl enol ethers derived from esters, we propose
an explanation for the results described in this paper.
Ireland reported that the alkyl substituent on the 1,5-diene
system affected the reaction rate, with the reaction rate of
the less substituted 1,5-diene being considerably slower.
In our investigation, the reaction of 9b,c required a longer
reaction period than that of 1a did. In the case of 9a and
9d–f, it seems feasible that the rate of the reaction was
slowed by steric repulsion caused by the pseudo-axial
substituents on the allylic olefin in the six-membered
chairlike transition state. In this situation, we presumed
that the decomposition of the lithium enolates of 9a–f to
the respective ketenes and other byproducts became the
predominant reaction. However, as mentioned above, the
addition of excess base prevented the decomposition and
promoted the desired rearrangement.
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