

Bioorganic & Medicinal Chemistry 10 (2002) 1171-1179

BIOORGANIC & MEDICINAL CHEMISTRY

Phenolic Modification as an Approach to Improve the Pharmacology of the 3-Acyloxy-2-benzylpropyl Homovanillic Amides and Thioureas, a Promising Class of Vanilloid Receptor Agonists and Analgesics

Jeewoo Lee,^{a,*} Jiyoun Lee,^a Myung-Sim Kang,^a Kang-Pil Kim,^b Suk-Jae Chung,^b Peter M. Blumberg,^c Jung-Bum Yi^d and Young Ho Park^d

^aLaboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Shinlim-Dong, Kwanak-Ku, Seoul 151-742, South Korea

^bLaboratory of Pharmaceutics, College of Pharmacy, Seoul National University, Shinlim-Dong, Kwanak-Ku, Seoul 151-742, South Korea

^cLaboratory of Cellular Carcinogenesis and Tumor Promotion, Division of Basic Sciences, National Cancer Institute, NIH, Bethesda, MD 20892, USA

^dPacific R&D Center, 314-1, Bora-Ri, Kiheung-Eup, Yougin-Si, Kyounggi-Do 449-900, South Korea

Received 13 August 2001; accepted 27 October 2001

Abstract—In order to improve the analgesic activity and pharmacokinetics of thioureas 2 and 3, which we previously developed as potent vanilloid receptor (VR) agonists, we prepared and characterized phenolic modifications of them and of their amide surrogates (7, 8). The aminoethyl analogue of the amide template 13 was a potent analgesic with an $EC_{50} = 0.96 \mu g/kg$ in the AA-induced writhing test and with better in vivo stability than the parent phenol. © 2002 Elsevier Science Ltd. All rights reserved.

Introduction

The vanilloid receptor (VR) is a nociceptor that responds to multiple pain-producing stimuli such as heat and protons and is activated by ligands such as capsaicin (CAP),^{1,2} resiniferatoxin (RTX),³ and natural aldehydes⁴ such as scutigeral. The vanilloid receptor has been shown to be expressed on a subset of primary afferent neurons of the C-fiber 'pain' pathway. The activation of this receptor triggers cation influx and firing of action potentials, leading centrally to the perception of pain.⁵ Desensitization of the receptor in response to specific ligands has long been considered to be a promising therapeutic approach for the treatment of neuropathic pain and other pathological conditions involving C-fiber neurons.^{6,7}

Among the VR agonists studied, only a few compounds are currently marketed (e.g., capsaicin) or undergoing clinical trial (e.g., resiniferatoxin, DA-5018).⁸ The iden-

tification of RTX as a novel vanilloid with a potency three to four orders of magnitude greater than that of capsaicin suggested exciting opportunities for exploitation through medicinal chemistry.^{9–14} Structurally, RTX represents a typical vanilloid in the A and B regions (correspond to 4-hydroxy-3-methoxyphenyl and amide bond in CAP), but with a tricyclic diterpene in place of the typical C region substituents (hydrophobic side chain) found in capsaicin and its congeners.² Over the past few years, we have explored simplified RTX analogues as VR ligands based on our hypothetical pharmacophore model and have disclosed the first lead compound 1 (Fig. 1).¹⁵ Using this approach, we recently reported ultrapotent VR agonists, thioureas 2 and 3, with K_i values of 19 and 11 nM, respectively, in an [³H]RTX binding assay on dorsal root ganglion neurons. These two compounds are thus approximately 280- and 480-fold more potent than capsaicin for receptor binding.¹⁶ The particular feature of these compounds is a 3-acyloxy-2-benzylpropyl moiety as a Cregion which we designed to mimic key putative pharmacophores of the diterpene moiety in RTX.

^{*}Corresponding author. E-mail: jeewoo@snu.ac.kr

^{0968-0896/02/\$ -} see front matter \odot 2002 Elsevier Science Ltd. All rights reserved. P11: S0968-0896(01)00387-X

Figure 1.

One of the pharmacological problems for capsaicin analogues as analgesics is that the pharmacophoric 3-methoxy-4-hydroxyphenyl A-region is metabolically labile, mostly as the result of *O*-glucuronidation of the phenolic hydroxyl, leading to low bioavailability. Incorporation of an aminoethyl group into capsaicin analogues, for example DA-5018 and SDZ-249,482, was found to reduce their pungencies and improve their pharmacokinetic profiles by blocking metabolic clearance.¹⁷ In the present study, we have sought to combine aminoethyl or acidic groups with our potent VR agonists in order to improve their pharmacokinetic profiles and analgesic activities.

In this paper, we describe the syntheses, in vitro receptor activities, antinociceptive activities and in vivo stability of *O*-aminoethyl, acetate and succinate analogues of 3-acyloxy-2-benzylpropyl homovanillic thioureas and amides.

Chemistry

The syntheses of the amide templates (7, 8) and their 2-aminoethy analogues (13, 14) are described in Scheme 1. Azides (4, 5), previously reported,¹⁶ were reduced to amines by hydrogenation under Lindler's catalyst, which in situ reacted with the pentafluorophenyl ester of homovanillate (6) to afford amides 7 and 8, respectively. Phenolic hydroxyls of 7 and 8 were alkylated with 1,2-dibromoethane and then their bromides were sub-

stituted by azide to give **11** and **12**, respectively. Reduction of the azides under catalytic hydrogenation finally produced the 2-aminoethyl analogues **13** and **14**.

Since thiourea groups are labile to base-mediated alkylation conditions, we synthesized aminoethyl analogues (20, 21) of the thiourea templates (2, 3) by another route shown in Scheme 2. Commercially available 4-hydroxy-3-methoxybenzylamine hydrochloride (15) was readily converted into 18 by following the previous scheme. *N-tert*-Butoxycarbonylamine 18 was transformed into the corresponding isothiocyanate 19 by acidic deprotection followed by condensation with 1,1-thiocarbonyl di-2(1H)-pyridone.¹⁸ Coupling of 19 with amines prepared from 4 and 5, followed by PPh₃-mediated reduction produced 2-aminoethyl analogues of the thiourea templates (20, 21), respectively.

The syntheses of α -substituted acetic acid analogues (29, 30) of the thiourea template as outlined in Scheme 3 were started from commercially available 4-hydroxy-3-methoxybenzonitrile (22). Nitrile 22 was converted into the corresponding carbobenzyloxyamino (Cbz) group to afford 25 in the conventional way in three steps. The phenol of 25 was alkylated with methyl bromoacetate to produce 26 which was then hydrolyzed and deprotected to amine 28. Condensation of 28 with 2-(3,4-dimethyl(or 4-*tert*-butyl)benzyl)-3-pivaloyloxypropyl isothiocyanate, previously reported,¹⁹ afforded the final compounds 29 and 30, respectively.

Scheme 1. Reagents: (a) (i) H₂, Lindler's cat, EtOH; (ii) 6, EtOAc; (b) BrCH₂CH₂Br, KOH, Bu₄NOH; (c) NaN₃, DMF; (d) H₂, Pd/C, MeOH.

Scheme 2. Reagents: (a) Boc_2O , NEt_3 , $dioxane-H_2O$; (b) $BrCH_2CH_2Br$, KOH, Bu_4NOH ; (c) NaN_3 , DMF; (d) CF_3CO_2H , CH_2Cl_2 ; (e) 1,1-thio-carbonyl di-2(1H)-pyridone, NEt_3 , DMF; (f) (i) 4 (or 5), H_2 , 5% Pd/C, MeOH; (ii) CH_2Cl_2 ; (g) PPh₃, H_2O -THF.

Scheme 3. Reagents: (a) ClCH₂OCH₃, NEt(*i*-Pr)₂, CH₂Cl₂; (b) (i) LiAlH₄, THF; (ii) BnOCOCl, NEt₃, CH₂Cl₂; (c) CF₃CO₂H, CH₂Cl₂; (d) BrCH₂CO₂CH₃, K₂CO₃, acetone; (e) NaOH, THF–H₂O; (f) H₂, Pd/C MeOH; (g) 2-(3,4-dimethyl(or 4-*t*-butyl)benzyl)-3-pivaloyloxy-propylisothiocyanate, NEt₃, DMF.

Scheme 4. Reagents: (a) BnOH, NaH, THF; (b) 25, DCC, DMAP, CH₂Cl₂; (c) H₂, Pd/C, MeOH; (d) 2-(3,4-dimethyl(or 4-*t*-butyl)benzyl)-3-piva-loyloxypropylisothiocyanate, DMF.

The synthesis of succinate analogues (**35**, **36**) was shown in Scheme 4. Refluxing of succinic anhydride (**31**) with sodium salt of benzyl alcohol gave monobenzyl succinate **32** which was then esterified with phenol **25** to produce **33**. Hydrogenation of **33** followed by condensation with isothiocyanates used in Scheme 3 afforded **35** and **36**, respectively.

Results and Discussion

The activities of the synthesized vanilloid analogues as agonists were assessed in vitro using a 45 Ca influx assay and their antinociceptive activities were measured using the writhing test. The calcium influx assay was carried out using cultured rat dorsal root ganglion (DRG) neurons as previously described and the potencies of the compounds were expressed as the EC₅₀ ± SEM.¹⁷

Maximal response was compared to that induced by capsaicin at a concentration of 3μ M. The analgesic activities of the compounds were evaluated in the phenyl-*p*-benzoquinone (PBQ)-induced or acetic acid (AA)-induced writhing test in mice; the ED₅₀ values indicate the concentrations required to cause a 50% reduction in the number of writhes.¹⁶ Both the PBQ-and AA-induced writhing tests usually showed similar values, as indicated for ovanil and DA-5018, which were used as reference compounds. The in vitro and in vivo results are presented in Table 1.

In the calcium influx assay, the parent phenolic analogues (thioureas: **2**, **3**; amides: **7**, **8**) demonstrated potent agonistic activities with EC₅₀ values of 0.058, 0.361, 0.162, 0.182 μ M, which were 7.5, 1.2, 2.7 and 2.4-fold (**2**, **3**, **7** and **8**) more potent than capsaicin (EC₅₀ = 0.435 μ M), respectively. Their analgesic activities in

the PBQ-induced writhing test improved much more than in the calcium influx assay. Amides 7 and 8 with ED_{50} values of 12 and $3.5 \,\mu\text{g/kg}$ were 25- and 86-fold more potent than capsaicin ($ED_{50} = 300 \,\mu\text{g/kg}$) in this assay for analgesia, as previously reported in a series of thiourea analogues (2, 3).¹⁶

Incorporation of the 2-aminoethyl group into the phenols led to a series of compounds (13, 14, 20 and 21) in which agonistic and analgesic activities were comparable or a little reduced compared to the parent compounds, with the exception of 13. Compound 13 possessed potent analgesic activity (ED₅₀ = $0.96 \,\mu g/kg$) in the AA-induced writhing assay, being ca. 18- and 2.4fold more potent than olvanil and DA-5018. Although the in vitro activity of 13 was less than that of the parent compound 7, presumably its enhanced in vivo stability more than compensated. In a series of capsaicin analogues, it has been noted previously that only 2-aminoethyl analogues among blocking groups of the phenolic OH group retained the antinociceptive properties of the parent compounds, showed reduced irritancy, and, by avoiding rapid phenolic glucuronidation in vivo, displayed better pharmacokinetic profiles.¹⁷ This conclusion appears to hold likewise for the present series.

In order to examine the in vivo stability of the two potent analgesics 2 and 13, the compounds were injected intravenously into the rat and then measured in plasma collected at regular intervals (Fig. 2). Whereas the phenolic compound 2 showed a very short half life with $t_{1/2} = 3$ min and was completely cleared in ca. 10 min, the aminoethyl analogue 13 showed enhanced stability with $t_{1/2} = 30$ min, indicating that the aminoethyl surrogate was more metabolically stable than the parent phenol. The higher analgesic potency of 13 compared to the parent compound presumably reflects its better pharmacokinetics.

Unlike the aminoethyl analogues, both the α -substituted acetic acid (**29**, **30**) and succinate analogues (**35**, **36**) possessed dramatically reduced agonistic and analgesic activities even though previous report described these analogues of synthetic capsanoid showed a little better antinociceptive effect than parent one.²⁰ These findings indicate that a hydrogen bonding acceptor such as carboxylic acid is not an appropriate substituent, unlike the amino group as a hydrogen bonding donor in the phenolic modification for improving VR mediated calcium influx and analgesic activity, and are consistent with those of capsainoid analogues previously reported¹⁷ in

 Table 1.
 Calcium influx assay and writhing test

	⁴⁵ Ca Influx (EC ₅₀ = μ M)	PBQ-induced writhing test (ED ₅₀ = μ g/kg)	AA-induced writhing test (ED ₅₀ = μ g/kg)
Amides			
7	$0.162(\pm 0.33)$	12	
8	$0.182(\pm 0.45)$	3.5	
13	$1.57(\pm 0.23)$		0.960
14	$0.878(\pm 0.17)$		8.12
Thioureas			
2	$0.058 (\pm 0.008)$	0.5^{16}	
3	$0.361 (\pm 0.054)$	1.0^{16}	
20	$0.083 (\pm 0.012)$		14.0
21	$0.377 (\pm 0.067)$		48.2
29	$7.77(\pm 0.80)$		431
30	$12.3 (\pm 1.58)$		365
35	$7.04(\pm 1.3)$		53.1
36	$7.00(\pm 1.2)$		60
Capsaicin	0.435	300	
RTX		0.01	
Olvanil		30	17.4
DA-5018	0.234	3	2.27
Indomethacinn		400	
Aspirin		3500	
Morphine		1000	

Figure 2. In vivo stability of compounds 2 and 13.

which substitution of basic nitrogen acting as a hydrogen bonding acceptor for free amine reduced its in vitro and in vivo activities.

In conclusion, we investigated amide surrogate and phenolic modifications of our previously discovered potent vanilloid receptor agonists 2 and 3 and found the aminoethyl analogue of amide template 13 to be a potent analgesic due to improved pharmacokinetics. Compound 13 was selected as a candidate for further development of novel analgesics.

Experimental

All chemical reagents were commercially available. Melting points were determined on a Melting Point Büchi B-540 apparatus and are uncorrected. Silica gel column chromatography was performed on silica gel 60, 230–400 mesh, Merck. Proton NMR spectra were recorded on a JEOL JNM-LA 300 at 300 MHz. Chemical shifts are reported in ppm units with Me₄Si as a reference standard. Mass spectra were recorded on a VG Trio-2 GC–MS. Elemental analyses were performed with an EA 1110 Automatic Elemental Analyzer, CE Instruments.

N-[2-(3,4-Dimethylbenzyl)-3-(pivaloyloxy)propyl]-2-[4hydroxy-3-methoxyphenyl]acetamide (7) and N-[2-(4-tertbutylbenzyl)-3-(pivaloyloxy)propyl]-2-[4-hydroxy-3-methoxyphenyl]acetamide (8). A suspension of 4 (or 5) (2.0 mmol) and 5% palladium on carbon (100 mg) in MeOH (10 mL) was hydrogenated under a balloon of hydrogen for 2h. The reaction mixture was filtered and the filtrate was concentrated in vacuo. The residue was dissolved in CH₂Cl₂ (10 mL) and treated with homovanillic pentafluorophenyl ester (6) (696 mg, 2 mmol) prepared from homovanillic acid and pentafluorophenol by DCC coupling. After being stirred overnight at room temperature, the reaction mixture was concentrated in vacuo and the residue was purified by flash column chromatography over silica gel with EtOAc/hexanes (1:2) as eluant to afford 7 (or 8).

7: 96% yield, colorless oil; ¹H NMR (CDCl₃) δ 6.65– 7.05 (m, 6H, Ar), 5.74 (t, 1H, NH), 4.00 (m, 1H, CH₂OCO), 3.88 (s, 3H, OCH₃), 3.80 (m, 1H, CH₂OCO), 3.46 (s, 2H, COCH₂Ar), 3.30 (m, 1H, CH₂NH), 3.08 (m, 1H, CH₂NH), 2.59 (dd, 1H, *J*=7.3, 12 Hz, CH₂Ph), 2.48 (d, 1H, *J*=7.3 Hz, CH₂Ph), 2.0–2.3 (m, 7H, 2 × CH₃ and CH), 1.20 (s, 9H, CO(CH₃)₃); MS *m/e* 441 (M⁺). Anal. calcd for C₂₆H₃₅NO₅: C, 70.72; H, 7.99; N, 3.17. Found: C, 70.99; H, 8.01; N, 3.15.

8: 94% yield, colorless oil; ¹H NMR (CDCl₃) δ 7.28 (d, 2H, J=8.3 Hz, Ar), 7.02 (d,2H, J=8.3 Hz), 6.88 (d, 1H, J=7.8 Hz), 6.77 (d, 1H, J=2.8 Hz), 6.72 (dd, 1H, J=2.8, 7.8 Hz), 5.73 (t, 1H, NH), 4.00 (dd, 1H, CH₂OCO), 3.89 (s, 3H, OCH₃), 3.82 (dd, 1H, CH₂OCO), 3.46 (s, 2H, COCH₂Ar), 3.32 (m, 1H, CH₂NH), 3.08 (m, 1H, CH₂NH), 2.53 (d, 2H, J=7.8 Hz, CH₂Ph), 2.10 (m, 1H, CH), 1.30 (s, 9H, C(CH₃)₃), 1.20 (s, 9H, CO(CH₃)₃); MS m/e 469

(M⁺). Anal. calcd for C₂₈H₃₉NO₅: C, 71.61; H, 8.37; N, 2.98. Found: C, 71.84; H, 8.39; N, 2.97.

N-[2-(3,4-Dimethylbenzyl)-3-(pivaloyloxy)propyl]-2-[4-(2-bromoethoxy)-3-methoxyphenyl]acetamide (9) and *N*-[2-(4-*tert*-butylbenzyl)-3-(pivaloyloxy)propyl]-2-[4-(2-bromoethoxy)-3-methoxyphenyl]acetamide (10). A mixture of 6 (or 7) (1 mmol), 40% KOH (2 mL), tetrabutylammonium hydroxide (40% in H₂O, 0.2 mL) and 1,2-dibromoethane (1.5 mL) was heated at 50 °C for 2 h. The reaction mixture was diluted with CH₂Cl₂, washed with H₂O and brine, dried over MgSO₄ and concentrated in vacuo. The residue was purified by flash column chromatography over silica gel with EtOAc/hexanes (1:1) as eluant to afford 9 (or 10).

9: 78% yield, yellow oil; ¹H NMR (CDCl₃) δ 6.7–7.05 (m, 6H, Ar), 5.76 (t, 1H, NH), 4.32 (t, 2H, J=6.6 Hz, OCH₂CH₂Br), 4.00 (m, 1H, CH₂OCO), 3.86 (s, 3H, OCH₃), 3.80 (m, 1H, CH₂OCO), 3.64 (t, 2H, J=6.6 Hz, OCH₂CH₂Br), 3.47 (s, 2H, COCH₂Ar), 3.30 (m, 1H, CH₂NH), 3.10 (m, 1H, CH₂NH), 2.60 (dd, 1H, J=7.3, 12.0 Hz, CH₂Ph), 2.49 (d, 1H, J=7.3 Hz, CH₂Ph), 2.0–2.3 (m, 7H, 2 × CH₃ and CH), 1.20 (s, 9H, CO(CH₃)₃).

10: 88% yield, yellow oil; ¹H NMR (CDCl₃) δ 7.28 (d, 2H, J=8.3 Hz, Ar), 7.02 (d, 2H, J=8.3 Hz), 6.88 (d, 1H, J=7.8 Hz), 6.80 (d, 1H, J=2.8 Hz), 6.74 (dd, 1H, J=2.8, 7.8 Hz), 5.80 (t, 1H, NH), 4.32 (t, 2H, J=5.4 Hz, OCH₂CH₂Br), 4.02 (dd, 1H, J=4.6, 11.2 Hz, CH₂OCO), 3.89 (s, 3H, OCH₃), 3.83 (dd, 1H, J=5.2, 11.2 Hz, CH₂OCO), 3.64 (t, 2H, J=5.4 Hz, OCH₂CH₂Br), 3.49 (s, 2H, COCH₂Ar), 3.32 (m, 1H, CH₂NH), 3.10 (m, 1H, CH₂NH), 2.56 (d, 2H, J=7.6 Hz, CH₂Ph), 2.12 (m, 1H, CH), 1.30 (s, 9H, C(CH₃)₃), 1.20 (s, 9H, CO(CH₃)₃).

N-[2-(3,4-Dimethylbenzyl)-3-(pivaloyloxy)propyl]-2-[4-(2-azidoethoxy)-3-methoxyphenyl]acetamide (11) and *N*-[2-(4-tert-butylbenzyl)-3-(pivaloyloxy)propyl]-2-[4-(2-azidoethoxy)-3-methoxyphenyl]acetamide (12). A mixture of 9 (or 10) (1 mmol) and sodium azide (195 mg, 3 mmol) in DMF (2 mL) was heated at 100 °C for 8 h. The reaction mixture was diluted with H₂O and extracted with EtOAc several times. The combined organic layers were washed with H₂O and brine, dried over MgSO₄ and concentrated in vacuo. The residue was purified by flash column chromatography over silica gel with EtOAc/hexanes (1:1) as eluant to afford 11 (or 12).

11: 95% yield, colorless oil; ¹H NMR (CDCl₃) δ 6.7–7.05 (m, 6H, Ar), 5.76 (t, 1H, NH), 4.17 (t, 2H, J = 5.3 Hz, OCH₂CH₂N₃), 4.00 (m, 1H, CH₂OCO), 3.86 (s, 3H, OCH₃), 3.80 (m, 1H, CH₂OCO), 3.62 (t, 2H, J = 5.3 Hz, OCH₂CH₂N₃), 3.48 (s, 2H, COCH₂Ar), 3.30 (m, 1H, CH₂NH), 3.10 (m, 1H, CH₂NH), 2.60 (dd, 1H, J = 7.3, 12.0 Hz, CH₂Ph), 2.49 (d, 1H, J = 7.3 Hz, CH₂Ph), 2.0–2.3 (m, 7H, 2 × CH₃ and CH), 1.20 (s, 9H, CO(CH₃)₃).

12: 92% yield, colorless oil; ¹H NMR (CDCl₃) δ 7.28 (d, 2H, J=8.3 Hz, Ar), 7.03 (d, 2H, J=8.3 Hz), 6.88 (d, 1H,

 $J=7.8 \text{ Hz}), 6.80 \text{ (d, 1H, } J=2.8 \text{ Hz}), 6.74 \text{ (dd, 1H, } J=2.8, 7.8 \text{ Hz}), 5.76 \text{ (t, 1H, NH)}, 4.17 \text{ (t, 2H, } J=5.2 \text{ Hz}, OCH_2CH_2N_3), 4.01 \text{ (dd, 1H, } J=4.5, 11.2 \text{ Hz}, CH_2OCO), 3.86 \text{ (s, 3H, OCH_3)}, 3.80 \text{ (dd, 1H, } J=5.0, 11.2 \text{ Hz}, CH_2OCO), 3.63 \text{ (t, 2H, } J=5.2 \text{ Hz}, OCH_2CH_2N_3), 3.48 \text{ (s, 2H, COCH_2Ar)}, 3.32 \text{ (m, 1H, } CH_2NH), 3.06 \text{ (m, 1H, CH_2NH)}, 2.54 \text{ (d, 2H, } J=7.6 \text{ Hz}, CH_2Ph), 2.10 \text{ (m, 1H, CH)}, 1.30 \text{ (s, 9H, } C(CH_3)_3), 1.20 \text{ (s, 9H, CO(CH_3)_3)}.$

N-[2-(3,4-Dimethylbenzyl)-3-(pivaloyloxy)propyl]-2-[4-(2-aminoethoxy)-3-methoxyphenyl]acetamide (13) and *N*-[2-(4-*tert*-butylbenzyl)-3-(pivaloyloxy)propyl]-2-[4-(2-aminoethoxy)-3-methoxyphenyl]acetamide (14). A suspension of 11 (or 12) (1 mmol) and 5% palladium on carbon (50 mg) in MeOH (5 mL) was hydrogenated under a balloon of hydrogen for 1 h. The reaction mixture was filtrated and the filtrate was concentrated in vacuo. The residue was purified by flash column chromatography over silica gel with $CH_2Cl_2/MeOH$ (10:1) as eluant to afford 13 (or 14).

13: 83% yield, white solid, mp 38 °C; ¹H NMR (CDCl₃) δ 6.7–7.05 (m, 6H, Ar), 5.78 (t, 1H, NH), 4.07 (t, 2H, J=4.9 Hz, OCH₂CH₂NH₂), 4.00 (m, 1H, CH₂OCO), 3.85 (s, 3H, OCH₃), 3.80 (m, 1H, CH₂OCO), 3.47 (s, 2H, COCH₂Ar), 3.30 (m, 1H, CH₂NH), 3.15 (t, 2H, J=4.9 Hz, OCH₂CH₂NH₂), 3.10 (m, 1H, CH₂NH), 2.60 (dd, 1H, J=7.5, 12 Hz, CH₂Ph), 2.50 (d, 1H, J=7.5 Hz, CH₂Ph), 2.15–2.3 (m, 6H, 2 × CH₃), 2.08 (m, 1H, CH), 1.21 (s, 9H, CO(CH₃)₃); MS *m/e* 484 (M⁺). Anal. calcd for C₂₈H₄₀N₂O₅: C, 69.39; H, 8.32; N, 5.78. Found: C, 69.61; H, 8.36; N, 5.76.

14: 89% yield, white solid, mp 36 °C; ¹H NMR (CDCl₃) δ 7.28 (d, 2H, J=8.3 Hz, Ar), 7.03 (d, 2H, J=8.3 Hz), 6.88 (d, 1H, J=7.8 Hz), 6.80 (d, 1H, J=2.8 Hz), 6.74 (dd, 1H, J=2.8, 7.8 Hz), 5.84 (t, 1H, NH), 4.07 (t, 2H, J=4.9 Hz, OCH₂CH₂NH₂), 4.02 (dd, 1H, J=4.5, 11.2 Hz, CH₂OCO), 3.85 (s, 3H, OCH₃), 3.82 (dd, 1H, J=5.2, 11.2 Hz, CH₂OCO), 3.47 (s, 2H, COCH₂Ar), 3.32 (m, 1H, CH₂NH), 3.15 (t, 2H, J=4.9 Hz, OCH₂CH₂NH₂), 3.08 (m, 1H, CH₂NH), 2.53 (d, 2H, J=7.6 Hz, CH₂Ph), 2.12 (m, 1H, CH), 1.29 (s, 9H, C(CH₃)₃), 1.20 (s, 9H, CO(CH₃)₃); MS *m/e* 512 (M⁺). Anal. calcd for C₃₀H₄₄N₂O₅: C, 70.28; H, 8.65; N, 5.46. Found: C, 70.50; H, 8.68; N, 5.45.

tert - Butyl N-(4-hydroxy - 3 - methoxybenzyl)carbamate (16). A solution of 4-hydroxy-3-methoxy benzylamine hydrochloride (15, 500 mg, 2.64 mmol) and triethylamine (54 mg, 5.28 mmol) in H₂O (10 mL) was treated dropwise with a solution of di-*tert*-butyl dicarbonate (1.15 g, 5.28 mmol) in dioxane (2 mL) for 20 min. After being stirred for 24 h at room temperature, the reaction mixture was extracted with CH₂Cl₂ several times. The combined organic layers were dried over MgSO₄ and concentrated in vacuo. The residue was purified by flash column chromatography over silica gel with EtOAc/ hexanes (1:1) as eluant to give 16 as an oil (663 mg, 99%). ¹H NMR (CDCl₃) δ 6.7–7.0 (m, 3H, Ar), 5.65 (s, 1H, OH), 4.79 (bs, 1H, NH), 4.23 (d, 2H, J=5.6 Hz, CH₂NHBoc) 3.87 (s, 3H, OCH₃), 1.43 (s, 9H, C(CH₃)₃). *tert*-Butyl *N*-[4-(2-bromoethoxy)-3-methoxybenzyl]carbamate (17). The compound was obtained from 16 by following the method for 9 in 84% yield. ¹H NMR (CDCl₃) δ 6.75–6.90 (m, 3H, Ar), 4.79 (bs, 1H, NH), 4.31 (t, 2H, *J*=6.6 Hz, OCH₂CH₂Br), 4.24 (d, 2H, *J*=5.8 Hz, CH₂NHBoc), 3.86 (s, 3H, OCH₃), 3.64 (t, 2H, *J*=5.8 Hz, OCH₂CH₂Br), 1.46 (s, 9H, C(CH₃)₃).

tert-Butyl *N*-[4-(2-azidoethoxy)-3-methoxybenzyl]carbamate (18). The compound was obtained from 17 by following the method for 11 in 98% yield. ¹H NMR (CDCl₃) δ 6.75–6.90 (m, 3H, Ar), 4.79 (bs, 1H, NH), 4.24 (d, 2H, *J*=5.8 Hz, CH₂NHBoc), 4.17 (t, 2H, *J*=4.9 Hz, OCH₂CH₂N₃), 3.86 (s, 3H, OCH₃), 3.62 (t, 2H, *J*=4.9 Hz, OCH₂CH₂N₃), 1.46 (s, 9H, C(CH₃)₃).

4-(2-Azidoethoxy)-3-methoxybenzylisothiocyanate (19). A solution of **18** (322 mg, 1 mmol) in CH_2Cl_2 (3 mL) was treated with trifluoroacetic acid (0.9 mL) stirred at room temperature for 1 h. The reaction mixture was concentrated in vacuo by the aid of toluene to afford the corresponding amine salt as a brown solid.

The amine salt was dissolved in DMF (3 mL), treated with triethylamine (110 mg, 1.1 mmol) and stirred for 1 h. The mixture was treated with 1,1-thiocarbonyl di-2(1H)-pyridone (244 mg, 1.1 mmol) and stirred for 3 h at room temperature. The mixture was diluted with H₂O and extracted with diethyl ether several times. The combined organic layers were washed with H₂O and brine, dried over MgSO₄ and concentrated in vacuo. The residue was purified by flash column chromatography over silica gel with EtOAc/hexanes (1:2) as eluant to afford **19** as an oil (270 mg, 74%). ¹H NMR (CDCl₃) δ 6.8–6.95 (m, 3H, Ar), 4.65 (s, 2H, CH₂NCS), 4.18 (t, 2H, *J*=5.1 Hz, OCH₂CH₂N₃), 3.89 (s, 3H, OCH₃), 3.64 (t, 2H, *J*=5.1 Hz, OCH₂CH₂N₃).

N-[2-(3,4-Dimethylbenzyl)-3-(pivaloyloxy)propyl]-N'-[4-(2-aminoethoxy)-3-methoxybenzyl]thiourea (20) and N-[2-(4-tert-butylbenzyl)-3-(pivaloyloxy)propyl]-N'-[4-(2-aminoethoxy)-3-methoxybenzyl]thiourea (21). A suspension of 4 (or 5) (0.6 mmol) and 5% palladium on carbon (25 mg) in MeOH (5 mL) was hydrogenated under a balloon of hydrogen for 2 h. The reaction mixture was filtered and the filtrate was concentrated in vacuo. The residue was dissolved in CH₂Cl₂ (5 mL) and treated with isothiocyanate 19 (132 mg, 0.5 mmol). After being stirred for 15h at room temperature, the reaction mixture was concentrated in vacuo. The residue was purified by flash column chromatography over silica gel with EtOAc/hexanes (1:10) as eluant to afford thiourea. The above compound (0.3 mmol) was dissolved in THF (3 mL) was treated with triphenylphosphine (157 mg, 0.6 mmol) and H_2O (11 mg, 0.6 mmol), and stirred for 24 h at room temperature. The reaction mixture was concentrated in vacuo and the residue was purified by flash column chromatography over silica gel with $CH_2Cl_2/MeOH$ (10:1) as eluant to afford 20 (or 21).

20: 48% yield, sticky semisolid; ¹H NMR (CDCl₃) δ 6.75–7.05 (m, 6H, Ar), 6.47 (bs, 2H, NH), 4.43 (bs, 2H, NHCH₂Ar), 4.13 (m, 1H, CH₂OCO), 3.99 (t, 2H,

J = 5.4 Hz, OC H_2 CH₂NH₂), 3.82 (s, 3H, OCH₃), 3.7–3.8 (m, 2H, CH₂OCO and CHC H_2 NH), 3.31 (m, 1H, CHC H_2 NH), 3.07 (t, 2H, J = 5.4 Hz, OCH₂C H_2 NH₂), 2.45–2.7 (m, 2H, CH₂Ph), 2.15–2.3 (m, 7H, 2 × CH₃ and CH), 1.22 (s, 9H, C(CH₃)₃); MS m/e 515 (M⁺). Anal. calcd for C₂₈H₄₁N₃O₄S: C, 65.21; H, 8.01; N, 8.15; S, 6.22. Found: C, 65.46; H, 8.04; N, 8.13; S, 6.19.

21: 54% yield, sticky semisolid; ¹H NMR (CDCl₃) δ 7.30 (d, 2H, J = 8.3 Hz), 7.10 (d, 2H, J = 8.3 Hz), 6.75–6.9 (m, 3H, Ar), 6.40 (bs, 2H, NH), 4.43 (bs, 2H, NHCH₂Ar), 4.12 (m, 1H, CH₂OCO), 3.98 (t, 2H, J = 5.4 Hz, OCH₂CH₂NH₂), 3.82 (s, 3H, OCH₃), 3.7–3.8 (m, 2H, CH₂OCO and CHCH₂NH), 3.30 (m, 1H, CHCH₂NH), 3.06 (t, 2H, J = 5.4 Hz, OCH₂CH₂NH₂), 2.45–2.7 (m, 2H, CH₂Ph), 2.20 (m, 1H, CH), 1.28 (s, 9H, C(CH₃)₃), 1.22 (s, 9H, C(CH₃)₃); MS m/e 543 (M⁺). Anal. calcd for C₃₀H₄₅N₃O₄S: C, 66.26; H, 8.34; N, 7.73; S, 5.90. Found: C, 66.50; H, 8.33; N, 7.70; S, 5.88.

Benzyl *N*-(4-hydroxy-3-methoxybenzyl)carbamate (25). A solution of 4-hydroxy-3-methoxy-benzonitrile (22, 10 g, 67 mmol) and diisopropylethylamine (17.52 mL, 100.5 mmol) in CH₂Cl₂ (100 mL) was treated with chloromethylmethylether (6.11 mL, 80.4 mmol) and stirred for 3 h at room temperature. The mixture was diluted with CH₂Cl₂, washed with H₂O, dried over MgSO₄ and concentrated in vacuo. The residue was purified by flash column chromatography over silica gel using EtOAc/hexanes (1:2) as eluant to afford **23** (11.9 g, 92%). ¹H NMR (CDCl₃) δ 7.05–7.3 (m, 3H, Ar), 5.29 (s, 2H, ArOCH₂), 3.91 (s, 3H, ArOCH₃), 3.51 (s, 3H, CH₂OCH₃).

A solution of 23 (9.66 g, 50 mmol) in THF (50 mL) was added dropwise to a stirred suspension of lithiumaluminum hydride (7.6 g, 200 mmol) in THF (150 mL). After being refluxed for 4h, the reaction mixture was cooled in ice bath and guenched carefully with 5 N NaOH. Precipitated aluminum salts were removed by filtration and the filtrate was evaporated. The residue was partitioned with ether and H₂O. The ether layer was washed with H₂O and brine, dried over MgSO₄ and concentrated in vacuo to give amine. The amine was dissolved in CH_2Cl_2 (50 mL) and treated with triethylamine (14 mL, 100 mmol) and benzylchloro formate (10.7 mL, 75 mmol). After being stirred for 2 h at room temperature, the reaction mixture was diluted with CH₂Cl₂, washed with H₂O and brine, dried over MgSO₄ and concentrated in vacuo. The residue was purified by flash column chromatography over silica gel with EtOAc/hexanes (1:2) as eluant to give 24 (8.28 g, 50%). ¹H NMR (CDCl₃) δ 7.3–7.35 (m, 5H, phenyl), 7.09 (d, 1H, J=8.1 Hz), 6.80 (m, 2H), 5.21 (s, 2H, ArOCH₂), 5.14 (s, 2H, OCH₂Ph), 4.32 (d, 2H, J = 6.1 Hz, NHCH₂Ar), 3.85 (s, 3H, ArOCH₃), 3.51 (s, 3H, CH_2OCH_3).

A cooled solution of **24** (6.63 g, 20 mmol) in CH_2Cl_2 (20 mL) in ice bath was treated with trifluoroacetic acid (2 mL) slowly and stirred for 10 min at room tempera-

ture. After cooling in ice bath, the reaction mixture was neutralized with saturated NaHCO₃ solution, diluted with H₂O and extracted with CH₂Cl₂ several times. The combined organic layers were washed with H₂O and brine, dried over MgSO₄ and concentrated in vacuo. The residue was purified by flash column chromatography over silica gel with EtOAc/hexanes (2:1) as eluant to give **25** (5.46 g, 95%). ¹H NMR (CDCl₃) δ 7.3–7.35 (m, 5H, phenyl), 6.86 (d, 1H, *J*=7.8 Hz), 6.76 (m, 2H), 5.14 (s, 2H, OCH₂Ph), 4.30 (d, 2H, *J*=5.8 Hz, NHCH₂Ar), 3.86 (s, 3H, OCH₃).

2-{[4-(Benzyloxycarbonylamino)methyl-2-methoxy]phenoxy}acetic acid (27). A solution of **25** (287 mg, 1 mmol) in acetone (20 mL) was treated with K₂CO₃ (552 mg, 4 mmol) and methyl bromoacetate (0.14 mL, 1.5 mmol) and refluxed for 3 h. After cooling, the reaction mixture was filtered and the filtrate was concentrated in vacuo. The residue was purified by flash column chromatography over silica gel with EtOAc/ hexanes (3:2) as eluant to afford **26** (323 mg, 90%). ¹H NMR (CDCl₃) δ 7.25–7.35 (m, 5H, phenyl), 6.75–6.85 (m, 3H, Ar), 5.11 (s, 2H, OCH₂Ph), 4.65 (s, 2H, OCH₂-CO₂Me), 4.28 (d, 2H, J=5.8 Hz, NHCH₂Ar), 3.81 (s, 3H, OCH₃), 3.76 (s, 3H, CO₂CH₃).

A solution of **26** (323 mg, 0.9 mmol) in THF (1 mL) was treated with 15% NaOH solution (1 mL) and stirred for 30 min at room temperature. The reaction mixture was neutralized with acetic acid, diluted with H₂O and extracted with CH₂Cl₂ several times. The combined organic layers were washed with H₂O, dried over MgSO₄ and concentrated in vacuo to afford **27** (276 mg, 89%). ¹H NMR (DMSO-*d*₆) δ 7.72 (t, 1H, NH), 7.25–7.4 (m, 5 H, phenyl), 6.65–6.85 (m, 3H, Ar), 5.02 (s, 2H, OCH₂Ph), 4.16 (s, 2H, OCH₂CO₂H), 4.09 (d, 2H, *J*=6.1 Hz, NHCH₂Ar), 3.70 (s, 3H, OCH₃).

N-[2-(3,4-Dimethylbenzyl)-3-(pivaloyloxy)propyl]-N'-[4carboxymethoxy-3-methoxybenzyl]thiourea (29) and N-[2-(4-tert-butylbenzyl)-3-(pivaloyloxy)propyl]-N'-[4-carboxymethoxy-3-methoxybenzyl]thiourea (30). A suspension of 27 (276 mg, 0.8 mmol) and 5% palladium on carbon (30 mg) in MeOH (5 mL) was hydrogenated under a balloon of hydrogen for 1 h. The reaction mixture was filtrated and the filtrate was concentrated to afford amine 28. The amine was dissolved in DMF (1mL) was treated with triethylamine (0.14 mL, 1.0 mmol) and stirred for 30 min. The solution was treated with a solution of 2-(3,4-dimethyl (or 4-tert-butyl)benzyl)-3-pivaloyloxypropyl isothiocyanate (0.8 mmol).¹⁹ After stirring for 24 h at room temperature, the reaction mixture was diluted with H₂O and extracted with EtOAc several times. The combined organic layers were washed H₂O and brine, dried over MgSO₄ and concentrated in vacuo. The residue was purified by flash column chromatography over silica gel with CH₂Cl₂/MeOH/AcOH (100:10:0.5) as eluant to afford 29 (or 30).

29: 37% yield, white solid, mp 50 °C; ¹H NMR (CDCl₃) δ 6.75–7.05 (m, 6H, Ar), 6.54 (bs, 2H, NH), 4.51 (bs, 2H, NHCH₂Ar), 4.46 (s, 2H, OCH₂CO₂H), 4.17 (m,

1H, CH₂OCO), 3.7–3.85 (m, 5H, OCH₃, CH₂OCO and CH₂NHCS), 3.22 (m, 1H, CH₂NHCS), 2.5–2.7 (m, 2H, CH₂Ar), 2.2–2.4 (m, 7H, $2 \times$ CH₃ and CH), 1.23 (d, 9H, C(CH₃)₃); MS *m/e* 530 (M⁺). Anal. calcd for C₂₈H₃₈N₂O₆S: C, 63.37; H, 7.22; N, 5.28; S, 6.04. Found: C, 63.61; H, 7.24; N, 5.25; S, 6.02.

30: 52% yield, white solid, mp 48 °C; ¹H NMR (CDCl₃) δ 7.28 (d, 2H, J=8.3 Hz), 7.09 (d, 2H, J=8.3 Hz), 6.65-6.9 (m, 3H, Ar), 6.54 (bs, 2H, NH), 4.58 (bs, 2H, NHCH₂Ar), 4.46 (s, 2H, OCH₂CO₂H), 4.11 (dd, 1H, J = 4.2, 11.5 Hz, CH₂OCO), 3.6–3.9 (m, 5H, OCH₃, CH₂OCO and $CHCH_2NH$), 3.26 (m, 1H, CHC H_2 NHCS), 2.64 (dd, 1H, J = 6.3, 13.5 Hz, CH $_2$ Ar), 2.53 (dd, 1H, J=8.3, 13.5 Hz, CH₂Ar), 2.31 (m, 1H, CH), 1.29 (s, 9H, C(CH₃)₃), 1.21 (s, 9H, C(CH₃)₃); MS m/e 558 (M⁺). Anal. calcd for C₃₀H₄₂N₂O₆S: C, 64.49; H, 7.58; N, 5.01; S, 5.74. Found: C, 64.73; H, 7.61; N, 5.00; S, 5.73.

4-{4-[(Benzyloxycarbonylamino)methyl]-2-methoxyphenoxy}-4-oxobutanoic acid (33). A solution of benzyl alcohol (0.52 mL, 5 mmol) in THF (20 mL) was treated with NaH (60%, 0.2 g, 5 mmol) and succinic anhydride (**31**, 0.502 g, 5 mmol). After being refluxed for 4 h, the reaction mixture was diluted with H₂O and extracted with EtOAc several times. The combined organic layers were washed with H₂O and brine, dried over MgSO₄ and concentrated in vacuo. The residue was purified by flash column chromatography over silica gel with EtOAc/hexanes (1:1) as eluant to give **32** (0.866 g, 57%). ¹H NMR (CDCl₃) δ 7.25–7.40 (m, 5H, phenyl), 5.15 (s, 2H, PhCH₂), 2.70 (m, 4H, COCH₂CH₂CO).

A solution of **32** (0.866 g, 2.85 mmol) in CH₂Cl₂ (10 mL) was treated with **25** (2.85 mmol), dicyclohexylcarbodiimide (4.2 mmol) and 4-dimethylaminopyridine (0.42 mmol) successively and stirred for 24 h at room temperature. The reaction mixture was diluted with diethyl ether, precipitated solid was filtered and the filtrate was concentrated in vacuo. The residue was purified by flash column chromatography over silica gel with EtOAc/hexanes (2:1) as eluant to give **33** as a white solid (1.15 g, 85%); mp 64°C; ¹H NMR (CDCl₃) δ 7.25–7.40 (m, 10H, 2 × phenyl), 6.75–6.95 (m, 3H, Ar), 5.15 (s, 2H, CH₂Ph), 5.14 (s, 2H, CH₂Ph), 4.34 (d, 2H, J = 5.8 Hz, COCH₂CH₂CO), 2.79 (t, 2H, J = 6.8 Hz, COCH₂CH₂CO).

N-[2-(3,4-Dimethylbenzyl)-3-(pivaloyloxy)propyl]-N'-{4-[(3 - carboxypropanoyl)oxy] - 3 - methoxybenzyl}thiourea (35) and N-[2-(4-*tert*-butylbenzyl)-3-(pivaloyloxy)propyl]-N' - {4 - [(3 - carboxypropanoyl)oxy] - 3 - methoxybenzyl}thiourea (36). The compounds were obtained from 33 by following the method for 29 (or 30) via 34.

35: 24% yield, white solid, mp 48 °C; ¹H NMR (CDCl₃) δ 6.75–7.05 (m, 6H, Ar), 6.54 (bs, 2H, NH), 4.51 (bs, 2H, NHCH₂Ar), 4.17 (m, 1H, CH₂OCO), 3.7–3.85 (m, 5H, OCH₃, CH₂OCO and CH₂NHCS), 3.22 (m, 1H, CH₂NHCS), 2.4–2.5 (m, 4H, CH₂Ar and COCH₂ CH₂CO), 2.34 (t, 2H, J=6.8 Hz, COCH₂CH₂CO), 2.2–2.4

(m, 7H, 2 × CH₃ and CH), 1.23 (d, 9H, C(CH₃)₃); MS m/e 441 (M⁺); MS m/e 572 (M⁺). Anal. calcd for C₃₀H₄₀N₂O₇S: C, 62.91; H, 7.04; N, 4.89; S, 5.60. Found: C, 63.16; H, 7.06; N, 4.87; S, 5.58.

36: 21% yield, white solid, mp 46 °C; ¹H NMR (CDCl₃) δ 7.30 (d, 2H, *J*=8.3 Hz), 7.06 (d, 2H, *J*=8.3 Hz), 6.7–6.9 (m, 3H, Ar), 6.26 (bs, 2H, NH), 4.36 (d, 2H, *J*=4.1 Hz, NHCH₂Ar), 4.11 (dd, 1H, *J*=4.4, 11.4 Hz, CH₂OCO), 3.6–3.9 (m, 5H, OCH₃, CH₂OCO and CHC*H*₂NH), 3.27 (m, 1H, CHC*H*₂NHCS), 2.4–2.5 (m, 4H, CH₂Ar and COC*H*₂CH₂CO), 2.35 (t, 2H, *J*=6.6 Hz, COCH₂C*H*₂CO), 2.31 (m, 1H, CH), 1.29 (s, 9H, C(CH₃)₃), 1.21 (s, 9H, C(CH₃)₃); MS *m/e* 600 (M⁺). Anal. calcd for C₃₂H₄₄N₂O₇S: C, 63.98; H, 7.38; N, 4.66; S, 5.34. Found: C, 64.22; H, 7.41; N, 4.65; S, 5.32.

Characterization of pharmacokinetics for 2 and 13

Pharmacokinetics of 2 and 13 were studied in rats. Male Sprague–Dawley rats (body weight 250–300 g) were anesthetized by ether, and the femoral artery and vein were catheterized using polyethylene tubing (PE-50). After a recovery period of approximately 2h, 2 and 13 were intravenously injected (dose 0.5 mg/kg) via the venous catheter. Arterial blood samples were collected various times up to 1 h and analyzed for 2 and 13. Two hundred μL of acetonitrile was added to 100 μL of plasma for deproteination. The resulting mixture was centrifuged, an aliquot (270 µL) of the supernatant collected and evaporated under vacuum. The residue was reconstituted by LC mobile phase (see below) and an aliquot (20 µL) was injected on to an LC-MS system (Finnigan LCQ Deca). The mobile phase was consisted of acetonitrile and water (6:4 in volume), and the flow rate was 0.5 mL/min. Selected ions monitored for 2 and 13 were 495.2 and 485.2, respectively. The peaks of the drug were adequately separated from other peaks (i.e., retention times, 2: 7.5 min, 13: 5.3 min). The detection limit for this assay was 10 ng/mL for 2 and 1 ng/mL for 13.

Acknowledgements

This research was supported by a Fund 2000 grant from the Korea Research Foundation and BK21 project for Medicine, Dentistry and Pharmacy.

References and Notes

- 1. Szallasi, A.; Blumberg, P. M. Pharmacol. Rev. 1999, 51, 159.
- 2. Walpole, C. S. J.; Wrigglesworth, R. Capsaicin in the Study
- of Pain; Academic: San Diego, CA, 1993; p 63.
- 3. Appendino, G.; Szallasi, A. Life Sci. 1997, 60, 681.
- 4. Sterner, O.; Szallasi, A. Trends Pharmacol. Sci. 1999, 20, 431.
- 5. Kress, M.; Zeihofer, H. U. TIPS 1999, 20, 112.

- 6. Szallasi, A. Drug News Perspect. 1997, 10, 522.
- 7. Szallasi, A.; Blumberg, P. M. Pain 1996, 68, 195.
- 8. Wrigglesworth, R.; Walpole, C. S. J. Drugs Future 1998, 23, 531.
- 9. Walpole, C. S. J.; Bevan, S.; Bloomfield, G.; Breckenridge,

R.; James, I. F.; Ritchie, T.; Szallasi, A.; Winter, J.; Wrigglesworth, R. J. Med. Chem. 1996, 39, 2939.

- 10. Appendino, G.; Cravotto, G.; Palmisano, G.; Annunziata,
- R.; Szallasi, A. J. Med. Chem. 1996, 39, 3123.
- 11. Acs, G.; Lee, J.; Marquez, V. E.; Blumberg, P. M. Mol. Brain Res. 1996, 35, 173.
- 12. Lee, J.; Acs, G.; Blumberg, P. M.; Marquez, V. E. Bio. Med. Chem. Lett. 1995, 5, 1331.
- 13. Acs, G.; Lee, J.; Marquez, V. E.; Wang, S.; Milne, G. W. A.;
- Lewin, N. E.; Blumberg, P. M. J. Neurochem. 1995, 65, 301.
- 14. Szallasi, A.; Blumberg, P. M. Neuroscience 1989, 30, 515.

15. Lee, J.; Park, S-U.; Kim, J-Y.; Kim, J-K.; Lee, J.; Oh, U.; Marquez, V. E.; Beheshti, M.; Wang, Q. J.; Modarres, S.; Blumberg, P. M. *Bio. Med. Chem. Lett.* **1999**, *9*, 2909.

16. Lee, J.; Lee, J.; Kim, J.; Kim, S. Y.; Chun, M. W.; Cho, H.; Hwang, S. W.; Oh, U.; Park, Y. H.; Marquez, V. E.; Beheshti, M.; Szabo, T.; Blumberg, P. M. *Bio. Med. Chem.* **2001**, *9*, 19.

17. Wrigglesworth, R.; Walpole, C. S. J.; Bevan, S.; Campbell, E. A.; Dray, A.; Hughes, G. A.; James, I.; Masdin, K. J.; Winter, J. *J. Med. Chem.* **1996**, *39*, 4942.

- 18. Kim, S.; Yi, K. Y. J. Org. Chem. 1986, 51, 2613.
- 19. Lee, J.; Lee, J.; Szabo, T.; Gonzalez, A. F.; Welter, J. D.;
- Blumberg, P. M. Bio. Med. Chem. 2001, 9, 1713.
- 20. Chen, I. J.; Yang, J. M.; Yeh, J. L.; Wu, B. N.; Lo, Y. C.; Chen, S. J. Eur. J. Med. Chem. **1992**, 27, 187.