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Summary of main observation and conclusion: A facile approach to chiral dihydroquinazolinone derivatives has been described via biomimetic 
asymmetric reduction of quinazolinones with chiral and regenerable NAD(P)H models. The utility of this method was demonstrated by a concise synthesis 
of the bromodomain protein divalent inhibitor. 

 

Background and Originality Content 
Dihydroquinazolinones are identified as significant and 

prevalent structural motifs in bioactive and pharmaceutical 
molecules.[1] It is well known that these molecules could be 
served as agonists, inhibitors, and antitumor agents. In addition, 
these molecules also possess a wide variety of pharmacological 
activities such as antiviral, antibacterial and antimalarial activity 
(Figure 1).[1] For example, a series of dihydroquinazolinone 
derivatives have been used as selective M1 and M4 muscarinic 
acetylcholine receptors agonist.[1l] They could also be used as 
sodium/calcium exchanger inhibitor [1e,j] (II) and PDE7 inhibitor 
(III).[1f,g] Bromodomain protein divalent inhibitor (IV) with 
antitumor activity[1m] has the core structure towards the dihydro- 
quinazolinones.  
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Figure 1 Bioactive molecules containing the dihydroquinazolinone motifs. 

Owing to the remarkable importance of dihydroquinazoli- 
nones, a variety of powerful approaches have been developed for 
the synthesis of dihydroquinazolinones including organocatalytic 
aza-Henry reaction,[2] Mannich reaction,[3] organocatalytic 
Strecker reaction,[4] allylic C-H amination,[5] decarboxylative [4+2] 
cycloaddition[6] and other reactions.[7] Apart from these methods, 
asymmetric hydrogenation of easy available quinazolinones 
would be one straightforward and atom- economical way for 

synthesis of chiral dihydroquinazolinones. In 2013, Zhou, Ma and 
co-workers [8] reported palladium-catalyzed asymmetric 
hydrogenation of the fluorinated quinazolinones, providing the 
chiral products with excellent enantioselectivity. Subsequently, 
Zhou and coworkers [9] developed an iridium-catalyzed 
asymmetric hydrogenation of quinazolinones. This method has a 
broad scope of substrates, excellent yields and up to 98% 
enantioselectivities. Despite the above advance, it is still 
necessary to develop new and effective approaches to the 
optically active dihydroquinazolinones.  

Scheme 1 Biomimetic asymmetric reduction of quinazolinones. 
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Biomimetic asymmetric reduction (BMAR) has attracted much 
attention and gradually become one of the most important 
choices. NADP/NADPH couple [10] driven reduction reactions have 
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also been studied in recent years. A series of NAD(P)H models 
were designed and utilized.[11] In these models, the most 
representative example is Hantzsch esters (HEH).[12] In 2019, Shi’s 
group reported a chiral phosphoric acid catalyzed asymmetric 
transfer hydrogenation of quinazolinones with HEH as hydrogen 
atom donor (Scheme 1).[13] However, this reaction required the 
stoichiometric amount of models and suffered from restriction on 
regeneration, leading to low atomic economy. The regeneration 
of the consumed models will also bring many benefits such as 
increasing conversion and omitting NAD(P)H models separation 
from the complex system. Due to the importance of regeneration 
of models, researchers have invested great scientific interest in 
the regeneration of NAD(P)H models.[14] Recently, our group 
reported the synthesis of chiral and regenerable NAD(P)H models 
based on the planar-chiral ferrocene and their application in 
biomimetic asymmetric reduction of tetrasubstituted olefins and 
imines.[15] Inspired by this work, we envisaged that biomimetic 
asymmetric reduction of quinazolinones with regenerable and 
chiral NAD(P)H models would be another straightforward 
approach for synthesis of chiral dihydroquinazolinones. Herein, 
we present biomimetic asymmetric reduction of quinazolinones, 
giving the chiral products with high yields and up to 98% ee. The 
utility of this method was demonstrated by a concise synthesis of 
the bromodomain protein divalent inhibitor. 

Results and Discussion 
Initially, we investigated background reaction with ruthenium 

catalyst [Ru(p-cymene)I2]2 (Table 1, entry 1). This reaction barely 
gave the desired product in low 17% conversion. The conversion 
could be slightly improved using the chiral and regenerable 
NAD(P)H models without transfer catalysts (entry 2). Delightedly, 
the biomimetic asymmetric reduction performed smoothly using 
commercially available simple Brønsted acid as transfer catalyst, 
giving the desirable product in 88% enantioselectivity and full 
conversion (entry 3). Meanwhile, when we increased the amount 
of Brønsted acid, no obvious improvement in enantioselectivity 
was observed (entry 4). Urea catalysts which are capable of 
activating substrates through hydrogen-bonding activation have 
received significant attention. Unfortunately, the biomimetic 
reduction reaction could not give the satisfied result (entry 5).  

Table 1 Initial result on biomimetic reduction of quinazolinones.a 
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entry 
transfer 
catalysts 

NAD(P)H 
models 

conv. (%)b ee (%)c 

1 -- -- 17 -- 

2 -- (R)-H1 25 2 

3d Brønsted acid (R)-H1 >95 88 

4e Brønsted acid (R)-H1 >95 89 

5f Urea catalyst (R)-H1 10 43 
a Conditions: 1a (0.10 mmol), [Ru(p-cymene)I2]2 (0.5 mol%), NAD(P)H 
models (10 mol%), EtOAc (2.0 mL), H2 (500 psi), 35 oC, 24 h. b Measured by 
analysis of 1H NMR. c Determined by chiral HPLC. d Brønsted acid (5 mol%). 
e Brønsted acid (10 mol%). f Urea catalyst (20 mol%), CHCl3 (2.0 mL). 

Subsequently, we turned our attention to screening of the 
transfer catalyst Brønsted acids. A series of Brønsted acids were 
evaluated (Table 2, entries 1-5). In case of the acid-2 with 
electron-withdrawing nitro group, a high conversion and 88% ee 
were observed (entry 2). Next, the solvent effects were examined 
with acid-2. Initially, full conversion and moderate enantioselec- 
tivity could be obtained in THF (entry 6). When the solvents was 
changed to the toluene, the reaction could provide the target 
product in 92% ee and full conversion (entry 7). It was worth 
noting that solvent trifluorotoluene was the best choice in terms 
of conversion and enantioselectivity (entry 8). In addtion, t-butyl 
methyl ether and chloroform were also proved to be beneficial for 
enantiocontrol (entries 9 and 11). When acetonitrile was used as 
solvent, no desired product was observed (entry 10).  

Table 2 The evaluation of reaction parameters.a 
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entry Brønsted acid solvent conv. (%)b ee (%)c 

1 Acid-1 EtOAc 70 34 

2 Acid-2 EtOAc >95 88 

3 Acid-3 EtOAc 79 29 

4 Acid-4 EtOAc 27 3 

5 Acid-5 EtOAc >95 77 

6 Acid-2 THF >95 58 

7 Acid-2 Toluene >95 92 

8 Acid-2 PhCF3 >95 95 

9 Acid-2 tBuOMe >95 90 

10 Acid-2 CH3CN <5 -- 

11 Acid-2 CHCl3 >95 91 
a Conditions: 1a (0.10 mmol), [Ru(p-cymene)I2]2 (0.5 mol%), (R)-H1 (10 
mol%), Brønsted acid (5 mol%), solvent (2.0 mL), H2 (500 psi), 35 oC, 24 h. b 
Measured by analysis of 1H NMR. c Determined by chiral HPLC. 
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Next, we conducted the reaction with different kinds of chiral 
and regenerable NAD(P)H models (Table 3). The reaction gave the 
better result with NAD(P)H models with planar chirality. When 
electron-donating group such as methoxy was introduced, the 
expected product could be obtained in 93% ee (entry 2). 
Compared to the electron-donating group, electron-withdrawing 
group obviously slowed down the reduction reaction, affording 
the product in low 38% conversion and moderate 79% ee (entry 
3). In addition, the NAD(P)H models with axial chirality proved to 
be ineffective in terms of reactivity and enantioselectivity (entries 
4-6). To our delight, when the temperature was decreased to 25 
°C, full conversion and 96% ee were still obtained. Thus, the 
optimized conditions were established as: substrate quinazoli- 
none 1a (0.20 mmol), [Ru(p-cymene)I2]2 (0.5 mol%), (R)-H1 (10 
mol%), acid-2 (5 mol%), H2 (500 psi), PhCF3, 25 oC, 24 h. 

After optimizing the reaction conditions, substrate generality 
was investigated (Table 4). Firstly, the effect of methyl group on 
the different positions of 4-phenyl on the enantioselectivity and 
reactivity was screened, all performed very well with 93-95% ee 
(2b-2d). When the methyl group was replaced with more 
electron-donating group such as methoxy group, slightly lower 
90% ee was achieved (2e). Similar result was also observed with 
electron-withdrawing fluorine group (2f). Notably, disubstituted 
substrates obviously affected the enantioselectivity and yield 
(2g-2h). For the 4-biphenylquinazolinone (1i), moderate 73% yield 
and 85% ee was obtained. For the 4-naphthylquinazolinone (1j), 
the desirable product was obtained moderate 67% yield and 90% 
ee. For the alkyl substituted substrates, high yields were 
obtained, albeit with moderate enantioselectivities (2k-2l).  

Table 3 The evaluation of NAD(P)H models.a 
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H2

(500 Psi )
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entry 
NAD(P)H 
models 

conv. (%)b ee (%)c 

1 (R)-H1 >95 95 

2 (R)-H2 >95 93 

3 (R)-H3 38 79 

4 (R)-H4 70 31 

5 (S)-H5 >95 6 

6 (R)-H6 14 5 

7d (R)-H1 >95 96 
a Conditions: 1a (0.10 mmol), [Ru(p-cymene)I2]2 (0.5 mol%), NAD(P)H 
model (10 mol%), PhCF3 (2.0 mL), H2 (500 psi), 35 oC, 24 h. b Measured by 

analysis of 1H NMR. c Determined by chiral HPLC. d 25 oC.  

To further demonstrate the generality of our method, we 
explored the substrate scope of different substituents on the 
benzo ring (Scheme 2). It was worth noting that methyl group on 
the different positions of the basic skeleton could deliver the 
products with high yields and 89%-98% ee (2m-2o). Dimethoxy 
substituted substrates could lead to excellent yield, albeit with 
low 19% of enantioselectivity (2p). The reason might ascribe to 
electronic effect. A series of electron-withdrawing substrates 
performed very well in the optimized conditions (2q-2u). Halogen 
group at different positions had marginal effect on reactivities 
and enantioselectivities (2s-2u). The halogen group could provide 
more opportunities for further transformations. 

Table 4 Substrate scope.a 
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entry R yield (%)b ee (%)c 
1 Ph 94 (2a) 95 
2 2-MeC6H4 90 (2b) 93 
3 3-MeC6H4 96 (2c) 93 
4 4-MeC6H4 96 (2d) 94 
5 4-MeOC6H4 92 (2e) 90 
6 4-FC6H4 97 (2f) 88 
7 3,5-Me2C6H3 46 (2g) 85 
8 3,5-(MeO)2C6H3 <5 (2h) -- 
9 4-PhC6H4 73 (2i) 85 

10 Naphthyl 67 (2j) 90 
11 Cyclohexyl 91 (2k) 74 
12 Isopropyl 87 (2l) 73 

a Conditions: 1 (0.20 mmol), [Ru(p-cymene)I2]2 (0.5 mol%), (R)-H1 (10 
mol%), acid-2 ( 5 mol%), PhCF3 (2.0 mL), H2 (500 psi), 25 oC, 36-72 h. b 
Isolated yields. c Determined by chiral HPLC. 
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Scheme 2 Substrate scopea 
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a Conditions: 1 (0.20 mmol), [Ru(p-cymene)I2]2 (0.5 mol%), (R)-H1 (10 
mol%), acid-2 (5 mol%), PhCF3 (2.0 mL), H2 (500 psi), 25 oC, 36-72 h. b 
Isolated yields. c Determined by chiral HPLC. 

A plausible mechanism for biomimetic asymmetric reduction 
was proposed,[15b] firstly, chiral NAD(P)H model (R)-H1 could be in 
situ reduced with hydrogen by ruthenium complex. Subsequently, 
the reduced chiral NAD(P)H model could realize biomimetic 
asymmetric reduction of quinazolinones in the presence of 
Brønsted acid. Meanwhile, the chiral NAD(P)H model (R)-H1 was 
regenerated for the next catalytic cycle. 

Scheme 3 The synthesis of three pharmaceutically active molecules a 
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To further demonstrate synthetic utility of this methodology, 

three pharmaceutically active molecules containing dihydroquina- 
zolinone motifs could be concisely synthesized (Scheme 3). For 
instance, human potent Eg5 inhibitor [16] and a serum HDL 
cholesterol raising agent such as SDZ 267-489 [17] , which play 
considerable role in human physical activity. The above two 
bioactive molecules could be formally synthesized in simple one 
or two steps from chiral dihydroquinazolinones (2a). In addition, 
bromodomain protein divalent inhibitors could interfere the 
combination with the Brd 4 and acetylated histones.[1m] The 
inhibitors (S,S)-5 have the core structure towards the dihydroqui- 
nazolinones. Hence, the bromodomain protein divalent inhibitors 
(S,S)-5 could be conveniently synthesized from the dihydroqui- 
nazolinones (2u) through three steps (N-methylation, Suzuki 
coupling and dialkylation) with good yields and without loss of 
optical purity.  

Conclusions 
In summary, we have developed a facile and efficient protocol 

that enables the synthesis of chiral dihydroquinazolinones with 
excellent enantioselectivities and high yields through biomimetic 
asymmetric reduction. This biomimetic method employs chiral 
and regenerable NAD(P)H models and commercially available 
achiral Brønsted acid as transfer catalysts under the mild reaction 
conditions. Furthermore, this methodology provides a concise 
approach to synthesize the pharmaceutically active molecules 
such as the bromodomain protein divalent inhibitor. Further 
development of these chiral and regenerable NAD(P)H models in 
other biomimetic catalytic reactions are under investigation by 
our group, and will be reported in due course.  

Experimental 
General procedure for biomimetic asymmetric reduction of 

quinazolinone: A mixture of [Ru(p-cymene)I2]2 (1.0  mg, 0.001 
mmol), Brønsted acid acid-2 (3.4 mg 0.01 mmol), NAD(P)H model 
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(R)-H1 (5.7 mg, 0.02 mmol,) and quinazolinones 1 (0.20 mmol) in 
trifluorotoluene (3.0 mL) was stirred at room temperature for 5 
min in glove box and then the mixture was transferred to an 
autoclave. The reduction was performed at room temperature 
under hydrogen gas (500 psi) for 36-72 h. After careful release of 
hydrogen gas, the autoclave was opened and the reaction mixture 
was directly purified by column chromatography on silica gel 
using dichloromethane/methanol as eluent to give the desired 
products 2. The enantiomeric excesses were determined by chiral 
HPLC. 

The full experimental details can be found in the Supporting 
Information 
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