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An efficient method has been developed to construct 2,6-
stereochemistry in moderate to high yields.

cis-4,5-dibromo-tetrasubstituted tetrahydropyran (THP) rings with well-controlled

Functionalized tetrahydropyran (THP) rings are key structural (Z)- and €)-y-brominated homoallylic alcohdt§ could be
elements in many biologically active natural products, such utilized to construct 2,&is-4,5-dihalo-tetrasubstituted THP

as brevetoxin B, |{)-centrolobine, blepharocalyxin D and
E, altromycin B, scytophycin C, and—{-apicularen At

rings in the presence of indium-based Lewis acids (Scheme
1).

Among the methodsavailable, Prins cyclizaticroffers one We forsee that 2,4,5,6-tetrasubstituted THP rings are
of the most versatile methods for the construction of versatile intermediates that could allow further functionliza-

substituted tetrahydropyrans. Our group recently developedtion to form other THP-containing compounds. For instance,
a highly convergent approach to construct crossed 2,4,6-blepharocalyxins D and E are believed to be synthesized from
trisubstituted THP rings via Prins cyclization using indium- a precursor with a selective double bond on the pyran ring

based mild Lewis acid® and its synthetic value was
demonstrated in the successful total synthesis -6f- (
centrolobiné® and the formal synthesis of)-SCH 351448¢

To further the development of this methodology, we felt that
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from a biogenetic point of view In the present letter, we
report an efficient method to construct Z8-4,5-dibromo-

(2) Radical cyclization see: (a) Lee, E.; Park, C. M.; Yun, JJ.SAm.
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Scheme 1. Prins Cyclization ofy-Brominated Homoallylic
Alcohol with Aldehydes
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tetrasubstituted THP rings in moderate to high yields with

excellent stereoselectivity and our explorations toward their

synthetic value. To our best knowledge, our method is the

first stereoselective dibromo-THP construction via Prins

cyclization that results in a cis configuration of bromine

Br
R1 N

atoms. Other approaches to dibromo-THP rings were realized

via bromination of dihydropyrans, and only trans addition
products were obtained.

y-Brominated homoallylic alcoholZ)-1 and cyclohexan-
ecarboxaldehyde were selected for the optimization of

reaction conditions (Scheme 2). Indium-based Lewis acids,

Scheme 2. Prins Cyclization of Z)-1 with
Cyclohexanecarboxaldehyde and Analysis of the
Stereochemistry
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such as InGl In(OTf)s;, and InBg, were employed to mediate
the Prins cyclization at OC in CH,Cl,. No Prins product
could be formed when In€lwas utilized to promote this
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cyclization and no desired crossed product could be obtained
by using In(OTf).

Gratifyingly, InBr; was discovered to be the highly
efficient Lewis acid to promote this Prins cyclization and
the yields were dependent on the amount of y@nployed
(Table 1, entries 1, 2, and 3), with the best condition being

Table 1. Prins Cyclization of Z)-1 with Aldehydes

entry R, product yield (%)*
Br
Br b
- 32
Cy o
2a
Br
Br
- 630
Cy o
2a
Br
Br
- 95
Cy o
2a
Br
Br
4 -(CH,),CH; 87
o 6
2b
Br
Br
5 -CH(CH:CHs), o 68
2¢
Br
Br
6 -Ph 714
o
2d
O O
Br
Br
7 -CH,CH,Ph 91

a|solated yield? 0.2 equiv of InBg was employed® 0.5 equiv of InBg
was employed? Reaction time was 25 h.

1.0 equiv of InBg with 1.2 equiv of TMSB¥ in CH,Cl, at

0 °C to afford2ain 95% vyield as a single isomer (Table 1,
entry 3). This cyclization proceeded smoothly with high
stereoselectivity and introduced four stereogenic centers into
the product in one step. 2,4¢6s-5-trans THP ring 2a was
expected to be constructed with an axial bromine substituent
at the 5 position and the other three substituents occupying
equatorial positions. This was confirmed by the crystal
structure of2a® (Figure 1). We thus predict thall-cis-

(6) (2)-1 was prepared in 62% yield by using hydrocinnamaldehyde to
trap allylic anion generated from allyl bromide in the presence of LDA
and zinc bromidéa (E)-1 was prepared in three steps: (1) propargylation
of trialkylsilyl propargyl bromide with hydrocinnamaldehyde mediated with
indium and indium bromide (6096¥,(2) DIBAL-H reduction converting
the triple bond into the cis double bond (64%)and (3) bromination
(90%)°ef

(7) (@) Woods, G. F.; Temin, S. Q. Am. Chem. Sod95Q 72, 139~
143. (b) Dale, W. J.; Sisti, A. . Am. Chem. So0d.954 76, 81—-82. (c)
Brown, R. K.; Srivastava, R. M.; Sweet, F.; Murry, T. P.Org. Chem.
1971, 36, 3633-3636. (d) Brown, R. K.; Srivastava, R. M.; Sweet, F.
Org. Chem.1972 37, 190-195.

(8) Our initial investigations revealed that TMSBr serves as a bromide
source. No reaction occurred when only TMSBr was used as promoter.
With a stoichiometric amount of InBras the sole promoter, only a trace
amount of the product could be observed whe&hX was reacted with
cyclohexanecarboxaldehyde; fdg){1 only 21% yield was obtained.
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Scheme 3. Chemical Transformations of
2,6<cis-4,5-Dibromo-THP Rings

Br Br
f\l
/(j\ cond 23 cond Ri Ry
Ri

rj\ l F(ef 14
f‘];“OH
R7OOR,

The presence of an axial bromine maResnore reactive
with respect td8a (all bromines equatorial). The double bond
2,4,5,6-tetrasubstituted THP products would be formed when of 43 allows further functionalizations, such as epoxidation
(B)-1 was utilized. and hydroxylatior? In addition, elimination productb was

By using the above optimized reaction conditifTable formed when2a and 3a were treated with potassiutert-

1, entry 3), a variety of aldehydes were selected to constructputoxide.2a was again found to be more reactive tHzm
the 2,6€is-4,5-dibromo-THP rings with bott7)-1 and E)-1 Results are summarized in Table 3. Vinyl bromitteis also
and moderate to good yields with excellent stereoselec-
tivities were obtained. The results are summarized in Tables
1 and 2.

Figure 1. Crystal structure oRa, showing an axial bromine at
the 5 position and all equatorial substituents at the 2,4,6 positions.

Table 3. Chemical Transformations of
2,6cis-4,5-Dibromo-THP Rings

- vield

Table 2. Prins Cyclization of E)-1 with Aldehydes entry substrate conditions product (%)*
entry R, product yield (%)a,b 1 2a Zn, AcOH, rt, 24 h 4a 70
2 3a Zn, AcOH, rt, 24 h 4a 58
- 3 2a Bu3SnH, ABCCN, 4a 71
1 -Cy _ 92 PhCHj, reflux, 24 h
4 3a BusSnH, ABCCN, 4a 56
PhCHs, reflux, 24 h
5 2a ¢t-BuOK, EtOH, rt, 24 h 4b 69
2 ~(CH,);CHs 82 6 3a +-BuOK, PhCHs, reflux, 24h  4b 59
a|solated yield.
3 -CH(CH.CHs), . \ 90
3c a versatile intermediate that can be converted into 2,6-alkyl-
3-hydroxytetrahydropyran-4-one via osmium-catalyzed cis
4 -Ph 77 dihydroxlation or into the 2,6-disubstituted THP ring upon
catalytic hydrogenation with Pd/&.
5 -CH,CH,Ph 90 (10) Typical experimental procedures for our Prins cyclization to

2,6cis-4,5-dibromo-THP rings: to an oven-dried round-bottomed flask

with a magnetic stirrer was added indium bromide (106.0 mg, 0.30 mmol,

1.0 equiv) and anhydrous dichloromethane (1.5 mL). The mixture was

a|solated yield? Reaction time was 1.5 h. vigorously stired at 0C. (2)-1 (91.8 mg, 0.36 mmol, 1.2 equiv) dissolved

in 1 mL of anhydrous CbCl, was introduced into the suspension, and 5

min later bromotrimethylsilane (TMSBr, 0.05 mL, 0.36 mmol, 1.2 equiv)

was added. Cyclohexanecarboxaldehyde (33.7 mg, 0.30 mmol, 1.0 equiv)
THP productQaandSawere selected to perform a series dissolved in 1 mL of anhydrous GBI, was slowly introduced over 10

min. The reaction was allowed to proceed &@for 90 min before being
of chemical transformations to explore synthetic versatilities quenched with saturated sodium bicarbonate solution (5 mL). The aqueous

of such dibromo-THP I’IngS (Scheme 3)_ As expectw, layer was extracted with diethyl ether 310 mL) and the combined organic

. . . . S extracts were washed with brine, dried over anhydrous magnesium sulfate,
was rea.dlly_obtalned. with a_ selectl\{e d_ouble .bond. via direct filtered, and concentrated in vacuo. The residual crude product was purified
debromination by using activated zinc in acetic acid at room via flash chromatography (0.5% diethyl ether in hexane) to affards a

1 ; white solid in 95% yield.
temperaturé! and an unexpected alternative approach was (11) Sato, F.: Akiyama, T - lida, K.: Sato, Mynthesia982 12, 1025~
also discovered to create such a selective double bond undego2s.

radical reaction conditions (Table 3, entries 3 and 4). 3153132) Schmidt, B.; Wildemann, Heur. J. Org. Chem200Q 18, 3145~
(13) Dobbs, A. P.; GuesneS. J. J.; Martinovic S.; Coles, S. J;
(9) For crystal data foRa see the Supporting Information. Hursthouse, M. BJ. Org. Chem2003 68, 7880-7883.
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In conclusion, we have developed an efficient Prins Efforts are ongoing in applying this developed methodology
cyclization reaction to construct 2@s-4,5-dibromo-tetra-  to the synthesis of highly funtionalized tetrahydropyrans.
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