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Abstract: A highly diastereoselective silver-catalysed cyclisation
of a 2-substituted b-allenic hydroxylamine is reported. The result-
ing trans-isoxazolidine is converted into two Nuphar alkaloids by a
sequence involving cross-metathesis and intramolecular reductive
amination.
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Most of the Nuphar alkaloids, trisubstituted piperidine al-
kaloids, were isolated from the Japanese water lily,
Nuphar japonica. One member of the family was isolated
from the scent glands of the North American beaver.1 A
number of syntheses of these alkaloids in both racemic
and optically active forms have been reported.2 In this let-
ter, we wish to report racemic syntheses of nupharamine
(1, Figure 1) and the otherwise unnamed bicyclic Nuphar
alkaloid, 5-(3-furyl)-8-methyloctahydroindolizidine (2),
using the Claesson cyclisation3 of an allenic hydroxyl-
amine to control the 2,3-stereochemistry. We have previ-
ously shown in the syntheses of sedamine4 and
porantheridine5 that this cyclisation is a useful and practi-
cal route to stereochemically defined 1,3-amino alcohols.
These cyclisations employed a b-allenic hydroxylamine
derivative with a substituent at the 1-position. In contrast,
the allenic hydroxylamine required for Nuphar synthesis
would have a methyl group at the 2-position.

Figure 1

The desired allenic substrate was easily prepared on a
multigramme scale by a Johnson–Claisen rearrangement6

involving propargyl alcohol and triethyl orthopropionate
catalysed by acetic acid (Scheme 1). This reaction pro-
ceeded in essentially quantitative yield. Reduction of the
resulting ester group with lithium aluminium hydride
gave the primary allenic alcohol 36b,c which was converted
into the Boc-protected hydroxylamine 4 by the usual se-
quence of Mitsunobu reaction with N-hydroxyphthal-
imide (78%),7 dephthaloylation (quantitative), and

acylation (95%). Several catalysts were screened for the
Claesson cyclisation (Table 1). The highest yield and
highest selectivity for the trans-isoxazolidine 58 was
achieved using silver triflate in anhydrous dichlo-
romethane. Due to the hygroscopic nature of this salt, mo-
lecular sieves were added to the reaction mixture. It was
found that the diastereoselectivity was distinctly lower
when water was present. To eliminate the possibility that
the cyclisation is due to acid generated by hydrolysis of
the salt,9 the allenic hydroxylamine was treated with tet-
rafluoroboric acid. No cyclisation was observed. The two
isomers of the isoxazolidine 5 were inseparable at this
stage, but could be separated by chromatography after
cleavage of the N–O bond using molybdenum hexacarbo-
nyl.10 The major isomer of amino alcohol derivative 6
proved to be crystalline, and its structure could be con-
firmed by X-ray crystallography (Figure 2).11

Scheme 1 Allene synthesis and cyclisation
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Table 1 Cyclisation of Allene 4

Entry Catalyst (mol%) Solvent trans/cis Yield (%)

1 AgNO3 (20) acetone–H2O 1.7:1 45

2 AgBF4 (35) CH2Cl2 10:1 46

3 AgNO3/SiO2 (20) CH2Cl2 7:1 23

4 AgOTf (20) acetone–H2O 1:1 96

5 AgOTf (20) CH2Cl2 22:1 91

6 HBF4 (30) CH2Cl2 – 0
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Figure 2 X-ray crystal structure of amino alcohol derivative 6

Attempts to convert the alcohol group of 6 into a bromide
or iodide were unsuccessful as the halo compounds
proved to be unstable during handling. Therefore, to
achieve the required chain elongation, alcohol 6 was oxi-
dized to aldehyde 7 (Scheme 2). The Swern oxidation
proved to be the best method for this transformation. This
compound, which would undergo epimerization at C2 on
prolonged standing, was immediately coupled with the
furyl phosphonate 812 in a Horner–Wadsworth–Emmons
reaction to give diene 9 in 87% yield from alcohol 6. Use
of barium hydroxide13 proved to be superior to the
Masamune–Roush modification.14 In the latter case, the
reaction failed to go to completion.

The synthesis of nupharamine (1) then required cross-
metathesis15 with commercially available 2-methylbut-3-
en-2-ol. Our attempts to achieve this transformation were
uniformly disappointing due to the steric hindrance en-
cumbering both partners. Cross-metathesis with methyl
acrylate, on the other hand, worked satisfactorily to give
ester 10, although it was necessary to employ the second-
generation Hoveyda–Grubbs catalyst (HG-II, 5 mol%) by
gradual addition to a toluene solution of the substrates at
70 °C16 with continuous bubbling of nitrogen17 to obtain
optimum yield (75%) and conversion. No metathesis was
observed at the internal alkene of 9.

Reduction of the two alkenes of ester 10 proved trouble-
some. Both are somewhat hindered and, with palladium
on carbon as the catalyst, hydrogenation even at atmo-
spheric pressure, resulted in reduction of the furan in ad-
dition to the alkenes. Use of Wilkinson’s catalyst with
hydrogen at ambient pressure (balloon) resulted in partial
reduction of the double bond conjugated to the ester.
Clean and complete reduction of both alkenes, without de-
tectable furan reduction was finally achieved using
Wilkinson’s catalyst under hydrogen at 100 psi, cleanly
giving ester 11 in 94% yield.

Removal of the Boc group in the usual way, followed by
a mildly basic workup yielded a crude tetrahydropyridine
which was directly reduced with sodium borohydride to
give the desired piperidine 1218 as a single diastereomer,
following the procedure of Blechert.2j

Piperidine 12 was converted into nupharamine (1) using a
slight modification of the literature method: N-protection
as a benzyl carbamate, formation of the tertiary alcohol
using excess methylmagnesium bromide, and deprotec-
tion by palladium-catalysed reduction with ammonium
formate.2i Alternatively, heating ester 12 in toluene at
reflux2i,19 yielded the known lactam 13 which was con-
verted into 5-(3-furyl)-8-methyloctahydroindolizidine (2)
by reduction with lithium aluminium hydride in 50% yield
(two steps).2i

Scheme 2 Nuphar alkaloid synthesis

Racemic, but highly diastereoselective, syntheses of two
Nuphar alkaloids have been completed with a common
isoxazolidine intermediate, generated by a highly stereo-
selective silver-catalysed allenic hydroxylamine cyclisa-
tion, have been completed. Studies on the asymmetric
synthesis are in hand.
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