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Abstract: 

A regiospecific synthesis of naphtho[2,1-b]benzofurans with a substituent at the C6 position 

has been achieved via intramolecular 6-endo-dig electrophilic cyclization under acidic 

conditions to construct the central aromatic C ring. Screening of the synthesized compounds 

using a high-content imaging system enabled us to discover novel dual state emissive 

compounds 2{1,6}, 2{1,8}, and 2{4,3}, which are highly emissive with blue emission in their 

solid states as well as in solution states in most solvents. In addition, the compounds 2{4,3}, 

2{4,12}, and 2{5,13} were found to be the most cell permeable in HeLa cells for live cell 

imaging with negligible phototoxicity.

Keywords: Naphtho[2,1-b]benzofuran; Sonogashira coupling; Intramolecular reaction; 

Electrophilic reaction; Polycycles; Heteroaromatics; Fluorescence.
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Introduction

Polycyclic heteroaromatic compounds represent an important class of organic functional 

materials with aromaticity exhibiting various biological, electrochemical, and photochemical 

properties.1-7 Among the various applications of heteroaromatic scaffolds, the development of 

novel fluorescent probes is immensely powerful in biomedical research, particularly for 

bioimaging applications.8-10 Desirable features of fluorescent probes for bioimaging are better 

photostability and higher contrast of fluorescence. Aggregation-caused quenching (ACQ) 

effects of conventional fluorophores, such as pyrene, perylene, and naphthalene diimide (NDI), 

are detrimental to practical applications in bioimaging, optoelectronic materials, and sensors.11-

13 Aggregation-induced emission (AIE) or Aggregation-induced emission enhancement (AIEE) 

molecules have shown great potential as a new modality because they are not quenched at high 

concentrations.14-18 Nonradiative deactivation pathways observed in solutions can be 

suppressed by restricted intramolecular rotation (RIR) in highly concentrated solutions or in 

solid states, leading to a better contrast in fluorescence imaging. To date, a variety of AIE 

luminogens with their quantum yields (QY) close to unity have been developed, but there still 

remains a solubility issue in most systems for bioimaging applications, thus requiring 

nanoparticle fabrication processes for enhanced cellular uptake.19

Novel fluorophores with high fluorescence in solution as well as in solid states are highly 

demanded for bioimaging and biosensors, but such probes are still limited.20-25 In particular, 

blue fluorescent materials functioning in solution and solid states are still rare and in high 

demand for high performance blue OLEDs.26-28 In addition, dual state emission (DSE) 

molecules that are emissive in all types of solvents are rarely encountered.29-31 To overcome 

the practical limits of conventional fluorophores, extensive synthetic efforts have been 
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dedicated to identify new polycyclic heteroaromatic scaffolds. The development of novel 

emissive scaffolds can be more efficiently implemented in combinatorial approaches along 

with a high content imaging system, since cell permeability, photostability, and cytotoxicity 

are not predictable from the rational design of biosensors in the context of the cellular system.4, 

32 As part of our continued efforts toward benzofurans,33-39 we recently became interested in 

regiospecific construction of benzofuran-containing polycyclic structures.40-41

Scheme 1. Synthetic plans
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5- and 6-acylnaphtho[1,2-b]benzofurans

5-acylnaphtho[2,1-b]benzofurans

(b) via intramolecular electrophilic ring closure

R

In particular, employing intramolecular alkyne carbonyl metathesis enabled us to install an acyl 

moiety to naphtho[1,2-b]benzofurans or naphtho[2,1-b]benzofurans in a regiospecific manner 

in the course of the central aromatic ring formation (Scheme 1(a)). During this study, we 

expected that sequential Sonogashira coupling42-45 and 6-endo-dig electrophilic cyclization46-
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49 of 3-(2-iodophenyl)benzofurans (1) would lead to naphtho[2,1-b]benzofurans with a 

substituent at the C6 position (Scheme 1(b)).50 Despite the importance of this core skeleton in 

the area of organic electronic devices,51-54 only a limited number of synthetic approaches in 

which expensive metal catalysts and/or harsh reaction conditions were used have appeared in 

the literature.55-60 These shortcomings as well as a great interest in furan-fused polycyclic 

systems for optoelectronic applications61 encouraged us to evaluate our route to this polycyclic 

heteroaromatic scaffold, which is the focus of this study.

Results and discussion

For reaction optimization, we used 3-arylbenzofuran 1{1} which was prepared by following 

the previous procedure.40, 62 Sonogashira coupling of 1{1} with phenylacetylene 3{1} in the 

presence of (Ph3P)2PdCl2 (0.1 equiv) and CuI (0.1 equiv) in Et3N at 80 °C afforded 4{1,1}.

Scheme 2. Synthesis of 2{1}

O

I

O

5

6

1{1} 2{1,1}

PhMeO MeO

cat. (Ph3P)2PdCl2
cat. CuI
Et3N, 80 °C
88%

Ph

O
4{1,1}

MeO
Ph

TFA
DCE

80 °C
93%

3{1}

After screening of the several reaction conditions, we found that exposure of 4{1,1} to catalytic 

amount of InCl3 (0.05 equiv) at 80 °C for 12 h gave the tetracyclic product 2{1,1} in 85% yield. 

However, full conversion was not observed in some substrates where other alkynes were 

attached although the reason is not clear. It turned out that PtCl2, Bi(OTf)3, or AgOTf was 

ineffective in this transformation. Finally, it was discovered that heating of 4{1,1} in TFA/1,2-
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dichloroethane (DCE) (=1/2) at 80 °C for 0.5 h cleanly provided the desired 2{1,1} in excellent 

yield.

Having established the optimal conditions, reaction scope was first examined with substrates 

4{1,2-9} with different R groups (Table 1). Benzofurans 1{1-6} and terminal alkynes 3{1-13} 

for Sonogashira coupling are listed in Figures 1 and 2. Not only electron-rich aryl groups but 

also electron-poor aryl moiety were well tolerated under these conditions to afford the 

corresponding 6-arylnaphtho[2,1-b]benzofurans in good to excellent yields (entries 1-6). A 

naphtho[2,1-b]benzofuran-bearing heterocycle such as thiophene was also produced in 63% 

yield (entry 7). However, only a trace amount of the product was obtained with alkyl-

substituted benzofuran 4{1,9} (entry 8). Next, this sequence was applied to the other 

benzofurans 1{2-6}63 with different alkynes to further demonstrate a wide substrate scope 

(entries 9-19). Overall, the desired tetracyclic skeletons were established in good overall yields 

without side products.

Figure 1. Benzofurans 1{1-6}
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Figure 2. Terminal Alkynes 3{1-13}
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OMe

OMe

3{1} 3{2} 3{3}

Me

Me
OMe

3{4} 3{5} 3{6}

Cl
S

3{7} 3{8} 3{9}
OMe

OMe

CF3

3{10} 3{11} 3{12}
F

3{13}

Table 1. Synthesis of Diverse 6-Substituted Naphtho[2,1-b]benzofuransa

O

R

cat. (Ph3P)2PdCl2
cat. CuI, Et3N
80 °C

TFA/DCE

80 °C

O O

1 4 2

I

R R
G G G

3

entry 1 alkyne 4b 2b

1 1{1} 3{2}
4{1,2}

(85) OMeO

OMe

2{1,2} 
(88)
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2 1{1} 3{3}
4{1,3}

(83)
OMeO OMe

2{1,3} 
(90)

3 1{1} 3{4}
4{1,4}

(90) OMeO

Me

2{1,4} 
(78)

4 1{1} 3{5}
4{1,5}

(91)
OMeO Me

2{1,5} 
(86)

5 1{1} 3{6}
4{1,6}

(78) OMeO

OMe

2{1,6} 
(76)

6 1{1} 3{7} 4{1,7} 
(80) OMeO

Cl

2{1,7} 
(74)

7 1{1} 3{8} 4{1,8} 
(83)

OMeO
S

2{1,8} 
(63)

8 1{1} 3{9} 4{1,9} 
(98) trace 2{1,9}
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9 1{2} 3{1} 4{2,1} 
(92)

O

2{2,1} 
(77)

10 1{2} 3{7} 4{2,7} 
(66) O

Cl

2{2,7} 
(89)

11 1{3} 3{10} 4{3,10} 
(62) O

MeO

OMe

2{3,10} 
(95)

12 1{3} 3{4} 4{3,4} 
(79) O

Me

2{3,4} 
(88)

13 1{4} 3{3} 4{4,3} 
(81)

O
OMe

MeO

MeO

2{4,3} 
(92)

14 1{4} 3{11} 4{4,11} 
(93)

O

MeO

MeO

2{4,11} 
(78)
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15 1{4} 3{12} 4{4,12} 
(81) O

MeO

MeO

CF3

2{4,12} 
(86)

16 1{5} 3{1} 4{5,1} 
(94)

O

OMe

MeO

2{5,1} 
(84)

17 1{5} 3{13} 4{5,13}c 
(69)

O

OMe

MeO F

2{5,13} 
(65)

18 1{6} 3{1} 4{6,1} c 
(62)

O

OMe

MeO
CHO

2{6,1} 
(77)

19 1{6} 3{2} 4{6,2}c 
(65) O

OMe

MeO
CHO

OMe

2{6,2} 
(76)

a A mixture of 1, terminal alkyne (1.1 equiv), (Ph3P)2PdCl2 (0.1 equiv), CuI (0.1 equiv) in Et3N 
was stirred at 80 °C. A solution of 4 in TFA/DCE (1/2) was heated at 80 °C for 1 h. b Isolated 
yield (%). c DIPEA/DMF (1/2) was used instead of Et3N.

With the synthesized compounds in hand, we investigated the optical properties of the 

naphtho[2,1-b]benzofurans series and summarized the absorption and emission maxima along 

with the quantum yields in Table 2. Figure 3 depicts the UV/Vis absorption and emission 

spectra of representative compounds. The absorption maxima of the compounds were observed 

Page 11 of 31

ACS Paragon Plus Environment

ACS Combinatorial Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



12

at approximately 300−350 nm, whereas emission maxima were observed at approximately 380

−450 nm in DMSO. The observed large Stokes shift up to 100 nm that avoids reabsorption of 

emitted photons is a critical parameter for bioimaging applications. Structure-property 

relationship analysis based on the optical properties revealed that electron-donating -OCH3 

groups attached to the A ring increased the redshifts of emission spectra, whereas the electron-

withdrawing groups (-Cl and -CF3) in the E ring resulted in a redshift of emission maxima 

(Figure S1).

Figure 3. Absorption (a) and emission (b) spectra of 2{1,2}, 2{1,6}, 2{1,8}, 2{2,1}, 2{4,3}, 
2{4,11}, and 2{4,12} measured in DMSO.
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λ
em 

(nm)
Compound λ

abs 
(nm)

DW EtOH DMSO
ε

max
 (M-1cm-1) Φ

F
 (Solution)

2{1,1} 329 420.5 389.5 400.5 18600 0.60

2{1,2} 331 412.5 384.5 393.5 23200 0.74

2{1,3} 328 413.5 390.5 401.5 18600 0.67

2{1,4} 328 431.5 388 397.5 18800 0.62

2{1,5} 329 411.5 389 399.5 18800 0.57

2{1,6} 308 425.5 393.5 406 32800 0.78

2{1,7} 328 430.5 393.5 408.5 17900 0.63

2{1,8} 332 412.5 385.5 394 20100 0.63

2{2,1} 321 380 379.5 384.5 19300 0.38

2{2,7} 322 386 383.5 388.5 21700 0.45

2{3,10} 325 392 382.5 387 14400 0.39

2{3,4} 324 406 379.5 383.5 21800 0.51

2{4,3} 342 435.5 404.5 425 22800 0.66

2{4,11} 350 426.5 402 423 20700 0.70

2{4,12} 355 447.5 424.5 449 18400 0.72

2{5,1} 322 444.5 398.5 412 15900 0.52

2{5,13} 322 452 405.5 423 14900 0.58

2{6,1} 354 - 478 - 15400 0.06

2{6,2} 311 473.5 487 424.5 22100 0.03

Table 2. Optical properties of 6-substituted naphtho[2,1-b]benzofurans.

By using a high-content imaging system, we also screened the synthesized compounds for live 

cell imaging in HeLa cells and the compounds 2{4,3}, 2{4,12}, and 2{5,13} were found to be 

the most cell permeable, located in the cytosol of HeLa cell (Figure S2 and Figure S3). 

Meanwhile, 2{1,6} and 2{1,8} exhibited high fluorescence via aggregation induced emission 

properties. The phototoxicities of these compounds were found to be negligible (Figure S4). 

Figure 4 depicts DSE properties of 2{1,6}, 2{1,8}, and 2{4,3}. The increase of water contents 
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resulted in fluorescence enhancement up to 70% of water in THF, but fluorescence decrease 

was observed at > 70% of water contents. These compounds possessed high QYs in ethanol 

solution and in solid states (Figure 5 and Table 3). DLS analysis showed that the particle sizes 

of 2{1,6}, 2{1,8}, 2{4,3}, and 2{4,12} are 211 nm, 208 nm, 167 nm, and 200 nm, respectively 

(Figure S5). In addition, they exhibited high fluorescence in most solvents, except water 

(Figure S6).

Figure 4. Photographs of 10 μM 2{1,6} (a), 2{1,8} (b), and 2{4,3} (c) in THF/water mixture 
(0-99%) under natural light (up) and UV light (down, λex = 312 nm). Fluorescence spectra of 
10 μM 2{1,6} (d), 2{1,8} (e), and 2{4,3} (f) in THF/water mixture (0-99%) with excitation at 
308 nm (d), at 332 nm (e), and at 342 nm (f); inset: plots of fluorescence intensity of 2{1,6} at 
396 nm (d), 2{1,8} at 388 nm (e), and 2{4,3} at 405 nm (f).
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Figure 5. Fluorescence spectra of 2{1,6} (a), 2{1,8} (b), 2{4,3} (c), and 2{4,12} (d) in EtOH 
(0.5 μM, dashed line) and solid states (solid line); inset: photographs of 2{1,6} (a), 2{1,8} (b), 
2{4,3} (c), and 2{4,12} (d) in the solid state under visible light (left) and UV light (right, λex = 
365 nm).

EtOH Solid
Compound

λ
abs 

(nm) λ
em 

(nm) Φ
F
 (Solution) λ

abs 
(nm) λ

em 
(nm) Φ

F
 (Solid, %)

2{1,6} 308 393.5 0.78 367 408 19.67

2{1,8} 332 385.5 0.63 372 422 22.15

2{4,3} 342 404.5 0.66 370 434 16.33

2{4,12} 355 424.5 0.72 373 437 1.54

Table 3. Optical properties of 2{1,6}, 2{1,8}, 2{4,3}, and 2{4,12} in ethanol and in the solid 

state.
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To understand the interactions that contributed to solid state emission, we also investigated the 

intermolecular interactions of 2{1,8} by analyzing the geometry and packing arrangements in 

crystal states (Figure 6). One of the featured interactions in 2{1,8} packing is slip-stacks,64 in 

which the intermolecular distance between 6-arylnaphtho[2,1-b]benzofuran rings from each 

centroid was 5.729 Å with a pitch angle of 54.711°, much deviated from conventional π-π 

stacking interactions that cause fluorescence decreases. Through the slip-stacks, each 2{1,8} 

compound is arranged to have a short distance between S atoms of the thienyl group. The 

intermolecular S…S interaction (3.769 Å) along with nonclassical hydrogen bonds (CH…O 

bond: 2.524 Å; CH…S bond: 3.156 Å) comprise the intermolecular networks, rigidifying the 

molecular packing of 2{1,8} as depicted in Figure 6. These intermolecular hydrogen bonds in 

addition to the well-aligned O and S atoms had significant influence on the molecular packing 

mode, resulting in high emission in solid states.65 These nonbonding interactions are found to 

extend electronic communication, leading to a radiative pathway.66
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Figure 6. (a) Crystal structure of 2{1,8} with the intramolecular CH…O interaction (2.249 Å) 
shown in yellow line. (b) Slip-stacked 2{1,8} molecules from a side view. (c) Packing structure 
of 2{1,8} via intermolecular S…S bond (3.769 Å) shown in red line. (d) Packing structure of 
2{1,8} via intermolecular interactions; red: intermolecular S…S bond (3.769 Å); green: 
intermolecular CH…S bond (3.156 Å); blue: intermolecular CH…O bond (2.524 Å).

In conclusion, we have developed a modular approach to a wide range of 6-substituted 

naphtho[2,1-b]benzofurans by way of sequential Sonogashira cross-coupling and 6-endo-dig 

electrophilic cyclization. The synthesized compounds were tested for their optical and imaging 

properties. By using a high-content imaging system, 2{4,3}, 2{4,12}, and 2{5,13} were found 

to be the most cell permeable, whereas 2{1,6} and 2{1,8} exhibited high fluorescence via 

aggregation-induced emission properties. Interestingly, 2{1,6}, 2{1,8}, and 2{4,3} are solid-

state emissive and highly fluorescent in most solvents in solution, exhibiting dual state 

emission (DSE) properties that are highly valuable for broad applications including bioimaging. 
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The compounds we developed in this work would serve as a novel fluorescent scaffold with a 

variety of biomedical and optoelectronic applications.

Experimental procedures

General Methods

Unless specified, all reagents and starting materials were purchased from commercial sources 

and used as received without purification. “Concentrated” refers to the removal of volatile 

solvents via distillation using a rotary evaporator. “Dried” refers to pouring onto, or passing 

through, anhydrous magnesium sulfate followed by filtration. Flash chromatography was 

performed using silica gel (230−400 mesh) with hexanes, ethyl acetate, and dichloromethane 

as the eluents. All reactions were monitored by thin-layer chromatography on 0.25 mm silica 

plates (F-254) visualizing with UV light. Melting points were measured using a capillary 

melting point apparatus. 1H and 13C NMR spectra were recorded on 400 MHz NMR 

spectrometer and were described as chemical shifts, multiplicity (s, singlet; d, doublet; t, triplet; 

q, quartet; m, multiplet), coupling constant in hertz (Hz), and number of protons. HRMS was 

measured with electrospray ionization (ESI) and Q-TOF mass analyzer.

Synthesis of 6-methoxy-3-(2-(phenylethynyl)phenyl)benzofuran (4{1,1})

In a vial charged with 3-(2-iodophenyl)-6-

methoxybenzofuran (1{1}) (50 mg, 0.14 mmol) in Et3N (2 

mL) were added phenylacetylene (3{1})(17 µL, 0.154 mmol), 

(Ph3P)2PdCl2 (9.8 mg, 0.014 mmol), and CuI (2.7 mg, 0.014 

mmol). After being stirred at 80 °C for 12 h, the reaction mixture was concentrated in vacuo to 

OMeO
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yield the crude product. Purification by flash chromatography on silica gel (hexanes:EtOAc, 

49:1) afforded 4{1,1} as a yellow gum (40.6 mg, 88%). 1H NMR (400 MHz, CDCl3) δ 7.99 

(s, 1H), 7.71 (d, J = 7.6 Hz, 1H), 7.61-7.64 (m, 2H), 7.44 (t, J = 7.6 Hz, 1H), 7.36 (t, J = 7.2 

Hz, 1H), 7.29 (s, 5H), 7.11 (s, 1H), 6.94 (dd, J = 2.0, 8.8 Hz, 1H), 3.89 (s, 3H); 13C NMR (100 

MHz, CDCl3) δ 158.2, 156.3, 142.8, 134.0, 133.4, 131.5, 129.4, 128.7, 128.4, 128.4, 127.3, 

123.3, 122.2, 121.3, 120.5, 120.4, 112.1, 96.2, 93.1, 89.4, 55.9; HRMS (ESI-QTOF) m/z 

[M+H]+ calcd for C23H17O2 325.1223, found 325.1225.

Synthesis of 9-methoxy-6-phenylnaphtho[2,1-b]benzofuran (2{1,1})

A solution of 4{1,1} (25 mg, 0.08 mmol) in a mixture of DCE 

(2.0 mL) and TFA (1.0 mL) in a vial was stirred at 80 °C for 

30 min. After being cooled down to rt, the reaction mixture 

was concentrated in vacuo to afford the crude product which 

was purified by flash chromatography on silica gel 

(hexanes:EtOAc, 49:1) to give 2{1,1} as a pale yellow solid, (23.2 mg, 93%); mp: 93.7-95.2 °C; 

1H NMR (400 MHz, CDCl3) δ 8.58 (d, J = 8.4 Hz, 1H), 8.29 (d, J = 8.4 Hz, 1H), 8.05 (d, J = 

8.0 Hz, 1H), 7.99 (d, J = 8.0 Hz, 2H), 7.95 (s, 1H), 7.69 (t, J = 6.8 Hz, 1H), 7.53-7.61 (m, 3H), 

7.48 (t, J = 7.6 Hz, 1H), 7.25 (d, J = 2.0 Hz, 1H), 7.10 (dd, J = 2.0, 8.8 Hz, 1H), 3.93 (s, 3H); 

13C NMR (100 MHz, CDCl3) δ 159.2, 157.4, 152.1, 136.7, 131.0, 129.4, 129.2, 128.8, 128.2, 

128.1, 126.9, 126.9, 126.2, 124.8, 123.4, 122.4, 118.4, 118.4, 112.0, 96.8, 55.9; HRMS (ESI-

QTOF) m/z [M+H]+ calcd for C23H17O2 325.1223, found 325.1226.

OMeO
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Optical characterization

The UV-Vis absorption spectra of the synthesized compounds were measured at ambient 

temperature using a Lambda25 UV/Vis spectrometer (PerkinElmer, Waltham, MA, USA). 

Fluorescence emission spectra were obtained with an FP-6500 spectrofluorometer (JASCO, 

Tokyo, Japan) with slit widths of 3 nm for excitation and 5 nm for emission. The solid state 

fluorescence emission spectra were measured at room temperature using a Fluoromax-4 

spectrofluorometer (Horiba Jobin Yvon, Kyoto, Japan) with a slit width of 0.5 nm for both 

excitation and emission. Fluorescence quantum yields of the compounds in solution were 

determined using anthracene (Φ = 0.27 in EtOH) as a standard and the absolute fluorescence 

quantum yields of solids were measured using a Horiba FluoroMax-4 spectrofluorometer with 

an integrating sphere assembly. Dynamic light scattering was employed to analyze the particle 

size distribution using ELSZ-2000 (Otsuka, Chiyoda, Japan).

Image-based cell screening

HeLa (human cervical cancer cell line) cells were seeded at 20,000 cells per well in a 

Cellcarrier-96 black plate (PerkinElmer, Waltham, MA, USA) and incubated for 24 h at 37 °C 

in 5% CO2. For live cell imaging, the cells were treated with the compounds for 1 h and cell 

screening images were acquired via the Operetta High-Content imaging system (PerkinElmer, 

Waltham, MA, USA) at 410-480 nm with blue fluorescence upon excitation at 360-400 nm 

with a 20x objective lens. Image analysis was performed using Harmony software 

(PerkinElmer, Waltham, MA, USA).
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Confocal microscopy

For live cell imaging, HeLa cells were seeded on a confocal dish for 24 h under 37 °C in 5% 

CO2. After incubation, the same samples were incubated with 10 μM NP compounds for 1 h at 

37 °C under 5% CO2, followed by staining with 150 nM MitoTracker Red (Molecular probes, 

Eugene, OR, USA) for 20 min or with 75 nM LysoTracker Red (Molecular probes, Eugene, 

OR, USA) for 30 min. After staining, the samples were washed twice with Dulbecco's 

phosphate-buffered saline (DPBS) and live cell imaging was carried out using a TCS-SP8 

confocal laser scanning microscope (Leica, Wetzlar, Germany). Cell images of NP-treated cells 

were acquired at 410-560 nm with blue fluorescence upon excitation at 405 nm, whereas 

LysoTracker Red and MitoTracker Red were excited at 561 nm and detected at >566 nm with 

red fluorescence.

Cytotoxicity test

The phototoxicity of the compounds was evaluated using the MTT assay. MCF7 (human breast 

cancer cell line) cells were seeded in 96-well cell culture plates (SPL Life Science Co., 

Gyeonggi-do, Republic of Korea) at a density of 10,000 cells per well. After incubation for 24 

h, the cells were treated with different concentrations (0.5, 1, 2, 5, and 10 μM) of compounds 

in cell culture media for 1 h at 37 °C in the dark. The cell medium was replaced with fresh 

medium and cells were then irradiated by a blue LED light (800 lm/m2) for 0, 5, and 10 min. 

After illumination, the cells were incubated at 37 °C under 5% CO2 in the dark for 24 h. After 

medium replacement, 20 μM 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) (5 mg/mL) was added to each well and incubated for another 3 h. At the end, the 
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medium was removed and the formazan product was dissolved in DMSO (100 μL per well). 

Cell viability was evaluated by measuring the absorbance at 570 nm using a Mithras2 plate 

reader (Berthold Technologies, Bad Wildbad, Germany).

Single Crystal X-ray Diffraction Studies

Single crystals of 2{1,8} with a dimension of 0.427 × 0.22 × 0.104 mm3 were grown by the 

vapor diffusion method using CH2Cl2 and cyclopentane. The suitable crystal was mounted on 

SuperNova, Dual, Cu at home/near, and a AtlasS2 diffractometer (Agilent, Santa Clara, CA, 

USA). The data collection of 2{1,8} was performed using a SuperNova dual source 

diffractometer operating with Cu-Kα radiation (λ = 1.542 mm-1) at 294.4 K. Using Olex2,67 the 

structure was solved by direct methods with ShelXT software68 and refined by the least squares 

minimization method using ShelXL software.69 Supplementary crystallographic data of 2{1,8} 

in this paper can be obtained from the Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. The deposition number of 2{1,8} is CCDC 1884862. 

All copies of the data can be downloaded upon request to CCDC, 12 Union Road, Cambridge 

CB2 1EZ, UK.
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