ORIGINAL PAPER

Synthesis of some new monocyclic β -lactams as antimalarial agents

Aliasghar Jarrahpour¹ · Malihe Aye¹ · Véronique Sinou² · Christine Latour² · Jean Michel Brunel^{3,4,5,6}

Received: 30 November 2014 / Accepted: 15 June 2015 © Iranian Chemical Society 2015

Abstract A series of new monocyclic β -lactams bearing several methoxy groups and possessing a similar meticillin structure was prepared by the ketene–imine [2+2] cycloaddition reaction (Staudinger reaction). The cycloaddition reaction was found to be totally diastereoselective for **3a-1** (electron donating phenoxy ketenes) and **3u** leading exclusively to the formation of *cis*- β -lactams while **3m-0**, **3q-s**, and **3v-x** were formed as *trans* diastereomer. β -lactams **3p**, **3t**, and **3y** were found to be a mixture of *cis/trans* diastereomers. Compounds **3a-x** were tested against chloroquineresistant *p. falciparum* K14 strain and showed low to excellent activities with IC₅₀ varying from 5 to 50 μ M.

Keywords B-lactam · Meticillin · Staudinger reaction · *P. falciparum* · Dimethoxyaniline

Aliasghar Jarrahpour jarrah@susc.ac.ir; aliasghar6683@yahoo.com

- ² UMR-MD3 Relation hôte-parasites, Physiopathologie and Pharmacologie, Faculté de pharmacie, Aix-Marseille Université, Bd Jean Moulin, 13385 Marseille, France
- ³ Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, UMR7258, Bd Jean Moulin, 13385 Marseille, France
- ⁴ Institut Paoli Calmettes, Marseille, France
- ⁵ Aix-Marseille Université, UM 105, Marseille, France
- ⁶ Inserm, U1068, Faculté de pharmacie, Bd Jean Moulin, 13385 Marseille, France

Introduction

Due to their important biological activities, β -lactams are one of the best known and most extensively studied classes of antibiotics [1]. These classes of drugs have revolutionized treatment in medicine [2]. The azetidinone ring is responsible for the antibacterial and other biological activities and variable side chains that account for the major differences in their chemical and pharmacological properties [3]. 2-Azetidinones are susceptible to ring cleavage reactions, due to ring strain. This property has been discussed by some research groups who have utilized the β -lactam as a synthon for a wide variety of compounds [4, 5]. Bacteria have enhanced their resistance against the most common antibacterial drugs. In particular, meticillin-resistant staphylococci represent one of the most challenging and threatening diseases globally [6, 7]. Meticillin is insensitive to beta-lactamase enzymes secreted by many penicillin-resistant bacteria. The presence of the ortho-dimethoxyphenyl group directly attached to the side chain carbonyl group of the penicillin nucleus facilitates the β -lactamase resistance, since those enzymes are relatively intolerant of sidechain steric hindrance. Movement of one of the methoxy groups to the para position or replacing one of them by a hydrogen results in an analog sensitive to β -lactamase. Putting in a methylene between the aromatic ring and 6-APA likewise produces a β -lactamase sensitive agent. These findings provide strong support for the hypothesis that resistance to enzyme degradation is based on differential steric hindrance [8, 9]. In this context, we have envisioned the synthesis of 2-azetidinones bearing methoxy groups at different positions to mimic meticillin structure.

¹ Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran

Experimental section

General

All required chemicals were purchased from the Merck, Fluka, Aldrich and Acros chemical companies. Dichloromethane and triethylamine were dried by distillation over CaH₂ and then stored over 4Å molecular sieves. IR spectra were run on a Shimadzu FT-IR 8300 spectrophotometer. ¹H-NMR and ¹³C-NMR spectra were recorded in CDCl₃ or DMSO-d₆ using a Bruker Avance DPX instrument (operating at 250 MHz for ¹H and 62.9 MHz for ¹³C). Chemical shifts were reported in ppm (δ) downfield from TMS. All values of the coupling constants (J) are in Hertz. The mass spectra were recorded on a Shimadzu GC-MS QP 1000 EX instrument. Melting points were determined in open capillaries with a Buchi 510 melting point apparatus and are not corrected. Thin-layer chromatography was carried out on silica gel F254 analytical sheets obtained from Fluka. Column chromatography was performed on Merck Kieselgel (230-270 mesh).

General procedure for the synthesis of Schiff bases 1a-p

A mixture of dimethoxyaniline (20.00 mmol) and a substituted benzaldehyde (20.00 mmol) was refluxed in ethanol (25 mL) for 2–4 h. After cooling the solution, the precipitate formed was filtered off and washed with ethanol to give pure Schiff bases as colored solids or crystals in excellent yields.

General procedure for the synthesis of β -lactams 3a-y

A solution of pure or crude Schiff base (1.0 eq.) was stirred with the corresponding substituted acetic acid (1.5 eq.), *p*-toluenesulfonyl chloride (1.5 eq.) and triethylamine (4–5 eq.) in dry CH_2Cl_2 at room temperature. After 24 h, the mixture was washed with HCl 1 N, saturated sodium bicarbonate solution and brine, dried over sodium sulfate and the solvent was evaporated to give the crude product which was then purified by recrystallization from EtOAc, EtOH and MeOH.

1-(3,4-Dimethoxyphenyl)-4-(2-nitrophenyl)-3phenoxyazetidin-2-one (**3a**)

Yield 65 %; mp: 183–185 °C; IR (KBr) cm⁻¹: 1751 (CO, β-lactam); ¹H-NMR (CDCl₃) δ 3.76, 3.80 (OMe, s, 6H), 5.62 (H-4, d, H, J = 5.25), 6.08 (H-3, d, 1H, J = 5.25), 6.44– 8.16 (ArH, m, 12H); ¹³C-NMR (CDCl₃) δ 56.05, 59.23 (2 OCH₃), 68.12 (C-4), 82.14 (C-3), 102.27, 108.27, 111.27, 116.37122.76, 125.38138.78, 129.23, 129.30, 129.46, 130.13, 13073, 130.88, 133.96, 146.41, 148.18, 149.66, 157.18 (aromatic carbons), 163.37 (CO, β-lactam); Anal. calcd. for $C_{23}H_{20}N_2O_6$: C, 65.71; H, 4.79; N, 6.66. Found: C, 62.42; H, 4.04; N, 5.68; GC–MS (*m*/*z*) = 420 [M⁺].

1-(3,4-Dimethoxyphenyl)-4-(3-nitrophenyl)-3phenoxyazetidin-2-one (**3b**)

Yield: 80 %; mp: 144–146 °C; IR (KBr) cm⁻¹: 1766 (CO, β-lactam); ¹H-NMR (CDCl₃) δ 3.78,3.83 (OMe, s, 6H), 5.49 (H-4, d, 1H, J = 4.80), 5.64 (H-3, d, 1H, J = 4.80), 6.43–8.24 (ArH, m, 12H); ¹³C-NMR (CDCl₃) δ 56.04, 56.06 (2 OCH₃), 61.15 (C-4), 81 (C-3), 102.61, 108.32, 111.27, 115.40, 122.61, 123.29, 123.83, 128.80, 129.49, 130.89, 133.88, 135.37, 146.52, 148.18, 149.68, 156.38 (aromatic carbons), 162.02 (CO, β-lactam); Anal. calcd. for $C_{23}H_{20}N_2O_6$: C, 65.71; H, 4.79; N, 6.66;. Found: C, 65.51; H, 4.66; N, 5.83; GC–MS (m/z) = 420 [M⁺].

1-(3,4-Dimethoxyphenyl)-4-(4-nitrophenyl)-3-phenoxyazetidin-2-one (*3c*)

Yield: 79 %; mp: 131–133 °C; IR (KBr) cm⁻¹: 1755 (CO, β-lactam); ¹H-NMR (CDCl₃) δ 3.72,3.77 (OMe, s, 6H), 5.41 (H-4, d, 1H, J = 4.85), 5.56 (H-3, d, 1H, J = 4.85), 6.29–8.08 (ArH, m, 12H); ¹³C-NMR (CDCl₃) δ 56, 56.04 (2 OCH₃), 61.19 (C-4), 81.16 (C-3), 102.49, 108.27, 111.21, 115.40, 122.63, 123.58, 128.98, 129.48, 130.20, 140.46, 146.48, 148.11, 149.62, 156.45 (aromatic carbons), 161.98 (CO, β-lactam); Anal. calcd. for C₂₃H₂₀N₂O₆: C, 65.71; H, 4.79; N, 6.66. Found: C, 64.39; H, 4.71; N, 7.23; GC–MS (m/z) = 420 [M⁺].

1-(2,4-Dimethoxyphenyl)-4-(3,4-dimethoxyphenyl)-3phenoxyazetidin-2-one (**3d**)

Yield: 45 %; mp: 116–118 °C; IR (KBr) cm⁻¹: 1758 (CO, β-lactam); ¹H-NMR (CDCl₃) δ 3.64–3.70 (OMe, s, 12H), 5.51 (H-3, 4, s, 2H, J = 4.35), 6.30–7.59 (ArH, m, 11H); ¹³C-NMR (CDCl₃) δ 55.48, 55.55, 55.68, 55.86 (4 OCH₃), 64.94 (C-4), 82.01 (C-3), 99.64, 104.46, 110.44, 111.22, 115.51, 117.75, 121.19, 121.88, 125.30, 126.44, 128.78, 129.20, 130.89, 148.47, 148.90, 153.00, 157.02, 158.89 (aromatic carbons), 164.58 (CO, β-lactam); Anal. calcd. for C₂₅H₂₅NO₆: C, 68.95; H, 5.79; N, 3.22. Found: C,68.47; H, 5.93; N, 3.73; GC–MS (m/z) = 420 [M⁺].

1,4-Bis(3,4-dimethoxyphenyl)-3-phenoxyazetidin-2-one (*3e*)

Yield: 75 %; mp: 123–125 °C; IR (KBr) cm⁻¹: 1755 (CO, β -lactam); ¹H-NMR (CDCl₃) δ 3.69–3.76 (OMe, s, 12H), 5.23 (H-4, d, 1H, J = 4.70), 5.48 (H-3, d, 1H, J = 4.70), 6.50–7.29 (ArH, m, 11H); ¹³C-NMR (CDCl₃) δ 55.77–56.00 (4 OCH₃), 62.20 (C-4), 81.06 (C-3), 102.52, 108.73,

110.72, 110.86, 111.1, 115.57, 120.97, 122.15, 124.97, 129.28, 130.85, 146.07, 148.88, 149.31 (aromatic carbons), 162.65 (CO, β -lactam); Anal. calcd. for C₂₅H₂₅NO₆: C, 68.95; H, 5.79; N, 3.22. Found: C,68.75; H, 5.56; N, 2.90.

1-(2,4-Dimethoxyphenyl)-4-(2-methoxyphenyl)-3phenoxyazetidin-2-one (**3f**)

Yield: 50 %; mp: 108–110 °C; IR (KBr) cm⁻¹: 1743 (CO, β-lactam); ¹H-NMR (CDCl₃) δ 3.66–3.72 (OMe, d, 9H), 5.58 (H-4, dd, 1H, J = 2.62), 5.61 (H-3, dd, 1H, J = 2.12), 6.36–7.72 (ArH, m, 12H); ¹³C-NMR (CDCl₃) δ 55.15– 55.50 (3 OCH₃), 65.06 (C-4), 82.15 (C-3), 99.74, 104.49, 113.74, 113.85, 115.66, 117.89, 120.12, 120.78, 125.17, 128.94, 129.18, 135.79, 152.80, 157.08, 158.77, 159.23 (aromatic carbons), 167.55 (CO, β-lactam); Anal. calcd. for C₂₄H₂₃NO₅: C, 71.10; H, 5.72; N, 3.45. Found: C, 70.73; H, 5.88; N, 3.98; GC–MS (m/z) = 405 [M⁺].

1-(2,4-Dimethoxyphenyl)-4-(3-methoxyphenyl)-3-phenoxyazetidin-2-one (3 g)

Yield: 20 %; mp: 98–100 °C; IR (KBr) cm⁻¹: 1747 (CO, β-lactam); ¹H-NMR (CDCl₃) δ 3.61, 3.68, 3.73 (OMe, t, 9H), 5.56 (H-4, m, 1H), 6.13 (H-3, t, 1H), 6.35–7.82 (ArH, m, 12H); ¹³C-NMR (CDCl₃) δ 55.12, 55.49, 55.55 (3 OCH₃), 59.59 (C-4), 82.16 (C-3), 99.75, 104.56, 109.91, 115.64, 118.44, 120.13, 121.64, 122.66, 124.88, 128.10, 128.93, 152.68, 157.22, 157.27, 158.53 (aromatic carbons), 164.78 (CO, β-lactam); Anal. calcd. for C₂₄H₂₃NO₅: C, 71.10; H, 5.72; N, 3.45. Found: C,70.50; H, 5.44; N, 3.32; GC–MS (*m*/*z*) = 405 [M⁺].

1-(2,4-Dimethoxyphenyl)-4-(2-nitrophenyl)-3phenoxyazetidin2-one (**3 h**)

Yield: 75 %; mp: 128–130 °C; IR (KBr) cm⁻¹: 1743 (CO, β-lactam); ¹H-NMR (CDCl₃) δ 3.50, 3.71 (OMe, s, 6H), 6.36 (H-4, d, 1H, J = 5.11), 5.66 (H-3, d, 1H, J = 5.11), 6.31–8.01 (ArH, m, 12H); ¹³C-NMR (CDCl₃) δ 55.42, 55.54 (2 OCH₃), 61.77 (C-4), 83.28 (C-3), 99.72, 104.75, 116.23, 122.45, 124.09, 124.81, 128.79, 128.90, 129.37, 130.88, 132.07, 133.43, 151.80, 157.24, 158.52 (aromatic carbons), 164.67 (CO, β-lactam); Anal. calcd. for $C_{23}H_{20}N_2O_6$: C, 65.71; H, 4.79; N, 6.66. Found: C,62.42; H, 4.04; N, 5.68; GC–MS (m/z) = 420 [M⁺].

1-(2,4-Dimethoxyphenyl)-4-(3-nitrophenyl)-3-phenoxyazetidin-2-one (*3i*)

Yield: 80 %; mp: 131–133 °C; IR (KBr) cm⁻¹: 1758 (CO, β -lactam); ¹H-NMR (CDCl₃) δ 3.63, 3.69 (OMe, s, 6H), 5.60

(H-3, d, 1H, J = 2.59), 6.30 (H-4, d, 1H, J = 2.42), 6.40–8.14 (ArH, m, 12H); ¹³C-NMR (CDCl₃) δ 54.43, 54.45 (2 OCH₃), 63.16 (C-4), 80.1 (C-3), 98.52, 103.64, 114.25, 116.33, 120.60, 121.23, 121.43, 122.21, 122.34, 122.65, 123.89, 127.97, 128.35, 133.15, 135.84, 146.84, 151.41, 155.40, 157.96 (aromatic carbons), 162.86 (CO, β-lactam); Anal. calcd. for C₂₃H₂₀N₂O₆: C, 65.71; H, 4.79; N, 6.66. Found: C,65.93; H, 5.88; N, 5.86; GC–MS (*m/z*) = 420 [M⁺].

1-(3,4-Dimethoxyphenyl)-4-(2-methoxyphenyl)-3phenoxyazetidin-2-one (**3***j*)

Yield 77 %; mp: 168–170 °C; IR (KBr) cm⁻¹: 1755 (CO, β-lactam); ¹H-NMR (CDCl₃) δ 3.69–3.77 (OMe, s, 9H), 5.49 (H-4, d, 1H, J = 4.82), 5.73 (H-3, d, 1H, J = 4.82), 6.48–7.32 (ArH, m, 12H); ¹³C-NMR (CDCl₃) δ 55.15, 55.95, 56.03 (3 OCH₃), 56.46 (C-4), 81.08 (C-3), 102.35, 108.66, 110.03, 111.24, 115.73, 120.42, 120.62, 121.91, 128.23, 129.01, 129.48, 130.93, 145.98, 149.37, 157.16, 157.30 (aromatic carbons), 162.92 (CO, β-lactam); Anal. calcd. for C₂₄H₂₃NO₅: C, 71.10; H, 5.72; N, 3.45. Found: C, 70.43; H, 5.75; N, 3.79; GC–MS (*m/z*) = 405 [M⁺].

1-(3,4-Dimethoxyphenyl)-4-(3-methoxyphenyl)-3phenoxyazetidin-2-one (**3** *k*)

Yield 65 %; mp: 114–116 °C; IR (KBr) cm⁻¹: 1745 (CO, β-lactam); ¹H-NMR (CDCl₃) δ 3.65–3.75 (OMe, s, 9H), 5.25 (H-4, d, 1H, J = 4.81), 5.48 (H-3, d, 1H, J = 4.81), 6.46–7.27 (ArH, m, 12H); ¹³C-NMR (CDCl₃) δ 55.25, 55.92, 56.01 (3 OCH₃), 62.19 (C-4), 81.15 (C-3), 102.51, 108.71, 111.21, 113.61, 114.33, 115.74, 120.56, 122.18, 129.25, 129.42, 130.79, 134.30, 146.09, 149.35, 157.00, 159.57 (aromatic carbons), 162.59 (CO, β-lactam); Anal. calcd. for C₂₄H₂₃NO₅: C, 71.10; H, 5.72; N, 3.45. Found: C, 70.14; H, 5.91; N, 5.27; GC–MS (m/z) = 405 [M⁺].

1-(3,4-Dimethoxyphenyl)-4-(4-methoxyphenyl)-3phenoxyazetidin-2-one (31)

Yield: 50 %; mp: 123–125 °C; IR (KBr) cm⁻¹: 1745 (CO, β-lactam); ¹H-NMR (CDCl₃) δ 3.65–3.75 (OMe, s, 12H), 5.24 (H-4, d, 1H, J = 4.72), 5.44 (H-3, d, 1H, J = 4.72), 6.48–7.61 (ArH, 12 m, H); ¹³C-NMR (CDCl₃) δ 55.17-61.92 (4 OCH₃), 68.12 (C-4), 81.16 (C-3), 102.53, 108.75, 111.15, 113.84, 115.67, 122.11, 124.46, 128.78, 129.25, 129.43, 130.88, 145.99, 149.30,156.99, 159.85 (aromatic carbons), 162.70 (CO, β-lactam); Anal. calcd. for C₂₄H₂₃NO₅: C, 71.10; H, 5.72; N, 3.45. Found: C,70.90; H, 5.26; N, 5.97.

2-(1-(2,4-Dimethoxyphenyl)-2-(2-nitrophenyl)-4oxoazetidin-3-yl)isoindoline-1,3-dione (**3** *m*)

Yield: 85 %; mp: 227–229 °C; IR (KBr) cm⁻¹: 1720 (CO, β-lactam), 1750-1780 (CO, Phth); ¹H-NMR (CDCl₃) δ 3.47, 3.72 (OMe, d, 6H), 5.21 (H-2, d, 1H, J = 2.32), 6.10 (H-3, d, 1H, J = 1.98), 5.97–8.36 (ArH, m, 11H); ¹³C-NMR (CDCl₃) δ 55.59, 59.99 (2 OCH₃), 62.43 (C-3), 62.90 (C-2), 99.76, 104.86, 123.55, 123.78, 124.01, 124.49, 124.73, 125.00, 126.62, 128.77, 128.80, 130.27, 130.87, 131.23, 133.38, 134.28, 134.43, 152.30, 158.72 (aromatic carbons), 162.80, 163.18 (2 CO, Phth), 166.96 (CO, β-lactam); Anal. calcd. for C₂₅H₁₉N₃O₇: C, 63.42; H, 4.05; N, 8.88. Found: C, 57.53; H, 3.38; N, 10.97; GC–MS (*m/z*) = 473 [M⁺].

2-(1-(2,4-Dimethoxyphenyl)-2-(3-nitrophenyl)-4oxoazetidin-3-yl)isoindoline-1,3-dione (**3n**)

Yield: 65 %; mp: 220–218 °C; IR (KBr) cm⁻¹: 1720 (CO, β -lactam), 1760–1775 (CO, Phth); ¹H-NMR (DMSO) δ 3.62, 3.71 (OMe, s, 6H), 5.26 (H-2, d, 1H, J = 2.50), 5.81 (H-3, d, 1H, J = 2.50), 6.45–8.36 (ArH, m, 11H); ¹³C-NMR (DMSO) δ 55.34, 55.70 (2 OCH₃), 61.84 (C-3), 62.02 (C-2), 99.61, 105.26, 117.07, 121.91, 123.12, 123.43, 124.56, 130.10, 131.41, 133.09, 134.32, 139.74, 147.81, 152.74, 158.49 (aromatic carbons), 162.12 (2 CO, Phth), 166.66 (CO, β -lactam); Anal. calcd. for C₂₅H₁₉N₃O₇: C, 63.42; H, 4.05; N, 8.88. Found: C, 63.28; H, 4.17; N, 6.75.

2-(1-(2,4-Dimethoxyphenyl)-2-(4-nitrophenyl)-4oxoazetidin-3-yl)isoindoline-1,3-dione (**3o**)

Yield: 60 %; mp: 186–188 °C; IR (KBr) cm⁻¹: 1720 (CO, β-lactam), 1770–1782 (CO, Phth); ¹H-NMR (CDCl₃) δ 3.64, 3.77 (OMe, s, 6H), 5.27 (H-2, d, 1H, J = 2.65), 5.76 (H-3, d, 1H, J = 2.65), 6.38–8.21 (ArH, m, 11H); ¹³C-NMR (CDCl₃) δ 55.56-55.60 (2 OCH₃), 62.64 (C-3), 63.40 (C-2), 99.83, 104.85, 123.86, 124.24, 124.81, 126.99, 131.64, 134.66, 144.74, 147.96, 152.88, 159.07 (aromatic carbons), 162.04 (2 CO, Phth), 166.76 (CO, β-lactam); Anal. calcd. for C₂₅H₁₉N₃O₇: C, 63.42; H, 4.05; N, 8.88. Found: C, 62.37; H, 3.87; N, 10.84.

2-(1-(2,4-Dimethoxyphenyl)-2-(2-methoxyphenyl)-4oxoazetidin-3-yl)isoindoline-1,3-dione (3**p**)

Mixture of *cis* and *trans*, yield 75 %; mp: 179–181 °C; IR (KBr) cm⁻¹: 1716 (CO, β-lactam), 1758–1770 (CO, Phth); ¹H-NMR (CDCl₃) δ 3.55–3.73 (OMe, s, 18H), *trans*: 5.31 (H-4, d, H, J = 2.70), 5.82 (H-3, d, 1H, J = 2.70), *cis*: 5.74 (H-4, d, 1H, J = 5.44), 5.95 (H-3, d, 1H, J = 5.44), 6.33–8.08 (ArH, m, 22H); ¹³C-NMR (CDCl₃) δ 55.01, 55.77 (3

OCH₃), 59.033, 60.40 (C-4), 60.58, 61.11 (C-3), 99.83, 104.61, 109.01, 110.38, 118.77, 120.22, 120.46, 123.13, 123.55, 124.70, 125.43, 125.47, 127.05, 127.82, 129.23, 131.31, 131.84, 134.06, 134.46, 153.40, 157.14, 158.63, 158.75 (aromatic carbons), 163.13 (2 CO, β-lactam); Anal. calcd. for $C_{26}H_{22}N_2O_6$: C, 68.11; H, 4.84; N, 6.11. Found: C, 67.22; H, 4.90; N, 6.18; GC–MS (m/z) = 458 [M⁺].

2-(1-(2,4-Dimethoxyphenyl)-2-(3-methoxyphenyl)-4oxoazetidin-3-yl)isoindoline-1,3-dione (**3q**)

Yield: 60 %; mp: 118–120 °C; IR (KBr) cm⁻¹: 1720 (CO, β-lactam), 1750–1770 (CO, Phth); ¹H-NMR (CDCl₃) δ 3.59, 3.68, 3.69 (OMe, s, 9H), 5.22 (H-2, d, 1H, J = 2.54), 5.57 (H-3, d, 1H, J = 2.54), 6.32–7.82 (ArH, m, 11H); ¹³C-NMR (CDCl₃) δ 55.17, 55.49, 55.72 (3 OCH₃), 63.90 (C-3), 68.13 (C-2), 99.84, 104.62, 111.63, 114.03, 117.90, 118.8, 123.70, 125.15, 128.79, 129.95, 130.90, 131.78, 134.46, 138.67, 153.61, 158.96, 159.99 (aromatic carbons), 162.78,166.91 (2 CO, Phth), 167.76 (CO, β-lactam); Anal. calcd. for: C₂₆H₂₂N₂O₆: C, 68.11; H, 4.84; N, 6.11. Found: C, 67.51; H, 4.86; N, 7.94; GC– MS (*m/z*) = 458 [M⁺].

2-(1-(2,4-Dimethoxyphenyl)-2-(4-methoxyphenyl)-4oxoazetidin-3-yl)isoindoline-1,3-dione (3**r**)

Yield: 85 %; mp: 184–186 °C; IR (KBr) cm⁻¹: 1716 (CO, β-lactam), 1755–1775 (CO, Phth); ¹H-NMR (CDCl₃) δ 3.63, 3.65 (OMe, s, 9H), 5.19 (H-2, d, 1H, J = 2.55), 5.53 (H-3, d, 1H, J = 2.55), 6.28–7.76 (ArH, m, 11H); ¹³C-NMR (CDCl₃) δ 55.21, 55.44, 55.70 (3 OCH₃), 62.54 (C-3), 63.58 (C-2), 99.76, 104.56, 114.22, 117.75, 123.61, 125.24, 127.71, 128.79, 131.69, 134.45, 153.63, 158.92, 159.76 (aromatic carbons), 162.86 (2 CO, Phth), 166.92 (CO, β-lactam); Anal. calcd. for: C₂₆H₂₂N₂O₆: C, 68.11; H, 4.84; N, 6.11. Found: C, 67.02; H, 4.81; N, 5.93; GC–MS (*m/z*) = 458 [M⁺].

2-(1-(3,4-Dimethoxyphenyl)-2-(2-nitrophenyl)-4oxoazetidin-3-yl)isoindoline-1,3-dione (**3** s)

Yield: 25 %; mp: 203–205 °C; IR (KBr) cm⁻¹: 1720 (CO, β-lactam), 1755, 1762 (CO, Phth); ¹H-NMR (CDCl₃) δ 3.55, 3.85 (OMe, s, 6H), 5.32 (H-2, d, 1H, J = 2.62), 5.93 (H-3, d, 1H, J = 2.62), 6.05–8.12 (ArH, m, 11H); ¹³C-NMR (CDCl₃) δ 55.92,56.08 (2 OCH₃), 57.62 (C-3), 62.24 (C-2), 102.72, 108.65, 111.31, 123.53, 123.61, 123.69, 125.02, 125.77, 127.56, 129.52, 129.62, 131.24, 131.74, 131.99, 133.77, 134.24, 134.32, 134.42, 134.58, 149.66 (aromatic carbons), 161.95 (2 CO, Phth), 166.95 (CO, β-lactam); Anal. calcd. for C₂₅H₁₉N₃O₇: C, 63.42; H, 4.05; N, 8.88. Found: C, 62.11; H, 3.86; N, 8.64.

2-(1-(3,4-Dimethoxyphenyl)-2-(3-nitrophenyl)-4oxoazetidin-3-yl)isoindoline-1,3-dione (3t)

Mixture of *cis* and *trans*, yield: 50 %; mp: 148–150 °C; IR (KBr) cm⁻¹: 1720 (CO, β-lactam), 1755–1770 (CO, Phth); ¹H-NMR (CDCl₃) δ 3.73, 3.83 (OMe, s, 6H), *trans*: 5.21 (H-2, d, 1H, J = 2.56), 5.41 (H-3, d, 1H, J = 2.56), *cis*: 5.48 (H-2, d, 1H, J = 5.59), 5.70 (H-3, d, 1H, J = 5.59), 6.30–8.19 (ArH, m, 11H); ¹³C-NMR (CDCl₃) δ 55.97-60.28 (2 OCH₃), 60.48 (C-3), 62.56 (C-2), 102.40, 102.77, 107.89, 108.59, 111.22, 121.49, 122.40, 123.52, 123.70, 123.91, 124.13, 129.64, 130.29, 130.69, 130.86, 131.51, 131.94, 133.39, 134.60, 134.76, 138.31, 146.41, 148.81, 149.56 (aromatic carbons), 160.03,161.02 (2 CO, Phth), 166.72 (CO, β-lactam); Anal. calcd. for C₂₅H₁₉N₃O₇: C, 63.42; H, 4.05; N, 8.88. Found: C, 62.94; H, 4.11; N, 8.64.

2-(1-(3,4-Dimethoxyphenyl)-2-(4-nitrophenyl)-4-oxoazetidin-3-yl)isoindoline-1,3-dione (**3u**)

Yield: 58 %; mp: 244–246 °C; IR (KBr) cm⁻¹: 1716 (CO, β-lactam), 1762–1775 (CO, Phth); ¹H-NMR (CDCl₃) δ 3.78, 3.85 (OMe, s, 6H), 5.47 (H-2, d, 1H, J = 5.63), 5.70 (H-3, d, 1H, J = 5.63), 6.34-8.02 (ArH, m, 11H); ¹³C-NMR (CDCl₃) δ 56.12 (2 OCH₃), 58.78 (C-3), 60.39 (C-2), 102.43, 107.86, 111.25, 123.74, 123.79, 128.36, 130.80, 130.90, 134.69, 140.00, 146.49, 147.86,149.78 (aromatic carbons), 159.8 (2 CO, Phth), 166.60 (CO, β-lactam); Anal. calcd. for C₂₅H₁₉N₃O₇: C, 63.42; H, 4.05; N, 8.88. Found: C, 62.80; H, 4.36; N, 6.65; GC–MS (m/z) = 458, 473 [M⁺].

2-(1-(3,4-Dimethoxyphenyl)-2-(2-methoxyphenyl)-4oxoazetidin-3-yl)isoindoline-1,3-dione (**3**v)

Yield: 45 %; mp: 208–210 °C; IR (KBr) cm⁻¹: 1720 (CO, β-lactam), 1751–1760 (CO, Phth); ¹H-NMR (CDCl₃) δ 3.59, 3.77, 3.83 (OMe, s, 9H), 5.57 (H-2, d, 1H, J = 2.55), 5.70 (H-3, d, 1H, J = 2.55), 6.53–7.58 (ArH, m, 11H); ¹³C-NMR (CDCl₃) δ 55.05, 56.07 (3 OCH₃), 57.71 (C-3), 57.93 (C-2), 102.40, 108.23, 109.23, 111.20, 120.33, 120.49, 123.26, 128.82, 129.35, 131.26, 131.68, 13413, 145.91, 149.45, 156.55 (aromatic carbons), 161.55 (2 CO, Phth), 166.33 (CO, β-lactam); Anal. calcd. for: C₂₆H₂₂N₂O₆: C, 68.11; H, 4.84; N, 6.11. Found: C, 66.67; H, 4.93; N, 6063; GC–MS (m/z) = 458 [M⁺].

2-(1-(3,4-Dimethoxyphenyl)-2-(3-methoxyphenyl)-4oxoazetidin-3-yl)isoindoline-1,3-dione (3w)

Yield: 70 %; mp: 183–185 °C; IR (KBr) cm⁻¹: 1720 (CO, β-lactam), 1760–1770 (CO, Phth); ¹H-NMR (CDCl₃) δ 3.77– 3.84 (OMe, s, 9H), 5.29 (H-2, 3, d, 2H, *J* = 2.63), 6.54–7.89 (ArH, m, 11H); ¹³C-NMR (CDCl₃) δ 55.31, 55.88, 56.03 (3 OCH₃), 61.45 (C-3), 62.60 (C-2), 102.59, 108.88, 111.26, 111.77, 114.41, 118.44, 123.80, 130.51, 131.02, 131.68, 134.25, 134.57, 137.47, 146.04, 149.30 (aromatic carbons), 160.36, 161.57 (2 CO, Phth), 166.8 (CO, β-lactam); Anal. calcd. for $C_{26}H_{22}N_2O_6$: C, 68.11; H, 4.84; N, 6.11. Found: C,66.40; H, 4.70; N, 6.32; GC–MS (m/z) = 458 [M⁺].

2-(1-(3,4-Dimethoxyphenyl)-2-(4-methoxyphenyl)-4oxoazetidin-3-yl)isoindoline-1,3-dione (3**x**)

Yield: 80 %; mp: 186–188 °C; IR (KBr) cm⁻¹: 1716 (CO, β-lactam), 1755–1775 (CO, Phth); ¹H-NMR (CDCl₃) δ 3.73–3.76 (OMe, s, 9H), 5.19 (H-2, d, 1H, J = 2.57), 5.22 (H-3, d, 1H, J = 2.57), 6.50–7.81 (ArH, m, 11H); ¹³C-NMR (CDCl₃) δ 55.10-56.02 (3 OCH₃), 61.16 (C-3), 62.75 (C-2), 102.44, 108.93, 111.23, 113.89, 114.74, 123.75, 127.60, 128.52, 131.02, 131.67, 134.25, 134.54, 145.95, 149.26 (aromatic carbons), 160.18, 161.70 (2 CO, Phth), 166.85 (CO, β-lactam); Anal. calcd. for C₂₆H₂₂N₂O₆: C, 68.11; H, 4.84; N, 6.11. Found: C,67.02; H, 4.81; N, 5.93; GC–MS (m/z) = 458 [M⁺].

2-(1-(2,4-Dimethoxyphenyl)-2-(4-nitrophenyl)-4-oxoazetidin-3-yl)-4-nitroisoindoline-1,3-dione (3y)

Mixture of *cis* and *trans*, yield: 80 %; mp: 190–192 °C (*trans*), 194–196 °C (*cis*); IR (KBr) cm⁻¹: 1735 (CO, β-lactam), 1785–1787 (CO, Phth); ¹H-NMR (CDCl₃) δ 3.55, 3.69 (OMe, s, 6H), *trans*: 5.20 (H-2, d, 1H, J = 1.70), 5.70 (H-3, d, 1H, J = 2.07), *cis*: 5.72 (H-2, d, 1H, J = 5.56), 5.88 (H-3, d, 1H, J = 5.56), 6.29–8.13 (ArH, m, 10H); ¹³C-NMR (CDCl₃) δ 55.54 (2 OCH₃), 62.72 (C-3), 63.02 (C-2), 99.71, 104.85, 117.29, 124.26, 124.70, 127.06, 127.62, 129.19, 133.57, 136.13, 144.29, 145.23, 148.02, 152.77, 159.14 (aromatic carbons), 161.10 (2 CO, Phth), 164.28 (CO, β-lactam); Anal. calcd. for C₂₅H₁₈N₄O₉: C, 57.92; H, 3.50; N, 10.81. Found: C,56.28; H, 4.48; N, 9.91; GC–MS (*m/z*) = 518 [M⁺].

General procedure for dephthaloylation of monocyclic $\beta\text{-lactams}$

Method A

A mixture of monocyclic β -lactam **3n** (1.50 mmol), methanol (25.00 mL) and 0.12 mL (2.55 mmol) of hydrazine hydrate was refluxed for 1 h. After evaporation of the solvent, CHCl₃ (20.00 mL) was added and 2,3-dihydrophthalazine-1,4-dione formed was filtered. The filtrate was washed with saturated sodium bicarbonate solution and brine, dried over sodium sulfate and

the solvent was evaporated to give the crude product of 3-amino azetidin-2-one. Compounds xxxx were treated by this method.

Method B

A mixture of monocyclic β -lactam **30** (1.00 mmol), CH₂Cl₂ (25.00 mL) and methylhydrazine (0.05 mL,1.10 mmol)was stirred for 3 days. Then the methylphthalhydrazide formed was filtered. The filtrate was washed with saturated sodium bicarbonate, solution, brine and dried over sodium sulfate and the solvent was evaporated to give the crude product of 3-amino-azetidin-2-one **4d** which was then purified by column chromatography. β -Lactams xxxx were obtained by this method.

3-Amino-1-(2,4-dimethoxyphenyl)-4-(4-nitrophenyl) azetidin-2-one (**4d**)

Yield: 42 %; mp:138–140 °C; IR (KBr) cm⁻¹: 1745 (CO, β-lactam), 3290, 3379 (NH₂); ¹H-NMR (CDCl₃) δ 1.99 (NH₂, s, 2H), 3.62, 3.75 (OMe, s, 6H), 4.10 (H-3, d, 1H, J = 1.82), 5.10 (H-4, d, 1H, J = 1.50), 6.34–8.18 (ArH, m, 7H); ¹³C-NMR (CDCl₃) δ 55.39, 55.50 (2 OCH₃), 68.74 (C-3), 70.46 (C-4), 98.61-158.72 (aromatic carbons), 168.23 (CO, β-lactam); Anal. calcd. for C₁₇H₁₇N₃O₅: C, 59.47; H, 4.99; N, 12.24. Found: C, 57.29; H, 4.48; N, 12.46.

General procedures for the synthesis of amido β-lactams (5a-c, 5d)

Method A

A mixture of oxalyl dichloride (0.17 mL, 2.00 mmol), 2,6-dimethoxybenzoic acid (1.50 mmol), CH_2Cl_2 (25 mL) was stirred for 30 min. Then $E_{t3}N$ (0.50 mL) and the crude of 3-amino-azetidin-2-one (1.5 mmol) from **3n** were added and the mixture was stirred overnight. Then it was washed with HCl 1 N, saturated sodium bicarbonate solution, brine and dried over sodium sulfate. The solvent was evaporated under vaccum to afford the crude amide **5a** which was then purified by column chromatography.

N-(1-(2,4-Dimethoxyphenyl)-2-(3-nitrophenyl)-4-oxoazetidin-3-yl)-2,6-dimethoxybenzamide (*5a*)

Yield: 15 %; mp: 87–89 °C; IR (KBr) cm⁻¹: 1672 (CO, Amide), 1755 (CO, β -lactam), 2941 (NH); ¹H-NMR (CDCl₃) δ 3.56–3.79 (OMe, s, 12H), 4.80 (H-3, dd, 1H, J = 1.99, 5.56), 5.34 (H-2, d, 1H, J = 1.82), 6.31–8.07 (ArH, m, 10H), 8.22 (NH); Anal. calcd. for C₂₆H₂₅N₃O₈: C, 61.53; H, 4.97; N, 8.28. Found: C, 59.53; H, 4.38; N, 8.97.

N-(1-(2,4-Dimethoxyphenyl)-2-(2-methoxyphenyl)-4oxoazetidin-3-yl)-2,6-dimethoxybenzamide (5b)

Mixture of *cis* and *trans*. yield: 30 %; mp: 110–112 °C; IR (KBr) cm⁻¹: 1687 (CO, Amide), 1755 (CO, β-lactam), 2950 (NH); ¹H-NMR (CDCl₃) δ 3.61–3.84 (OMe, s, 15H), 5.03, 5.13 (H-3, dd, 1H, J = (2.25, 8.96), (2.50, 9.77)), 5.41, 5.50 (H-2, d, 1H, J = 2.21, 2.25), 6.30–7.92 (ArH, m, 10H), 8.25, 8.36 (NH, d); Anal. calcd. for C₂₇H₂₈N₂O₇: C, 65.84; H, 5.73; N, 5.69. Found: C, 63.46; H, 6.42; N, 5.11.

*N-(1-(2,4-Dimethoxyphenyl)-2-(4-methoxyphenyl)-4*oxoazetidin-3-yl)-2,6-dimethoxybenzamide (**5***c*)

Yield: 20 %; mp: 82-84 °C; IR (KBr) cm⁻¹: 1677 (CO, Amide), 1758 (CO, β-lactam), 2931 (NH); ¹H-NMR (CDCl₃) δ 3.61–3.80 (OMe, s, 15H), 4.79 (H-3, dd, 1H, J = 2.10, 8.13), 5.18 (H-2, d, 1H, J = 1.88), 6.30–8.19 (ArH, m, 10H), 8.19 (NH, d, 1H, J = 2.00); Anal. calcd. for C₂₇H₂₈N₂O₇: C, 65.84; H, 5.73; N, 5.69. Found: C, 64.54; H, 4.93; N, 6.12.

Method B

A mixture of 2,6-dimethoxybenzoic acid (1.10 mmol), TsCl (1.10 mmol), Et₃N (1.10 mmol) and CH₂Cl₂ (25.00 mL) was stirred for 3 h. Then an excess amount of Et₃N (0.5 mL) and 3-amino-1-(2,4-dimethoxyphenyl)-4-(4-nitrophenyl)azetidin-2-one **4d** (1 mmol) was added and the mixture was stirred overnight. Then the mixture was washed with HCl 1 N, saturated sodium bicarbonate solution, brine and dried over sodium sulfate. The solvent was evaporated under vaccum to afford the crude amide **5d** which was then purified by column chromatography.

N-(1-(2,4-Dimethoxyphenyl)-2-(4-nitrophenyl)-4-oxoazetidin-3-yl)-2,6-dimethoxybenzamide (5d)

Yield: 50 %; mp: 84–86 °C; IR (KBr) cm⁻¹: 1688 (CO, Amide), 1758 (CO, β-lactam), 2941 (NH); ¹H-NMR (CDCl₃) δ 3.62, 3.77, 3.84 (OMe, s, 12H), 4.86 (H-3, dd, 1H, J = 1.97, 5.4), 5.44 (H-2, d, 1H, J = 1.82), 6.38–7.70 (ArH, m, 10H), 8.18 (NH, d, J = 8.65); ¹³C-NMR (CDCl₃) δ 55.48, 55.55, 56.07 (4 OCH₃), 66.34 (C-3), 66.66 (C-4), 98.76–157.69 (aromatic carbons), 158.87 (CO, amide), 163.30 (CO, β-lactam); Anal. calcd. for C₂₆H₂₅N₃O₈: C, 61.53; H, 4.97; N, 8.28. Found: C, 59.72; H, 5.16; N, 8.05.

Results and discussion

Schiff bases **1a-p** were prepared from dimethoxyanilines and substituted bezaldehydes in refluxing ethanol. Then

Table 1Synthesis of2-azetidinones3a-y

ß lactam	Structure	Yield (%) ^a	ß lactam	Structure	Yield (%) ^a
p-lactalli	Structure	cis/trans (%)	p-lactalli		cis/trans (%)
3a	NO ₂ H ₃ CO OCH ₃	65 (100:0)	3n ^b	H ₃ CO-OCH ₃	65 (0:100)
3b		80 (100:0)	30	$ \begin{array}{c} $	60 (0:100)
3c ^b	NO2 OFN H3CO OCH3	79 (100:0)	3р	UN OCH3 ON OCH3 H3CO OCH3	75 (50:50)
3d ^b	OCH ₃ OCH ₃ OCH ₃ H ₃ CO-CCH ₃	45 (100:0)	3q ^b	G H ₃ CO CCH ₃	60 (0:100)
3e ^b	H ₃ CO OCH ₃	75 (100:0)	3r	$ \begin{array}{c} $	85 (0:100)
3f	OCH ₃ OCH ₃ OCH ₃	50 (100:0)	3s	$ \begin{pmatrix} $	25 (0:100)
3g ^b	H ₃ CO-CH ₃	20 (100:0)	3t	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array}\\ \end{array}\\ \end{array}\\ \\ \begin{array}{c} \\ \end{array}\\ \end{array}\\ \\ \end{array}\\ \\ \begin{array}{c} \\ \end{array}\\ \\ \end{array}\\ \\ \end{array}\\ \\ \begin{array}{c} \\ \end{array}\\ \\ \end{array}\\ \\ \end{array}$ \\ \begin{array}{c} \\ \end{array}\\ \\ \end{array}\\ \\ \end{array} \\ \begin{array}{c} \\ \end{array}\\ \\ \end{array}\\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array}\\ \\ \end{array}\\ \\ \end{array} \\ \begin{array}{c} \\ \end{array}\\ \\ \end{array}\\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\	50 (60:40)

a mixture of Schiff base, triethylamine, substituted acetic acid **2** and tosyl chloride in dry CH_2Cl_2 was stirred at room temperature for 24 h to give 2-azetidinones **3a-y** (Table 1) by the ketene–imine [2+2] cycloaddition reaction (Staudinger reaction) (Scheme 1) [12–18].

TLC monitoring confirmed the presence of the expected new products and the structures of the cycloadducts have been additionally characterized by spectral analyses. For example, the IR spectrum of compound **3a** indicated a characteristic absorption band of a β -lactam carbonyl moiety at 1751 cm⁻¹.

The ¹H-NMR spectrum of **3a** exhibited the signals of the methoxy protons as two singlets at 3.76 and 3.80 ppm, the β -lactam ring protons H-3 and H-4 as two doublets at

Table 1 continued

β-lactam	Structure	Yield (%) ^a	β-lactam	Structure	Yield (%) ^a
3h ^b		80 (100:0)	3u ^b	($)$ $)$ $()$ $($	58 (100:0)
3i		80 (100:0)	3v	H ₃ CO	45 (0:100)
3j	H ₃ CO OCH ₃	77 (100:0)	3w	H ₃ CO OCH ₃	70 (0:100)
3k		65 (100:0)	3x ^b	C C C H3	80 (0:100)
31 ^b	OCH3 OFN H3COOCH3	50 (100:0)	3у		80 (70:30)
3m	$ \begin{array}{c} $	85 (0:100)			

6.08, 5.62 and aromatic protons as multiplets at 6.44–8.16. Furthermore, the ¹³C-NMR spectrum exhibited the C-3, and C-4 (β -lactam ring) at 82.14, 68.12 and the β -lactam carbonyl at 163.37. The stereochemistries of these 2-aze-tidinones were either *cis* or *trans* due to the coupling constants of H-3 and H-4 of the β -lactam ring. The *cis* geometry was assigned for the coupling constants larger than 3 Hz and the *trans* geometry for those lower than 3 Hz [19]. The monocyclic β -lactams, **3a-e**, **3h**, **3j-l**, **3u**, were obtained as *cis* isomer, whereas derivatives 3**m**, **3n**, **3o**, **3q-r** and **3v-x**, were isolated as *trans* isomer and **3p**, **3t and 3y** as a mixture of *cis* and *trans* isomers. On the other hand, 3-phthalimido β -lactams **3n**, **3r** and **3p** were converted to

3-amido-2-azetidinones **5a-c** by the procedure outlined in Scheme 2 [20].

Moreover, **30** was converted into 3-amido β -lactam **5d** as shown in Scheme 3 [21]. In these reactions, the free 3-amino azetidin-2-ones reacted with 2,6-dimethoxyben-zoic acid in the presence of tosyl chloride as acid activator at room temperature to afford the amido β -lactam.

Antimalarial activity of β -lactams 3a-x

Low to excellent antimalarial activities have been obtained against chloroquine-resistant *p. falciparum* K14 strain as outlined in Table 2 for all derivatives with IC_{50} varying from

3a $\mathbf{R}^{1} = 3,4$ -DiMeOC₆H₃, $\mathbf{R}^{2} = 2$ -NO₂C₆H₄, $\mathbf{R}^{3} =$ PhO **3b** $\mathbf{R}^{1} = 3,4$ -DiMeOC₆H₃, $\mathbf{R}^{2} = 3$ -NO₂C₆H₄, $\mathbf{R}^{3} =$ PhO **3c** $\mathbf{R}^{1} = 3,4$ -DiMeOC₆H₃, $\mathbf{R}^{2} = 4$ -NO₂C₆H₄, $\mathbf{R}^{3} =$ PhO **3d** $\mathbf{R}^{1} = 2,4$ -DiMeOC₆H₃, $\mathbf{R}^{2} = 3,4$ -DiMeOC₆H₃, $\mathbf{R}^{3} =$ PhO **3e** $\mathbf{R}^{1} = 3,4$ -DiMeOC₆H₃, $\mathbf{R}^{2} = 3,4$ -DiMeOC₆H₃, $\mathbf{R}^{3} =$ PhO **3f** $\mathbf{R}^{1} = 2,4$ -DiMeOC₆H₃, $\mathbf{R}^{2} = 2$ -MeOC₆H₄, $\mathbf{R}^{3} =$ PhO **3g** $\mathbf{R}^{1} = 2,4$ -DiMeOC₆H₃, $\mathbf{R}^{2} = 3$ -MeOC₆H₄, $\mathbf{R}^{3} =$ PhO **3h** $\mathbf{R}^{1} = 2,4$ -DiMeOC₆H₃, $\mathbf{R}^{2} = 3$ -MeOC₆H₄, $\mathbf{R}^{3} =$ PhO **3i** $\mathbf{R}^{1} = 2,4$ -DiMeOC₆H₃, $\mathbf{R}^{2} = 3$ -NO₂C₆H₄, $\mathbf{R}^{3} =$ PhO **3j** $\mathbf{R}^{1} = 2,4$ -DiMeOC₆H₃, $\mathbf{R}^{2} = 3$ -NO₂C₆H₄, $\mathbf{R}^{3} =$ PhO **3k** $\mathbf{R}^{1} = 2,4$ -DiMeOC₆H₃, $\mathbf{R}^{2} = 3$ -MeOC₆H₄, $\mathbf{R}^{3} =$ PhO **3k** $\mathbf{R}^{1} = 2,4$ -DiMeOC₆H₃, $\mathbf{R}^{2} = 3$ -MeOC₆H₄, $\mathbf{R}^{3} =$ PhO **3k** $\mathbf{R}^{1} = 2,4$ -DiMeOC₆H₃, $\mathbf{R}^{2} = 3$ -MeOC₆H₄, $\mathbf{R}^{3} =$ PhO **3k** $\mathbf{R}^{1} = 2,4$ -DiMeOC₆H₃, $\mathbf{R}^{2} = 3$ -MeOC₆H₄, $\mathbf{R}^{3} =$ PhO **3k** $\mathbf{R}^{1} = 2,4$ -DiMeOC₆H₃, $\mathbf{R}^{2} = 3$ -MeOC₆H₄, $\mathbf{R}^{3} =$ PhO

Scheme 1 Synthesis of β-lactams **3a-y**

5 to up to 50 μ M. It is also noteworthy that the best derivatives **3c** and **3i** present a phenoxy group attached to the lactam moiety, whereas their corresponding parent derivatives **3t** and **3u** bearing a 1H-isoindole-1,3(2H)-dione are poorly active suggesting closely structure activity relationships.

Moreover, 3a and 3b isomers of compound 3c differing only by the position (ortho, meta) of the nitro group are quite low active. On the other hand, parent derivative **3l** of **3c** remains quite interesting since the replacement of a nitro group by a methoxy moiety led to an IC_{50} of 25 μ M. In conclusion, a strong influence of the structure of the considered lactam derivative on the mechanism of action is underlined suggesting the importance of the phenoxy moiety and the position of aromatic substituents. Nevertheless, it is actually difficult to conclude on such weak differences since the target of these derivatives remains unknown.

Scheme 3 Synthesis of 3-amido β-lactam 5d

 Table 2
 Antimalarial activity of compounds
 3a-x
 against chloroquine-resistant p. falciparum K14 strain

Compound	$IC_{50}\left(\mu M\right)$	Compound	$IC_{50}\left(\mu M\right)$
3a	42	3m	31.5
3b	29	3n	40
3c	5.25	30	>50
3d	30	3р	36.5
3e	36.5	3q	46
3f	24.11	3r	>50
3g	26.71	3s	45
3h	21	3t	>50
3i	13.25	3u	>50
3ј	50	3v	28
3k	28.59	3w	47
31	25	3x	>50

In conclusion, these new β -lactam derivatives are easily prepared and appear as new potent antimalarial agents. Works are now under process to investigate their biological mechanism of action and will be reported in due course.

Acknowledgments The authors thank the Shiraz University Research Council for financial support (Grant No. 93-GR-SC-23).

References

- 1. G.S. Singh, Mini-Rev. Med. Chem. 4, 69 (2004)
- R.B. Morin, M. Gorman, *Chemistry and Biology of β-lactam Antibiotics*; eds. (Academic New York, 1982)

- E.I. Page, *The chemistry of β-lactams* (Blackie Academic and Proffessional, New York, 1992)
- 4. B. Alcaide, B. Almendros, Curr. Med. Chem. 11, 1921 (2004)
- W.H. Koster, C.M. Cimarusti, chemistry and biology of β-lactam antibiotics, ed by R.B. Morin, M. Gorman (Academic Press: New York, 1982)
- P. Maragni, M. Mattioli, R. Pachera, B. Tamburini, Org. Process Res. Dev. 6, 597–605 (2002)
- 7. H. Chambers, Emerg. Infect. Dis. 7, 178 (2001)
- L.A. Mitscher, Antibiotics and antimicrobial agents, in *Foye's Principles of Medicinal Chemistry*, 5th edn., ed. by D.A. Wil- liams, T.L. Lemke (Lippincott Williams & Wilkins, Philadelphia, 2002)
- 9. M. Gladwin, B. Trattler, *Clinical Microbiology Made Ridiculously Simple*, 3rd edn. (MedMaster, Inc., Miami, 2004)
- M. Akkurt, A. Jarrahpour, M. Aye, M. Gencaslan O. Buyukgungor, Acta Crystallogr E64, 2175–2176 (2008)
- M. Akkurt, A. Jarrahpour, M. Aye, M. Gencaslan O. Buyukgungor, Acta Crystallogr E64, 2087 (2008)
- 12. H. Staudinger, Liebigs Ann. Chem. **356**, 51 (1907)
- 13. A. Jarrahpour, M. Zarei, Tetrahedron Lett. 48, 8712 (2007)
- 14. A. Arrieta, B. Lecea, F.P. Cossio, J. Org. Chem. 63, 5869 (1998)
- M.A. Sierra, F.P. Cossio, A. Arrieta, B. Lecea, J. Am. Chem. Soc. 116, 11509 (2000)
- L.S. Hegedus, J. Montgomery, Y. Narukawa, D.C. Snustad, J. Am. Chem. Soc. 113, 5784 (1991)
- 17. A. Jarrahpour, E. Ebrahimi, Molecules 15, 515 (2010)
- A. Jarrahpour, Ebrahimi, V. Sinou, C. Latour, J.M. Brunel, Eur. J. Med. Chem. 87, 364–371 (2014)
- 19. A. Jarrahpour, R. Heiran. J. Iran. Chem. Soc. 11, 75–83 (2014)
- M. Sierra, M. Fernandez, M. Mancheno, L. Casarrubio, M. Gallego, Tetrahedron 64, 9592 (2008)
- 21. M. Jayaraman, V. Srirajan, A.R.A.S. Deshmukh, B.M. Bhawal, Tetrahedron **52**, 3741 (1996)