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PREPARATION OF 5-CYANO-4,6-DIMETHYL-2H-
PYRAN-2-ONE AND 3-CYANO-5-METHOXY-
4-METHYL-5H-FURAN-2-ONE VIA A ONE-POT,
DOMINO-KNOEVENAGEL PROCESS

Prativa B. S. Dawadi and Johan Lugtenburg
Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands

5-Cyano-4,6-dimethyl-2H-pyran-2-one (1) has been prepared via a simple one-pot

domino-Knoevenagel reaction starting from ethyl acetoacetate (2) and cyanoacetone

(3). Similarly, a new racemic 3-cyano-5-methoxy-4-methyl-5H-furan-2-one (7) has been

prepared from 1,1-dimethoxyacetone (6) and cyanoacetic acid (4). The new alkylidene

derivatives (Z=E)-ethyl-4-cyano-3-methylbut-3-enoate (5), (Z=E)-ethyl 5-amino-4-

cyano-3-methyl-5-oxopent-3-enoate (9), and (2,2-dimethoxy-1-methylethylidene)malono-

nitrile (11) have been prepared via the Knoevenagel reactions. The easy access to these

new compounds in good yields shows that ammonium acetate=acetic acid–catalyzed

Knoevenagel reactions and domino-Knoevenagel reactions have a broad scope of

application.

Keywords: (2,2-Dimethoxy-1-methylethylidene)malononitrile; (Z=E)-ethyl 5-amino-4-cyano-3-methyl-5-

oxopent-3-enoate; (Z=E)-ethyl 4-cyano-3-methylbut-3-enoate; NMR spectroscopy

INTRODUCTION

The 2H-pyran-2-ones (a-pyrones) and 5H-furan-2-ones (but-2-en-4-olides) are
unsaturated lactones. They are components of several classes of bioactive natural
compounds and exhibit a wide range of biological activity such as potent non-
peptidic HIV protease inhibitory, antimicrobial, antifungal, androgen-like, and
pheromonal effects.[1,2] 2H-Pyran-2-ones (a-pyrones) are also important synthetic
intermediates for the preparations of various aromatic and heteroaromatic com-
pounds. 2H-Pyran-2-ones undergo Diels–Alder reactions with acetylenes and olefin
dienophiles to give addition products. These products give easy access to a whole
range of substituted benzenes and cyclohexadiene derivatives under thermal
expulsion of CO2.

[3–6]

a-Pyrones have been prepared by acid-catalyzed intermolecular condensation
of two molecules of b-keto esters.[7] However, the 2H-pyran-2-one with a cyano
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substituent at position 5 was not known until the preparation of 5-cyano-4,6-
dimethyl-2H-pyran-2-one via a complicated nickel-catalyzed conversion of propar-
gyl halide and propargyl alcohol was reported.[8]

We have recently reported an efficient method to convert two bifunctional
reagents into a single multifunctional system via the Knoevenagel condensation in
which the total number of carbon atoms remains the same and which can be converted
into a valuable heterocyclic compound in subsequent steps in a simple process.[9]

We now report ammonium acetate=acetic acid–catalyzed domino-Knoevenagel
reactions and Knoevenagel reactions for the preparation of 5-cyano-4,6-dimethyl-2-
H-pyran-2-one (1), (Z=E)-ethyl-4-cyano-3-methylbut-3-enoate (5), 3-cyano-5-
methoxy-4-methyl-5H-furan-2-one (7), (Z=E)-ethyl 5-amino-4-cyano-3-methyl-5-
oxopent-3-enoate (9), and (2,2-dimethoxy-1-methylethylidene)malononitrile (11) in
Schemes 1 and 2. Furthermore, the methodology employs an efficient and diverse
synthesis of new compounds in simple and mild conditions.

RESULTS AND DISCUSSION

Ethyl acetoacetate (2; 6.50 g, 50mmol) and 1-cyanoacetone (3; 4.14 g, 50mmol)
were condensed together in toluene (250mL) for 5 h at 100–110 �C in the presence of

Scheme 1. Preparation of 5-cyano-4,6-dimethyl-2H-pyran-2-one (1) from ethyl acetoacetate (2) and

1-cyanoacetone (3); preparation of (Z=E)-ethyl 4-cyano-3-methylbut-3-enoate (5) from ethyl acetoacetate

(2) and cyanoacetic acid (4); and preparation of (R=S)-3-cyano-5-methoxy-4-methyl-5H-furan-2-one

(7) from 1,1-dimethoxyacetone (6) and cyanoacetic acid (4) via one-pot domino reactions under the

Knoevenagel conditions.

Scheme 2. Preparation of alkylidene derivatives (Z=E) ethyl 5-amino-4-cyano-3-methyl-5-oxopent-3-

enoate (9) and (2,2-dimethoxy-1-methylethylidene)malononitrile (11).
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ammonium acetate (1.00 g) and acetic acid (5mL) using the Dean–Stark trap.
1-Cyanoacetone can easily be prepared from commercially available 3-aminocroto-
nonitrile by a known procedure.[10] This condensation afforded product 1 as a
colorless powder (5.15 g, 69%) (Scheme 1). The mass spectrometry and other
spectroscopic data are in agreement within experimental error for 5-cyano-4,6-
dimethyl-2H-pyran-2-one (1).[8]

Previously, we reported the Knoevenagel reactions of 1,1-dimethoxyacetone
(6) with 1-cyanoacetone (3) and 2-cyanoacetamide (8).[9] We anticipated that the
Knoevenagel condensation of ethyl acetoacetate (2) with 1-cyanoacetone (3) should
provide a general synthetic route to the intermediate a,b-unsaturated ketone (A),
which is expected to be converted easily into 5-cyano-4,6-dimethyl-2H-pyran-2-one
(1) by intramolecular cyclization.

It is interesting that both ethyl acetoacetate (2) and 1-cyanoacetone (3) have
active methylene functions and both are possible keto donors. 5-Cyano-4,6-dimethyl-
2H-pyran-2-one (1) is obtained in a very simple one-pot domino-Knoevenagel process
in 69% yield. This result indicates that ethyl acetoacetate (2) reacts as a keto donor and
1-cyanoacetone (3) reacts as an active methylene compound. The reaction has occurred
via the intermediacy of an E=Z mixture of ethyl 4-cyano-3-methyl-5-oxohex-3-enoate
(A). The Z isomer of intermediate (A) has two functional groups, namely ethyl ester
and carbonyl oxygen in close proximity, and leads to the cyclization (enol-
lactonization) with the elimination of one molecule of ethanol to form an a-pyrone
ring. The carbon–carbon double bond formed between two reactants in the intermedi-
ate (A) becomes the 4–5 bond in the final heterocycle. The E isomer can undergo an
acid-catalyzed E=Z isomerization, leading to the thermodynamically stable product
1. It is to be expected that this domino-Knoevenagel process has a broad scope to pre-
pare a 5-cyano-2H-pyran-2-one system with different substituents at positions 3, 4, and
6 using various b-keto esters and cyanomethyl ketones.

The Knoevenagel reaction of ethyl acetoacetate (2; 6.50 g, 50mmol) and
cyanoacetic acid (4; 4.25 g, 50mmol) afforded a Z=E (1:1) mixture of ethyl
4-cyano-3-methylbut-3-enoate (5) as a light yellow oil in 61% yield. The 1H NMR
of product 5 is in agreement with the proposed structure, which showed two signals
for the CH2 group corresponding to Z=E isomers at 3.17 and 3.43 ppm and CH sig-
nal at 5.29 ppm. Similarly, in 13C NMR the CN and the C=O signals of product 5
are noticed at 115.9 and 168.3 ppm, respectively.

We conclude that (Z=E)-ethyl 4-cyano-3-methylbut-3-enoate (5) is obtained via
the intermediate (Z=E)-2-cyano-5-ethoxy-3-methyl-5-oxopent-2-enoic acid, which
undergoes decarboxylation faster than possible intramolecular cyclization. It has
been mentioned that in the Knoevenagel condensation of carbonyl compounds
and carboxylic acids, a decarboxylation may take place.[11]

The condensation of commercially available 1,1-dimethoxyacetone (6; 5.90 g,
50mmol) and cyanoacetic acid (4; 4.25 g, 50mmol) in toluene (250mL) for 2 h at
120–130 �C in the presence of ammonium acetate (1.00 g) and acetic acid (5mL)
afforded a product 7 as a light yellow oil in 86% yield. Based on the spectral data,
the structure of product 7 is assigned to 3-cyano-5-methoxy-4-methyl-5H-furan-2--
one (7) (Scheme 1).

The m=z value of the parent peak of product 7 is 153.1350, which in agreement
with the calculated value of 153.13538 for the formula C7H7NO3. The

13C NMR of
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product 7 showed seven signals corresponding to 14.09 (CH3), 57.95 (OCH3), 103.8
(CH), 107.7 (NC�C=), 109.7 (CN), 164.1 (C=O), and 174.2 (CH3�C=) ppm. The
greater downfield shift (d¼ 174 ppm) of C-4 relative to the carbonyl carbon at
d¼ 164 ppm is due to the extended conjugation with the two electron-withdrawing
groups at the double bond in the product 7. The 1H NMR of product 7 is in com-
pliance with the proposed structure, showing peaks at 2.31 ppm for CH3 at position
4 and at 3.65 and 5.81 ppm for OCH3 and CH at position 5. Also, 1H NMR assign-
ments were checked by 1H–13C correlation and 1H correlation spectroscopy (COSY)
spectra.

To our knowledge, the product 7 with a stereogenic center at position 5 has not
been described previously in the literature. The reaction occurred via the intermedi-
acy of the E=Z mixture of 2-cyano-3,3-dimethoxy-but-2-enoic acid. This is the
expected intermediate in which an acid-catalyzed E=Z isomerization takes place.
The intermediate Z isomer, with the dimethoxy acetal function and carboxylic acid
function in close proximity, leads to the cyclization to form a butenolide ring with
the elimination of one molecule of methanol. The excellent yield (86%) of the pro-
duct 7 shows that the acid-catalyzed condensation of 1,1-dimethoxyacetone (6)
and cyanoacetic acid (4) to obtain 3-cyano-5-methoxy-4-methyl-5H-furan-2-one
(7) competes very well with the loss of CO2 in the intermediate.

The number of known 5-methoxy substituted (5H)-furan-2-ones is very limited.
(5H)-Furan-2-one derivatives often serve as useful synthetic intermediates in the
stereoselective construction of substituted c-butyrolactones via conjugated addition
or catalytic hydrogenation of double bond.[12]

To test if other functional groups of active methylene compounds besides the
carbonyl group will lead to a domino reaction during the Knoevenagel condensa-
tion, we treated ethyl acetoacetate (2) with 2-cyanoacetamide (8) and 1,1-dimethoxy-
acetone (6) with malononitrile (10) in Scheme 2. In all these cases, only the expected
Knoevenagel alkylidene products (Z=E) ethyl 5-amino-4-cyano-3-methyl-5-oxopent-
3-enoate (9) and (2,2-dimethoxy-1-methylethylidene)malononitrile (11) were isolated
and characterized. This result shows that under the normal Knoevenagel conditions
the nitrile function and the amide function do not undergo further domino reactions.
Alkylidene derivatives 9 and 11 have not been reported previously in the literature.

CONCLUSIONS

In this article, the preparation of 5-cyano-4,6-dimethyl-2H-pyran-2-one (1)
from simple starting materials ethyl acetoacetate (2) and 1-cyanoacetone (3) cata-
lyzed by ammonium acetate=acetic acid via a one-pot domino-Knoevenagel process
has been described. It is to be expected that a whole range of 3, 4, and 6 trisubstituted
5-cyano-2H-pyran-2-ones can similarly be prepared via the domino reactions under
Knoevenagel conditions using various substituted b-keto esters and cyanomethyl
ketones. 2H-Pyran-2-one derivatives often used as building blocks in synthetic
organic chemistry and their fruitful application in a variety of transformations has
been mentioned in the literature.[13]

Similarly, a one-pot domino reaction for the preparation of a new racemic
3-cyano-5-methoxy-4-methyl-5H-furan-2-one (7) from 1,1-dimethoxyacetone (6)
and cyanoacetic acid (4) has been described. The scope of the domino-Knoevenagel
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condensation is very broad, because many different a,a-dimethoxy ketones and
acetic acids with different electron-withdrawing groups are available that will lead
to a 5-methoxy-5H-furan-2-one system with different substitutions at positions 3
and 4. There is also precedent for the reductive elimination of the substituent at
position 5 in these systems that will allow easy access to prepare biologically active
3,4-disubstituted 5H-furan-2-ones.[14,15]

Moreover, a comparison of the reactions with 2-cyanoacetamide (8) and
malononitrile (10) is presented in Scheme 2 that is informative in determining the
relative importance of the a-carbonyl group in the active methylene compounds 3

and 4 for the cyclization under a domino process. As a result, new alkylidene
derivatives (Z=E)-ethyl-4-cyano-3-methylbut-3-enoate (5), (Z=E)-ethyl 5-amino-4-
cyano-3-methyl-5-oxopent-3-enoate (9), and (2,2-dimethoxy-1-methylethylidene)-
malononitrile (11) are obtained.

EXPERIMENTAL

General

Reactions were monitored by using thin-layer chromatography (TLC, on
Merck F254 silica-gel 60 aluminium sheets, 0.2mm): spots were visualized by treat-
ment with an oxidizing spray (2 g of KMnO4 and 4 g of NaHCO3 in 100ml of water).
Column chromatography was performed on Merck silica gel 60. 1H NMR spectra
were recorded on Bruker WM-300 with tetramethylsilane (TMS: d¼ 0.00 ppm) as
internal standard. 1H noise-decoupled 13C spectra were recorded on a Bruker
WM-300 instrument at 75MHz. Electron-impact (EI) mass spectrometry was carried
out using a Jeol JMSSX=SX102A four-sector mass spectrometer, coupled to a Jeol
MS-MP9021D=UPD system program. The sample was introduced via a direct inser-
tion probe into the ion source. Perkin-Elmer Paragon 1000 Fourier transform (FT)–
IR spectrophotometer was used for IR measurement. All other chemicals were
purchased from Aldrich Fluka or Acros Chimica.

5-Cyano-4,6-dimethyl-2H-pyran-2-one (1)

A solution of ethyl acetoacetate (2) (6.50 g, 50mmol), 1-cyanoacetone (3)
(4.14 g, 50mmol), ammonium acetate (1.00 g), and acetic acid (5mL) in toluene
(250mL) was refluxed for 5 h at 100–110 �C using a Dean–Stark trap. The toluene
layer was separated after washing with half-saturated NaCl, dried with MgSO4,
and evaporated in vaccuo to yield a colorless solid of 1 (5.15 g, 69%). 1H NMR
(300MHz, DMSO-d6): d¼ 2.17 (s, CH3), 2.39 (s, CH3), 6.14 (CH) ppm. 13C NMR
(75MHz, DMSO-d6): d¼ 18.26 (CH3), 20.04 (CH3), 110.2 (=C�CN), 116.2 (CH),
116.4 (CN), 150.5 (C=C), 154.9 (C=C), 161.7 (C=O). FT-IR (neat): 2216, 1749,
1652, 1632, 1615 cm�1. Ms (EIþ): m=z (%)¼ 148 (92), 119 (100), 105 (25), 93 (10).

Mixture of (3Z)- and (3E)-Ethyl-4-cyano-3-methylbut-3-enoate (5)

A solution of ethyl acetoacetate (2) (6.50 g, 50mmol), cyanoacetic acid (4)
(4.25 g, 50mmol), ammonium acetate (1.00 g), and acetic acid (5mL) in toluene

ONE-POT, DOMINO-KNOEVENAGEL PROCESS 2543
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(250mL) was refluxed for 7 h at 120–130 �C using the Dean–Stark trap. The toluene
layer was separated after washing with half-saturated NaCl, dried with MgSO4, and
evaporated in vacuo to yield a light yellow oil of 5 (4.65 g, 61%) 1H NMR (300MHz,
CDCl3=TMS) (Z=E, 1:1): d¼ 1.27 (m, 2�CH3), 2.06, 2.34 (s, CH3), 3.17, 3.43 (s,
CH2), 4.26 (m, 2�CH2), 5.30 (br, s, CH) ppm. 13C NMR (75MHz, CDCl3=TMS)
(Z=E, 1:1): d¼ 13.87 (2�CH3), 21.09, 23.04 (CH3), 40.92, 43.14 (CH2), 61.07
(2�CH2), 99.10 (=C�CN), 115.9 (CN), 156.4 (=C�CH3), 168.3 (C=O) ppm.
HRMS calcd. for C8H11NO2: 153.17838; found: 153.1759.

3-Cyano-5-methoxy-4-methyl-5H-furan-2-one (7)

Ammonium acetate (1.00 g) and acetic acid (5mL) were added to a mixture of
1,1-dimethoxyacetone (6) (5.90 g, 50mmol) and cyanoacetic acid (4) (4.25 g,
50mmol) in toluene (250mL). The mixture was refluxed for 2 h at 120–130 �C using
a Dean–Stark trap. The organic solution was washed with half-saturated NaCl sol-
ution. The aqueous phase was again extracted with CH2Cl2 (3� 100mL). The
extracted organic solvents were combined together and dried with MgSO4. The sol-
vent was removed under reduced pressure to yield a yellow oil (6.57 g, 86%). The
product was purified by column chromatography (silica gel 60, ethyl acetate=hexane,
1:3) to yield a light yellow oil of 7 (5.89 g, 77%). 1H NMR (300MHz, CDCl3=TMS):
d¼ 2.31 (s, CH3), 3.65 (s, OCH3), 5.81 (s, CH) ppm. 13C NMR (75MHz, CDCl3=
TMS): d¼ 14.09 (CH3), 57.95 (OCH3), 103.8 (CH), 107.7 (NC�C=), 109.7 (CN),
164.1 (C=O), 174.2 (CH3-C=) ppm. FT-IR: (neat) n¼ 2226, 1776, 1667, 1443,
1390 cm�1. HRMS: calcd. for C7H7NO3: 153.13538; found: 153.1350.

Mixture of (3Z)- and (3E)-Ethyl 5-amino-4-cyano-3-methyl-5-
oxopent-3-enoate (9)

A solution of ethyl acetoacetate (2) (6.50 g, 50mmol), 2-cyanoacetamide (8)
(4.04 g, 50mmol), ammonium acetate (1.00 g), and acetic acid (5mL) in toluene
(250mL) was refluxed for 7 h at 160–170 �C using a Dean–Stark trap. The
toluene layer was separated after washing with half-saturated NaCl, dried with
MgSO4, and evaporated in vacuo to yield a light yellow powder of 9 (7.45 g,
76%). 1H NMR (300MHz, CDCl3=TMS): d¼ 1.29 (t, 3JH-H¼ 7.12Hz, CH3), 2.32
(s, CH3), 3.86 (s, CH2), 4.16 (q, 3JH-H¼ 7.12Hz, CH2), 6.51 (br, NH2) ppm. 13C
NMR (75MHz, CDCl3=TMS): d¼ 13.95 (CH3), 25.96 (CH3), 40.02 (CH2), 61.35
(CH2), 108.4 (=C�CN), 116.2 (CN), 162.7 (C=O), 164.0 (C=O), 168.7 (=C�CH3).
FT-IR (neat) n¼ 3387, 3170 (NH2), 2222 (CN), 1728 (CO2Et), 1695 (C=O), 1609
(C=C) cm�1.

(2,2-Dimethoxy-1-methylethylidene)malononitrile (11)

A solution of 1,1-dimethoxyacetone (6) (5.90 g, 50mmol), malononitrile (10)
(3.34 g, 50mmol), ammonium acetate (1.00 g), and acetic acid (5mL) in toluene
(200mL) was refluxed for 2 h at 100–110 �C. The toluene layer was separated
after washing with half-saturated NaCl, dried with MgSO4, and evaporated
in vacuo to yield a light brown oil of 11 (7.74 g, 93%). 1H NMR (300MHz,
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CDCl3=TMS): d¼ 2.23 (CH3), 3.46 (2�OCH3), 5.09 (CH) ppm. 13C NMR
(75MHz, CDCl3=TMS): d¼ 17.00 (CH3), 55.58 (2�OCH3), 87.19 (=C�CN),
102.4 (CH), 110.4, 110.9 (CN), 174.7 (=C�CH3). FT-IR (neat) n¼ 2230 (CN)
cm�1. HRMS calcd. for C8H10N2O2: 166.07428; found: 166.0752.
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