AGRICULTURAL AND FOOD CHEMISTRY

Subscriber access provided by UNIV OF LOUISIANA

Food and Beverage Chemistry/Biochemistry

Oxidation of procyanidins with various degrees of condensation: influence on the color deepening phenomenon

Yoshihide Hibi, and Emiko Yanase

J. Agric. Food Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jafc.9b02085 • Publication Date (Web): 16 Apr 2019 Downloaded from http://pubs.acs.org on April 16, 2019

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Oxidation of procyanidins with various degrees of condensation: influence on the

color deepening phenomenon

Yoshihide Hibi, Emiko Yanase*

Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193,

Japan

*Corresponding author:

Emiko Yanase

TEL/FAX +08-58-293-2914

E-mail e-yanase@gifu-u.ac.jp

1 ABSTRACT

2	Color deepening in red rice is a known phenomenon that occurs during post-harvest
3	storage. As procyanidins potentially causes this color deepening, we previously
4	subjected synthetic procyanidin B3, a model procyanidin, to chemical oxidation and
5	determined the structures of the products. To further elucidate the effects of various
6	degrees of polymerization on color deepening, in this study we oxidized synthetic
7	procyanidin C2. The intensity of the UV-Vis absorption between 300 and 500 nm in the
8	spectrum of the reaction mixture increased with increasing oxidation time. This
9	absorption following the oxidation of procyanidin C2 was more intense than that of
10	procyanidin B3. HPLC-ESI-MS of the oxidized reaction mixture revealed several new
11	peaks that suggested the formation of products with new intramolecular rather than
12	intermolecular bonds. The major product was structurally identified by comparison with
13	the UPLC-ESI-MS/MS data for a synthetic procyanidin C2 oxide, independently
14	prepared by condensing procyanidin B3 oxide and taxifolin.
15	KEYWORDS: Color deepening, polymerization degree, catechin, procyanidin, HPLC-

16 ESI-MS

17

18 INTRODUCTION

19	Many varieties of rice (Oryza sativa) are cultivated around the world, and
20	those with pigments are commonly known as colored rice varieties. Almost all pigments
21	are contained within the bran layers, and colored rice is classified as red or black based
22	on its color. The main pigment in black rice is anthocyanin. Although the pigment of
23	red rice has been presumed to be an anthocyanin, it is not observed in its extract; hence,
24	the major pigment has not yet been clearly identified.
25	Procyanidin is present in the bran layers of red rice. It is condensed tannin
26	composed of flavan-3-ol units, such as catechin, epicatechin, gallocatechin, and
27	epigallocatechin, which are widely distributed in plants, particularly in fruits. They are
28	classified into two types (A and B) according to their bonding systems. These bioactive
29	constituents exhibit beneficial biological properties, including strong anti-oxidative,
30	anti-inflammatory, and anti-cancer activities. ¹⁻⁴ The color of red rice intensifies during
31	ripening after flowering, and becomes darker in the post-harvest storage period. This
32	phenomenon is the result of chemical changes undergone by the preexisting components
33	of the red rice; however, the detailed mechanism associated with these changes is not
34	clear. We presume that color-deepening is related to the oxidation of the procyanidins in
35	the red rice and previously studied the oxidation of procyanidin B3, a model

procyanidin, and isolated several novel oxidized products with spiro-type skeletons that

36

37	contain new internal bonds. ^{5,6}
38	The procyanidins present in red rice are generally assumed to have polymeric
39	structures that range from 2-mers to 14-mers, depending on the cultivar. Therefore, it is
40	difficult to explain the color-deepening phenomenon from the knowledge gained
41	through the oxidation of the model procyanidin B3 alone. In order to elucidate the
42	effects of the degree of catechin polymerization on the oxidation reaction and the color
43	change, in this study we synthesized procyanidin C2, as a model procyanidin, and
44	subjected it to chemical oxidation.
45	
46	MATERIALS AND METHODS
47	Chemicals (+)-Catechin (1) was purchased from Sigma-Aldrich Co. (St.
48	Louis, MO, USA) and (+)-taxifolin (2) was isolated and purified from larch. ⁷ Copper(II)
49	chloride dihydrate (CuCl ₂ · 2H ₂ O), 2-mercaptoethanol, and all solvents were purchased

- 51 **Instrumentation** Column chromatography was performed on Diaion
- 52 HP20SS resin (Mitsubishi Chemical Co., Tokyo, Japan). HPLC was performed using a

53	JASCO PU2089 intelligent pump equipped with a JASCO MD-2010 detector and a
54	JASCO CO-2065 column oven (Tokyo, Japan).
55	Preparation of the red rice procyanidin fraction. Red rice (20 g) was
56	soaked for 6 h in water (70 mL) at room temperature. After filtration, the solid was
57	extracted for 1 day with acetone (50 mL) at room temperature. After removal of the
58	solid by filtration, the acetone was removed by rotary evaporation and the extract was
59	subjected to column chromatography. To obtain the procyanidin rich fraction,
60	fractionation was performed using a Diaion HP20SS column (20 mm I.D. \times 200 mm).
61	The extract reside was dissolved in water and then adsorbed on the column. The sample
62	was eluted sequentially with 0%, 20%, and 50% aqueous MeOH. The fraction that
63	eluted with 50% aqueous MeOH was evaporated under reduced pressure to leave a
64	residue (100.3 mg). The sample was subjected to HPLC with a HILIC column (Inertsil
65	Amide 4.6 mm I.D. \times 250 mm). The column temperature was maintained at 35°C. The
66	mobile phase consisted of $H_2O(A)$ and MeCN (B) at a flow rate of 1.0 mL/min. The
67	following linear gradient was used for analysis: 85% to 65% B over 15 min.
68	Synthesis of procyanidin C2 (4). Procyanidin B3 was prepared from
69	catechin and taxifolin following a literature procedure. ^{6,8} (+)-Taxifolin (2, 50 mg) was
70	dissolved in EtOH (1.0 mL). Sodium borohydride (75 mg) was added under argon and

71	stirred 30min. Water (10 mL) was added to the mixture to decompose the excess
72	sodium borohydride, and the pH was adjusted to below 5.0 with acetic acid.
73	Procyanidin B3 (3, 200 mg) in 50% aqueous EtOH was then added to the mixture at
74	40°C and stirred for 3 h.8 The reaction mixture was extracted with ethyl acetate and
75	concentrated. The ethyl acetate extract was purified by HPLC using a HILIC column
76	(Inertsil Amide 10 mm I.D. \times 250 mm, 5 μm (GL Sciences Inc., Tokyo, Japan)). The
77	mobile phase consisted of 90% MeCN in H_2O , at a flow rate of 5.0 mL/min, and an
78	injection volume of 50 μ L. Procyanidin C2 (4 , 41 mg, purity > 95% by HPLC) was
79	obtained in this manner. The chemical structure of 4 was confirmed by comparing its
80	NMR and MS data with those in the literature. ⁸ The structures of catechin (1) , taxifolin
81	(2), procyanidin B3 (3), procyanidin C2 (4), and oxidative procyanidin B3 (5) are
82	shown in Fig. 1.
83	Oxidation of 4 and the procyanidin fraction of red rice. An aqueous
84	solution of 4 (2.0 mg) and CuCl ₂ · $2H_2O$ (6.0 mg) was vigorously stirred at room
85	temperature. An aliquot of the reaction mixture at each reaction period (0.5, 1, 2, and 4
86	h) was subjected to Diaion HP20SS column chromatography. After washing with water
87	to remove $CuCl_2 \cdot 2H_2O$, the column was eluted with MeOH. Each MeOH fraction was

88 concentrated and the residue (2.1 mg) examined by reverse-phase HPLC (NB-ODS-9

89	4.6 mm I.D. \times 250 mm). The column temperature was maintained at 35°C. The mobile
90	phase consisted of 10% MeCN / 0.5% HCOOH in H ₂ O, at a flow rate of 1.0 mL/min.
91	An injection volume of 10 µL was used.
92	UV-Vis spectroscopy. The mixtures of oxidation products were dissolved in
93	MeOH to a concentration of 0.10 g/L. UV/Vis spectra were recorded on a Perkin Elmer
94	Lambda 950 UV/VIS/NIR spectrophotometer (Kanagawa, Japan). The spectrum of each
95	sample was acquired in the 200–600 nm wavelength range at a spectral resolution of 1
96	nm. The spectra were recorded against the corresponding solvent as the baseline.
97	Thiolysis of the mixture obtained by the oxidation of 4. Thiolysis was
98	conducted according to the procedure reported by Tanaka et al., with slight
99	modifications.9 The oxidation-product mixture containing the trimer (1 mg) was
100	dissolved in EtOH (1.6 μL), and 0.2 N aqueous HCl (1.6 μL) and 2-mercaptoethanol
101	(2.0 μ L) were added; the mixture was then stirred at room temperature for 24 h, after
102	which the EtOH was removed under reduced pressure. The aqueous solution was
103	separated by Diaion HP20SS column chromatography and monitored by HPLC with a
104	HILIC column (Inertsil Amide 4.6 mm I.D. \times 250 mm). The column temperature was
105	maintained at 35°C. The mobile phase consisted of 90% MeCN in H_2O at a flow rate of
106	1.0 mL/min; the injection volume was 10 μ L.

107	UPLC-ESI-MS. Ultra-high-performance liquid chromatography-time-of-
108	flight mass spectrometry (UPLC-TOF-MS) was performed using a Waters Xevo G2
109	QTof (Waters, USA) mass spectrometer, equipped with a C18 analytical column
110	(ACQUITY UPLC BEH C ₁₈ 2.1 mm I.D. \times 100 mm; Waters, USA) and a HILIC
111	column (Inert Sustain Amide HP 3 $\mu m,$ 2.1 mm I.D. \times 150 mm; GL Science, Japan).
112	The mobile phase consisted of 1.0% HCOOH in $H_2O(A)$ and MeCN (B), with a flow
113	rate of 0.2 mL/min and an injection volume of 1.0 μ L used. The column temperature
114	was maintained at 35°C. The mobile phase for analysis of the trimer oxidation products
115	was 10% B for 20 min for the C18 analytical column, or 90% B for 30 min for the
116	HILIC column. The following linear gradient was used to analyze the thiolysis reaction
117	mixture: 90% to 85% B for 15 min using the HILIC column. The ESI interface was
118	operated in negative mode. MS parameters for analysis were: capillary potential, 2.5
119	kV; sampling cone, 30 V for in-source collision-induced dissociation (CID); desolvation
120	temperature, 500°C; and source temperature, 150°C. The mass spectrometer was
121	operated in MS/MS mode with a collision cell energy of 25 V for the oxide of 4.
122	
123	RESULTS AND DISCUSSION

124 UV/Vis Spectra Measurements. The UV-Vis spectra of the oxidation

8 ACS Paragon Plus Environment

125	mixtures of both 3 and 4 were acquired in order to study the relationship between
126	chemical structure and color. The absorption band between 300 and 500 nm for each
127	sample was more intense following oxidation (Figs. 2-A and B). The relationship
128	between the absorbance at 330 nm of each sample and time is shown in Fig. 2-C. The
129	increase in the absorbance at 330 nm following oxidation was four times greater for 4
130	than that it was for 3 . In addition, although moderate changes in absorption were
131	observed for the reaction mixture of 3 beyond ~1 h, 4 exhibited an absorption that
132	continued to increase even after 2 h.
133	The procyanidin fraction of the red rice extract was next subjected to oxidation
134	for 2 h and examined by UV-Vis spectroscopy (Fig. S2). 2-Mer-to-8-mer procyanidins
135	were observed in this sample by HPLC (Fig. S3), with the intensity of the absorption band
136	in the 300-500 nm range observed to increase, in addition to the absorption maximum
137	near 280 nm. This trend is similar to that observed for the oxidations of 3 and 4 ; therefore,
138	we assume that the oxidation systems in this study, namely 3 and 4 , are good models for
139	assessing the effects of procyanidin oxidation on color change. Moreover, we assume that
140	the degree of procyanidin polymerization significantly influences the color-deepening
141	phenomenon.

142

HPLC. The oxidized mixtures of **3** and **4** were subjected to HPLC. The

143	time-dependent decreases in the contents of 3 and 4 under oxidative conditions are
144	shown in Figs. S4 and S5. The contents of both model compounds 3 and 4 decrease
145	sharply after commencement of oxidation. Trimer 4 was observed to react faster than
146	dimer 3 , and required only 1 h to disappear completely from the mixture (Fig. 3).
147	The major oxidation products of 3 appear to be spiro-type compounds, as
148	represented by compound 5, among others, (Figs. 1 and S1) and have been reported
149	previously. ⁶ In contrast, a complicated assortment of peaks $(\mathbf{a}-\mathbf{k})$ was observed in the
150	HPLC trace following the oxidation of 4 ; reactions continued following the
151	disappearance of compound 4, as evidenced by changes in the intensities of these peaks
152	(Figs. S4 and S5). Several peaks (e.g., peak j) were observed to increase in intensity,
153	whereas others (e.g., peak \mathbf{k}) decreased. The UV-Vis spectra of the fractions
154	corresponding to peaks a - k were acquired using an HPLC-photodiode array (PDA)
155	detector (Fig. S6). Although the maximum absorption wavelengths of these fractions
156	were similar to that of compound 4, the ratios of the absorption intensities in the 300-
157	400 nm region to the that of maximum absorption peak were higher, suggesting that
158	these peaks correspond to oxidation products involved in the color deepening process.
159	UPLC-MS. The mixture resulting from the oxidation from 4 was subjected to
160	UPLC-MS. Molecular ion peaks were observed at m/z 861 or 863 [M-H] ⁻ , although a

161	variety of new peaks were observed by HPLC (Figs. 4, S7, and S8). These data suggest
162	that the oxidation products contain new intramolecular bonds rather than intermolecular
163	bonds, which is similar to the trend observed for the oxidation of 3 . UPLC-MS traces
164	for each reaction period are shown in Figs. 4 and S7. Many complex overlapping peaks
165	are observed in the total ion chromatograms (TICs) and the chromatograms at 280 nm.
166	The reconstructed ion chromatograms for m/z 863 and 861 facilitated the resolution of
167	multiple well-separated peaks with the same mass number that correspond to positional-
168	or stereo-isomers. De Taeye et al. reported that Procyanidin is chemically modified by
169	food processes; ^{10, 11} in their research, procyanidin B2 and C1, which are the dimer and
170	trimer of epicatechin, were epimerized by heating in a model aqueous system, to
171	generate dehydrodicatechin A; however, this was not observed in our experiment. It is
172	well known that catechin rapidly epimerizes at the 2-position at high temperatures in an
173	aqueous medium. ¹² In addition, De Taeye et al. ¹⁰ concluded that dehydrodicatechin A ¹³⁻
174	¹⁶ is formed from procyanidin B2 only at high temperatures because cleavage of the
175	interflavan linkage is required in order to generate the catechin monomer. Because our
176	oxidation experiments were performed at room temperature, we believe that
177	procyanidin C2 does not epimerize to generate a dehydrodicatechin A-like component.
178	We conclude that many peaks are observed because several potential positions for

179	reaction exist in the trimer molecule. In addition, we assume that the trimer oxide
180	epimerizes during the reaction. In fact, three isomers of the dimer oxide 5 were
181	observed in the reaction solution following the oxidation of 3 (Fig. S1). ⁶ Many large
182	peaks are observed in the initial stages of the reconstructed m/z 863 ion chromatogram,
183	which is 2 Da smaller than the m/z value of 4; these peaks decrease in size with
184	increasing reaction time. In addition, the intensities of the peaks corresponding to m/z
185	861, which is 4 Da smaller than that of 4, increase as the reaction progresses. These
186	results suggest that the oxidation process involves multiple steps rather than a single
187	step.
188	UPLC-MS/MS. Almost all of the peaks observed by UPLC-MS following
188 189	UPLC-MS/MS. Almost all of the peaks observed by UPLC-MS following the oxidation of 4 were observed to have m/z 861 [M-H] ⁻ or 863 [M-H] ⁻ peaks (Fig.
188 189 190	UPLC-MS/MS. Almost all of the peaks observed by UPLC-MS following the oxidation of 4 were observed to have <i>m/z</i> 861 [M-H] ⁻ or 863 [M-H] ⁻ peaks (Fig. S7); hence, each peak was subjected to MS/MS analysis (Fig. S9). MS/MS of the <i>m/z</i>
188 189 190 191	UPLC-MS/MS. Almost all of the peaks observed by UPLC-MS following the oxidation of 4 were observed to have <i>m/z</i> 861 [M-H] ⁻ or 863 [M-H] ⁻ peaks (Fig. S7); hence, each peak was subjected to MS/MS analysis (Fig. S9). MS/MS of the <i>m/z</i> 863 peak, with a retention time of 15.9 min, produced fragment ion peaks at <i>m/z</i> 287,
188 189 190 191 192	UPLC-MS/MS. Almost all of the peaks observed by UPLC-MS following the oxidation of 4 were observed to have <i>m/z</i> 861 [M-H] ⁻ or 863 [M-H] ⁻ peaks (Fig. S7); hence, each peak was subjected to MS/MS analysis (Fig. S9). MS/MS of the <i>m/z</i> 863 peak, with a retention time of 15.9 min, produced fragment ion peaks at <i>m/z</i> 287, 407, 449, 455, 575, 693, 711, and 737. The fragments at <i>m/z</i> 711 and 737 are assumed
188 189 190 191 192 193	UPLC-MS/MS. Almost all of the peaks observed by UPLC-MS following the oxidation of 4 were observed to have <i>m/z</i> 861 [M-H] ⁻ or 863 [M-H] ⁻ peaks (Fig. S7); hence, each peak was subjected to MS/MS analysis (Fig. S9). MS/MS of the <i>m/z</i> 863 peak, with a retention time of 15.9 min, produced fragment ion peaks at <i>m/z</i> 287, 407, 449, 455, 575, 693, 711, and 737. The fragments at <i>m/z</i> 711 and 737 are assumed to be formed by the heterocyclic ring fission and retro Diels–Alder cleavage of the
188 189 190 191 192 193 194	UPLC-MS/MS. Almost all of the peaks observed by UPLC-MS following the oxidation of 4 were observed to have <i>m/z</i> 861 [M-H] ⁻ or 863 [M-H] ⁻ peaks (Fig. S7); hence, each peak was subjected to MS/MS analysis (Fig. S9). MS/MS of the <i>m/z</i> 863 peak, with a retention time of 15.9 min, produced fragment ion peaks at <i>m/z</i> 287, 407, 449, 455, 575, 693, 711, and 737. The fragments at <i>m/z</i> 711 and 737 are assumed to be formed by the heterocyclic ring fission and retro Diels–Alder cleavage of the catechin unit of the trimer oxide, ^{17, 18} while quinone-methide cleavage of the interflavan
 188 189 190 191 192 193 194 195 	UPLC-MS/MS. Almost all of the peaks observed by UPLC-MS following the oxidation of 4 were observed to have <i>m/z</i> 861 [M-H] ⁻ or 863 [M-H] ⁻ peaks (Fig. S7); hence, each peak was subjected to MS/MS analysis (Fig. S9). MS/MS of the <i>m/z</i> 863 peak, with a retention time of 15.9 min, produced fragment ion peaks at <i>m/z</i> 287, 407, 449, 455, 575, 693, 711, and 737. The fragments at <i>m/z</i> 711 and 737 are assumed to be formed by the heterocyclic ring fission and retro Diels–Alder cleavage of the catechin unit of the trimer oxide, ^{17, 18} while quinone-methide cleavage of the interflavan bond generates the fragment ion at <i>m/z</i> 287. The fragment ion at <i>m/z</i> 693 is produced by

197	observed by the MS/MS of 4 prior to oxidation. On the other hand, m/z 575, 455, and
198	449 correspond to product peaks, and are newly observed in the MS/MS spectrum of the
199	m/z 863 ion. The fragment ion peak at m/z 575 corresponds to the product of catechin-
200	dimer oxidation. Some of the fragment ion peaks (m/z 125, 167, 287, 407, and 449) are
201	also observed in the MS/MS spectrum of compound 5. These results suggest that
202	products exhibiting peaks at m/z 863 have spiro-type skeletons, such as 5, as partial
203	structures in their molecular frameworks. The possibility exists that one of the m/z 863-
204	peak products is A-type procyanidin formed through an additional C2-O-C7 ether bond.
205	The transformations of B-type procyanidins to the A-type under alkaline/H ₂ O ₂ , ¹⁹ DPPH
206	(2,2-diphenyl-1-picrylhydrazyl)-radical, ²⁰ and enzymatic conditions, ²¹ have been
207	previously reported. Although these oxidation reactions are similar to those used in our
208	experiments, we believe that the A-type structure is not formed in our experiments due
209	to steric factors. The C4 position of the catechin trimer prepared from (+)-catechin
210	mainly exists in the α form. Procyanidin C2, which is α -configured at the C4 position,
211	is produced as the major product through condensation reactions from (+)-catechin. In
212	practice, the α/β ratio at the C4 position was observed to be 7/3 by NMR spectroscopy.
213	Condensed (+)-catechin in the α form is incapable of forming the C2-O-C7 ether bond;
214	therefore, we conclude that A-type structures are hardly produced in this study.

215	MS/MS of the m/z 861 [M-H] ⁻ peak, with a retention time 8.2 min, reveals
216	peaks at m/z 407, 453, and 709, which are related to the fragment peaks observed in the
217	MS/MS spectrum of the m/z 863 ion. Although the presence of two spiro skeletons in
218	the molecule is assumed on the basis of the peak at m/z 861, the expected fragment
219	peaks corresponding to the catechin unit (m/z 575) and the remaining component (m/z
220	287) were not observed, suggesting that different types of intramolecular bonds were
221	generated in this case.
222	Thiolysis degradation reactions. Thiolysis is a known method for the
223	analysis procyanidins. In this method, procyanidins are fragmented into their constituent
224	units in the presence of a thiol, such as thiophenol or 2-mercaptoethanol. Although
225	thiolysis can release the extension unit-thiol adducts and the terminal units from
226	procyanidin B-type polymers, which contain C4-C8 or C4-C6 bonds, this method does
227	not degrade procyanidins possessing other types of bond. We assume that the C4-C8/6
228	bond in 4 are cleaved by this reaction; however, the new bonds produced by the
229	oxidation of 4 cannot be cleaved; consequently, any novel unit is retained, which
230	facilitates the elucidation of the novel bonding pattern produced through oxidation.
231	Hence, compound 4 and its oxidation mixtures were treated with 2-mercaptoethanol and
232	the reaction solution was subjected to HPLC. Due to thiolytic degradation, the

233	originally observed peaks were replaced by new peaks, with negative UPLC-ESI-MS of
234	the generated peaks exhibiting pseudo-molecular-ion peaks at m/z 575, 651, and 653
235	[M-H] ⁻ .
236	The thiolysis degradation products were next subjected to UPLC-ESI-MS/MS
237	(Fig. 5). The precursor ion peak at m/z 575 corresponds to 5, which is the oxidation
238	product of procyanidin B3. The m/z 575 peak exhibited major fragment ions at m/z 449
239	and 287, which are in agreement with the fragment pattern of 5. Fragment ions that are
240	78 Da less than the precursor ions were observed at m/z 651 and 653. The loss of 78 Da
241	suggests the presence of the mercaptoethanol residue in these molecules, and these
242	compounds are presumed to be derived from the extended units of 4 or its oxidized
243	product, rather than the terminal unit. ⁶ The m/z 651 peak exhibited major fragment ions
244	at m/z 573, 449, and 285; this fragment pattern is similar (each 2 Da less) to that of 5 .
245	Based on this result, the peak with the m/z 651 precursor ion is assigned to be the
246	mercaptoethanol adduct of 5.
247	Fragment ions from the precursor ion peak at m/z 653 were observed at m/z
248	575, 449, and 287, which is same fragment pattern observed for 5. The spiro ring
249	system formed through the oxidation reaction retains the C4-C6/8 bond; hence we
250	propose that the precursor ion peak at m/z 653 is produced by the ring-opening reaction

251 of the spiro ring system following the formation of the thiol adduct (Fig. S10). These results suggested that the product formed by the oxidation of procyanidin C2 contains a 252 253 spiro ring system as a main partial structure. 254 Determining the structure of peak k. As detailed above, the UPLC-MS 255 spectrum of the oxidation mixture of 4 exhibited peaks that increased and decreased in 256 intensity depending on the duration of oxidation (Fig. 3). This is especially evident for 257 peak k, with a retention time of 8 min, which was most intense at 0.5 h and decreased in 258 intensity thereafter. The molecular weight corresponding to peak k was determined to 259 be 864 Da from the mass chromatogram (2 Da less than that of 4), suggesting that 260 intramolecular bonds are formed during oxidation, as was observed for 5 (the oxidation 261 product of 3). Considering the time required to generate peak \mathbf{k} , we assume that the 262 reaction and bond formation occur in a manner similar to that of compound 5. In other 263 words, the chemical structure corresponding to peak k is presumed to contain the same 264 spiro skeleton as in compound 5. Therefore, we postulate that peak k corresponds to 265 structure 6, which is obtained through the condensation of the dimer oxide 5 and 2 (Fig. 266 6). Hence, we separately condensed 5 with 2 and subjected the resulting mixture to 267 HPLC. The retention time of 6 matched that of peak k. UPLC-MS of this synthesized 268 trimer revealed a pseudo-molecular ion peak at m/z 863 for $[M-H]^-$, which is the same

269	as that observed for peak \mathbf{k} . In addition, the MS/MS data are in good agreement with
270	those of peak \mathbf{k} (Fig. S11). On the basis of these result, 6 was confirmed as the chemical
271	structure corresponding to peak k.
272	As described above, although various peaks were observed in the oxidation
273	mixture in this LC-MS study, their molecular ion peaks were observed at either m/z 861
274	$[M-H]^-$ or 863 $[M-H]^-$, some of which are possibly stereo- or positional isomers of 6 . In
275	particular, spiro-type compounds, such as 5, and their derivatives were identified in red
276	rice extracts through thiolysis reactions and HPLC-MS/MS multiple reaction monitoring
277	(MRM) analyses in our previous study. ⁶ These results reveal that the color deepening in
278	red rice proceeds through the oxidative formation of intramolecular bonds in procyanidins.
279	In contrast, the UV absorptions of compound 6 and other oxidants are insufficient to
280	explanation the color deepening of red rice (Fig. 5). We believe that the internal bonding
281	system formed in procyanidin is one of factors that causes color deepening, but additional
282	other mechanisms might also operate. Further studies are needed in order to clarify and
283	fully understand this phenomenon.
284	The term "oxidation" is often used to describe the degradation of food quality. It
285	is possible that the UV absorption changes and oxidation products clarified in this study
286	serve as the basis for evaluating the freshness of red rice. In addition, this study will aid

in the further elucidation of the color-deepening phenomenon of red rice as well as

288 various plants containing procyanidins.

289 ABBREVIATIONS

- 290 ESI-MS, electrospray ionization mass spectroscopy; HPLC, high-performance liquid
- 291 chromatography; NMR, nuclear magnetic resonance; TIC, total ion chromatogram; UPLC, ultra-
- high-performance liquid chromatography; MRM, multiple reaction monitoring

293 ACKNOWLEDGMENTS

- 294 We thank Dr. Yoshihiro Miwa (Professor Emeritus at Gifu University) for providing the red rice
- samples, and Dr. Tohru Mitsunaga (Professor at Gifu University) for technical assistance in the
- 296 preparation of the taxifolin sample.
- 297 Supporting Information: Dimer oxidation product structures; additional UV, HPLC, LC/MS,
- and MS/MS data for mixtures of oxidation products. Supporting Information is available free of
- charge on the ACS Publications website.

300 REFERENCES

- 301 (1) Chen, M. H.; Choi, S. H.; Kozukue, N.; Kim, H. J.; Friedman, M. Growth-inhibitory
- 302 effects of pigmented rice bran extracts and three red bran fractions against human
- 303 cancer cells: Relationships with composition and antioxidative activities. J. Agric.
- 304 *Food Chem.* **2012**, *60*, 9151-9161.

305	(2) Itani, T.; Tatemoto, H.; Okamoto, M.; Fujii, K.; Muto, N. A comparative study on
306	antioxidative activity and polyphenol content of colored kernel rice. J. Jpn. Soc.
307	Food Sci. 2002, 49, 540-543.
308	(3) Min, B.; McClung, AM.; Chen, MH. Phytochemicals and antioxidant capacities in
309	rice brans of different color. J. Food Sci. 2011, 76, C117-C126.
310	(4) Oki, T.; Masuda, M.; Kobayashi, M.; Nishiba, Y.; Furuta, S.; Suda, I.; Sato, T.
311	Polymeric procyanidins as radical-scavenging components in red-hulled rice. J.
312	Agric. Food Chem. 2002, 50, 7524-7529.
313	(5) Hayashi, S.; Yanase, E. A study on the color deepening in red rice during storage.
314	Food Chem. 2016, 199, 457-462.
315	(6) Hayashi, S.; Kohei, N.; Yanase, E. Investigation of color-deepening phenomenon in
316	catechin - $(4 \rightarrow 8)$ - dimer as a proanthocyanidin model and structural
317	determination of its derivatives by oxidation. Food Chem. 2018, 239, 1126-1133.
318	(7) Mitsunaga, T.; Abe, I.; Kontani, M.; Ono, H.; Tanaka, T. Inhibitory effects of bark
319	proanthocyanidins on the activities of glucosyltransferases of Streptococcus
320	sobrinus. J. Wood. Chem. Tech. 1997, 17, 323-340.

321	(8) Delcour, J. A.; Ferreira, D.; Roux, D. G. Synthesis of condensed tannins. Part 9. The					
322	condensation sequence of leucocyanidin with (+)-catechin and with the resultant					
323	procyanidins. J. Chem. Soc. Perkin Trans. 1 1983, 0, 1711-1717.					
324	(9) Tanaka, T.; Takahashi, R.; Kouno, I.; Nonaka, G. I. Chemical evidence for the de-					
325	astringency (insolubilization of tannins) of persimmon fruit. J. Chem. Soc. Perkin					
326	Trans. 1 1994, 0, 3013-3022.					
327	(10) Cédric, D. T.; Marie-Lucie, K. C.; Vesna, J.; Sonia, C. Degradation of (-)-					
328	Epicatechin and Procyanidin B2 in Aqueous and Lipidic Model Systems. First					
329	Evidence of "Chemical" Flavan-3-ol Oligomers in Processed Cocoa. J. Agric. Food					
330	<i>Chem.</i> , 2014 , <i>62</i> , 9002–9016.					
331	(11) Cédric, D. T.; Marie-Lucie, K. C.; Vesna, J.; Sonia, C. Occurrence and					
332	Antioxidant Activity of C1 Degradation Products in Cocoa. Foods., 2017, 6, 18.					
333	(12) Ishino, N.; Yanase, E.; Nakatsuka, S. Epimerization of tea catechins under					
334	weakly acidic and alkaline conditions. Biosci. Biotechnol. Biochem., 2010, 74, 875-					
335	877.					
336	(13) Callemien, D.; Collin, S. Involvement of Flavanoids in Beer Color Instability					
337	during Storage. J. Agric. Food Chem., 2007, 55, 9066-9073.					

338	(14) Guyot, S.; Vercauteren, J.; Cheynier, V. Structural determination of colourless
339	and yellow dimers resulting from (+)-catechin coupling catalyzed by grape
340	polyphenoloxidase. <i>Phytochem.</i> , 1996 , 42, 1279-1288
341	(15) Tanaka, T.; Matsuo, Y.; Kouno, I. Chemistry of Secondary Polyphenols
342	Produced during Processing of Tea and Selected Foods Int. J. Mol. Sci., 2010, 11(1),
343	14-40
344	(16) Uchida, K.; Ogawa, K.; Yanase, E. Structure Determination of Novel
345	Oxidation Products from Epicatechin: Thearubigin-Like Molecules. Molecules,
346	2016, <i>21 (273)</i> , 12-14.
347	(17) Hanen, F.; Samia, O.; Sylvain, G.; Alia, B. D.; Christian, M.; Chedly, A.;
348	Riadh, K. LC/ESI-MS/MS characterization of procyanidins and propelargonidins
349	responsible for the strong antioxidant activity of the edible halophyte
350	Mesembryanthemum edule L. Food Chem. 2011, 127, 1732-1738.
351	(18) Gu, L.; Kelm, M. A.; Hammerstone, J. F.; Zhang, Z.; Beecher, G.; Holden, J.;
352	Haytowitz, D.; Prior, R. L. Liquid chromatographic/electrospray ionization mass
353	spectrometric studies of proanthocyanidins in foods. J. Mass Spectrom. 2003, 38,
354	1272-1280.

555 (17) WOLLINGO, S., WOLAKA, O., WISHIOKA, I. LAILINIS AND KETALED COMPOUND	355 ((19)	Morimoto, S.; Nonaka, G.; Nishioka, I. Tannins and Related Compou	nds.
---	-------	------	---	------

- 356 LIX.Aesculitannins, Novel Proanthocyanidins with Doubly-Bonded Structures from
- Aesculus hippocastanum L. Chem. Pharm. Bull. 1987, 35, 4717-4729.
- 358 (20) Kondo, K.; Kurihara, M.; Fukuhara, K.; Tanaka, T.; Suzuki, T.; Miyata, N.;
- 359 Toyoda, M. Conversion of procyanidin B-type (catechin dimer) to A-type: evidence
- 360 for abstraction of C-2 hydrogen in catechin during radical oxidation. *Tetrahedron*
- 361 *Lett.* **2000**, 41, 485–488.
- 362 (21) Osman, A.M.; Wong, K.K.Y. Laccase (EC 1.10.3.2) catalyses the conversion
- 363 of procyanidin B-2 (epicatechin dimer) to type A-2. *Tetrahedron Lett.* 2007, 48,
- 364 1163–1167.

365 FUNDING SOURCE

- 366 This work was partially supported by the Tojuro Iijima Foundation for Food Science and
- 367 Technology (Chiba, Japan).

368 FIGURE CAPTIONS

- 369 Figure 1 Chemical structures of catechin (1), taxifolin (2), procyanidin B3 (3),
- 370 procyanidin C2 (4), and oxidized procyanidin B3 (5)
- 371 Figure 2 UV spectra of procyanidin B3 and procyanidin C2 after oxidation for various
- times: (A) compound **3** (procyanidin B3), (B) compound **4** (procyanidin C2), and (C)
- 373 UV absorptions at 330 nm as functions of time. Values are expressed as means with
- 374 standard error bars (n=3).
- 375 Figure 3 Relative contents of compounds 3 and 4 during oxidation as functions of time.
- **Figure 4** UPLC/MS traces of the mixtures obtained following the oxidation of
- 377 procyanidin C2 (4) for: A) 0.5 h and B) 4 h.
- 378 Figure 5 UPLC-MS/MS spectra of thiolysis degradation products: (A) *m/z* 575, (B) *m/z*
- 379 653, and (C) *m/z* 651.
- 380 Figure 6 Proposed structure of 6 (peak k) and its fragmentations as determined by
- 381 MS/MS.
- 382

Figure 1

Figure 2

(A)

26 ACS Paragon Plus Environment

Figure 5

Figure 6

Table of Contents graphic

