Communications

Nucleophilic Reactions

DOI: 10.1002/anie.200600227

Trichloromethyl Ketones as Synthetically Versatile Donors: Application in Direct Catalytic Mannich-Type Reactions and the Stereoselective Synthesis of Azetidines^{**}

Hiroyuki Morimoto, Sean H. Wiedemann, Akitake Yamaguchi, Shinji Harada, Zhihua Chen, Shigeki Matsunaga,* and Masakatsu Shibasaki*

The catalytic generation of metal enolates in situ and their use in stereoselective carbon–carbon bond-forming reactions are subjects of vigorous current research.^[1] This strategy is superior in terms of atom economy to conventional methods that employ stoichiometric amounts of strong base.^[2] Although various metal catalysts have proven effective in this regard, and enantioselective variants have been reported during the last decade, nucleophiles have been mostly limited to ketones.^[3] Catalytic generation in situ of metal enolates derived from carboxylic acid derivatives is still a formidable task owing to the high pK_a value of the α protons. The development of a suitably activated carboxylic acid derivative and/or a new catalyst capable of promoting catalytic ester enolate formation in situ would thus be of considerable significance. Recently, Evans et al. reported highly diastereo-

Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

^[*] H. Morimoto, Dr. S. H. Wiedemann, A. Yamaguchi, S. Harada, Z. Chen, Dr. S. Matsunaga, Prof. Dr. M. Shibasaki Graduate School of Pharmaceutical Sciences The University of Tokyo Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan) Fax: (+ 81) 3-5684-5206 E-mail: smatsuna@mol.f.u-tokyo.ac.jp mshibasa@mol.f.u-tokyo.ac.jp

^[**] We thank Prof. S. Kobayashi, H. Kiyohara, and T. Ogino at the University of Tokyo for their kind help in X-ray crystallographic analysis. This work was supported by Grant-in-Aid for Specially Promoted Research and Grant-in-Aid for Encouragements for Young Scientists (B) (for SM) from JSPS and MEXT.

and enantioselective catalytic aldol reactions by using *N*-acyloxazolidinones and *N*-acylthiazolidinethiones as donors.^[4] Shair and co-workers have also developed remarkable diastereo- and enantioselective aldol reactions with malonic acid half-thioesters.^[5] We have in turn contributed an aldol reaction with nitriles.^[6] On the other hand, methods applicable to the direct Mannich-type reaction^[1b] of esterequivalent donors are rare. We previously reported the use of an *N*-acylpyrrole as an ester-equivalent donor in Mannich-type reactions;^[7] however, the reaction was limited to an α -hydroxy-substituted nucleophile. A direct catalytic Mannich-type reaction with an alkyl-substituted ester-equivalent donor has not been reported.^[8] Herein we inves-

tigate the utility of trichloromethyl ketones 1 (Scheme 1) as Mannich donors. A catalytic amount of *p*-MeO-C₆H₄OLi promotes the direct Mannich-type reaction of 1 with high diastereoselectivity (syn/anti = 6:1 - >20:1) and in good yield (up to 96%). Trichloromethyl ketones not only serve as ester and amide synthetic equivalents, but also enable unique transformations. Conversions of Mannich adducts, including the stereoselective synthesis of trisubstituted azetidine-2-carboxylates, are demonstrated herein.

Trichloromethyl carbinols^[9] and trichloromethyl ketones^[10] are versatile building blocks in synthesis. The trichloromethyl group is a good leaving group;^[11] thus, trichloromethyl ketones can be readily

Scheme 1. Possible reaction pathways of trichloromethyl ketones under basic conditions.

converted into carboxylic acids,^[10a] esters,^[10b] and amides.^[10c] Furthermore, the strong inductive effect of the trichloromethyl group lowers the pK_a value of the α protons of trichloromethyl ketones sufficiently to allow catalytic deprotonation. These properties make 1 a promising ester-equivalent donor. Nonetheless, to our knowledge, there are no reports of 1 being used for stereoselective intermolecular carbon–carbon bond-forming reactions, probably owing to stability problems under basic conditions.^[12] The requisite selectivities for utilizing enolates of 1 are summarized in Scheme 1. Careful selection of base and reaction conditions is important to promote the desired catalytic enolate formation a) while preventing undesired haloform C–C bond cleavage^[10] b). It is well-known that Favorskii rearrangements of trichloromethyl ketones readily proceed under basic conditions.^[13] Therefore, the desired intermolecular reaction with electrophiles c) must proceed faster than intramolecular Favorskii rearrangement d). We hypothesized that, in the presence of a suitably activated electrophile, the intermolecular path c) could be favored because the Favorskii rearrangement generates a strained cyclopropanone intermediate.

We investigated Mannich-type reactions of trichloromethyl ketone $1a^{[14]}$ with imines 2a-d bearing different protecting groups (Table 1, entries 1–4) at -40 °C in the

Table 1: Optimization of reaction conditions.

	$Ph H + CCl_{3} + Cccl_{3} + Ccl_{3} + Cccl_{3} + Ccl_{3} + Ccl_{3} + Ccl_{3} + Ccl_{3} + Ccl_{3} + Ccl_{$								
Entry	PG (imine)	Catalyst [mol %]	1 a [equiv]	Additive	<i>t</i> [h]	Yield [%] ^[a]	Product	syn/anti ^[b]	
1	Bn (2a)	10	5	-	24	0	3 aa	_	
2	<i>p</i> -MeOC ₆ H ₄ (2 b)	10	5	-	24	0	3 ba	_	
3	p-Ts (2c)	10	5	-	12	95	3 ca	14:1	
4	Ph ₂ P(O) (2 d)	10	5	-	1	88	3 da	>20:1	
5	$Ph_2P(O)$ (2d)	10	2	_	3	84	3 da	>20:1	
6	$Ph_2P(O)$ (2d)	10	2	M.S. 3 A ^[c]	3	96	3 da	>20:1	
7	Ph ₂ P(O) (2d)	5	2	M.S. 3 A ^[c]	3	95	3 da	>20:1	

[a] Yield of isolated product. [b] Determined by ¹H NMR spectroscopic analysis. [c] 200 mg mmol⁻¹ of **2d** was used. M.S. 3A = 3-Å molecular sieves, PG = protecting group.

presence of p-MeO-C₆H₄OLi (10 mol %) as a base.^[15] With **2a** and 2b, no Mannich adduct was observed (Table 1, entries 1 and 2). Imines 2c and 2d, which bear electron-withdrawing substituents, produced the desired Mannich adducts in good yield and with high syn selectivity (Table 1, entry 3: 12 h, 95 % yield, syn/anti = 14:1; entry 4: 1 h, 88 % yield, syn/anti > 20:1). Because the N-diphenylphosphinovl (N-Dpp) imine 2d had the best reactivity and syn selectivity,^[16] it was used for further optimization. As shown in Table 1, entries 5 and 6, 3-Å molecular sieves were effective in allowing the molar excess of 1a to be decreased while maintaining high reaction yield. The reaction of 1a (2 equiv) proceeded smoothly in the presence of 3-Å molecular sieves, affording the Mannich adduct 3da after 3 h in 96% yield with an excellent d.r. (>20:1). The reaction proceeded equally well with only 5 mol% of base (Table 1, entry 7). The success of the Mannich reaction with 5-10 mol% catalyst loading implies that side reactions such as the Favorskii rearrangement, which quenches catalytic base by production of HCl, are negligible.

As summarized in Table 2, Mannich-type reactions proceeded well using various aryl (Table 2, entries 1–4), heteroaryl (Table 2, entries 5–6), alkenyl (Table 2, entry 7), and alkyl^[17] *N*-Dpp imines (Table 2, entries 8–10). In all examples, the reactions were complete within 1–6 h, and good to excellent diastereoselectivity (*syn/anti* = 6:1–>20:1)^[18] was obtained. Notably, the reaction proceeded in good yield when using readily isomerizable aliphatic *N*-Dpp imines. The low pK_a value of **1a**, ascribed to the inductive effects of the Communications

Table 2: Catalytic direct syn-selective Mannich-type reactions of trichloromethyl ketones 1a-1d with N-Dpp imines 2d-2m.^[a]

	$ \begin{array}{c} $	Cl ₃ Cl ₃ Cl ₃ Cl ₃ Cl ₃ Cl ₃ Cl ₃ Cl ₂ Cl ₂	OLi 5) = 1:1 5. 3Å	Ph₂P NF R ¹		Cl ₃	
	2d-m 1a-d (2 equi	v)	<i>syn-</i> 3 (rac)				
Entry	R ¹ (Imine)	R ² (1)	t [h]	Yield [%] ^[b]	3	syn/ anti ^[c]	
1	Ph (2 d)	CH ₃ (1 a)	3	96	3 da	> 20:1	
2	<i>p</i> -Cl-C ₆ H ₄ (2 e)	CH ₃ (1 a)	4	93	3 ea	>20:1	
3	<i>p</i> -Me-C ₆ H ₄ (2 f)	CH ₃ (1 a)	6	89	3 fa	>20:1 ^[d]	
4	<i>p</i> -MeOC ₆ H ₄ (2 g)	CH ₃ (1 a)	5	68	3 ga	>20:1 ^[d]	
5	2-furyl (2 h)	CH ₃ (1 a)	1	88	3 ha	6:1	
6	2-thienyl (2 i)	CH₃ (1 a)	2	89	3 ia	8:1	
7	(<i>E</i>)-PhCH≕CH (2 j)	CH ₃ (1 a)	1	81	3 ja	7:1	
8 ^[e]	cyclohexyl (2k)	CH ₃ (1 a)	2	78	3 ka	$> 20:1^{[d]}$	
9 ^[e]	(CH ₃)CHCH ₂ (21)	CH ₃ (1 a)	3	71	3 la	$> 20:1^{[d]}$	
10 ^[e]	<i>n</i> -Bu (2 m)	CH ₃ (1 a)	3	73	3 ma	$> 20:1^{[d]}$	
				(61) ^[f]			
11 ^[g]	Ph (2 d)	CH ₃ CH ₂ (1b)	2	87	3 db	14:1	
12 ^[h]	Ph (2 d)	PhCH ₂ (1 c)	6	90	3 dc	> 20:1	
13	Ph (2d)	BnO(CH ₂) ₂ (1 d)	1	89	3 dd	11:1	

[a] 2 equivalents of 1 was used unless otherwise noted. [b] Yield of isolated product after column chromatography unless otherwise noted. [c] Determined by ¹H NMR spectroscopic analysis of the crude mixture. [d] Minor isomer was not detected. [e] Reaction was performed in the absence of 3.Å molecular sieves using 1a (5 equiv). [f] Product was isolated by crystallization (CHCl₃/hexane) without chromatography. [g] 3 equivalents of 1b was used. [h] Reaction was performed at -60° C.

trichloromethyl group, allowed chemoselective nucleophilic activation. Furthermore, Mannich adducts are quite crystalline and can be isolated without chromatography after extractive workup. For example, diastereomerically pure **3ma** was isolated in 61 % yield by crystallization of a crude mixture from CHCl₃/hexane (Table 2, entry 10). Besides **1a**, trichloromethyl ketones with longer side chains (**1b** and **1c**) and oxygen functionality (**1d**) were applied (Table 2, entries 11–13); they afforded Mannich adducts in 87–90 % yield with good diastereoselectivity (11:1–>20:1). The Mannich-type reaction of **1c** was performed at –60 °C to prevent side reactions.

A postulated catalytic cycle and a transition-state model that explains the observed *syn* selectivity are illustrated in Scheme 2. *p*-MeO-C₆H₄OLi first deprotonates the α proton of **1**. Trichloromethyl ketones favor the formation of *Z* enolate **II** because of steric pressure from the bulky trichloromethyl group.^[19] The observed high *syn* selectivity is accounted for by the *Z*-enolate transition state **III**. Protonation of **IV** by *p*-MeO-C₆H₄OH regenerates the catalyst and affords **3**.

The synthetic utility of the trichloromethyl ketone moiety was demonstrated by the transformations shown in Scheme 3. Mannich adducts **3da** and **3la** were readily converted into esters **4da** and **4la** in 100% and 94% yield, respectively, by treatment with NaOMe in MeOH for 15 min, during which no epimerization was observed. Treatment of **3da** with NaOH followed by coupling with Gly-OtBu gave amide **5da** in 84%

Scheme 2. Postulated catalytic cycle and transition-state model for syn selectivity.

Scheme 3. Transformations of the trichloromethyl ketone moiety. Reagents and conditions: a) NaOMe, MeOH, $0 \rightarrow 25$ °C, 15 min; b) 1. NaOH, THF/H₂O, 0 °C, 20 min; 2. Gly-OtBu-HCl, HOAt, EDC·HCl, Et₃N, 0 °C \rightarrow RT, 14 h; c) EtSLi, EtSH, THF, 0 °C, 15 min; d) LiAl(OtBu)₃H, THF/CH₂Cl₂, -40 °C, 5 h; e) Zn(BH₄)₂, THF/Et₂O, -78 to -40 °C, 16 h. EDC = 1-ethyl-3 (3-dimethylaminopropyl)carbodiimide.

yield (two steps). The trichloromethyl ketone unit functions not only as a synthetic equivalent for esters and amides, but also as a unique template for further transformations. Treatment of **3da** and **3ka** with basic ethanethiol for 15 min afforded dithianes **6da** and **6ka** in 96% and 93% yield, respectively.^[10d] In this case, the thiol acts as both a nucleophile and a reductant to give synthetically useful protected aldehydes. *syn*-Selective reduction of the Mannich adducts with LiAl(O-*t*Bu)₃H afforded the N-protected amino alcohols **7da** and **7ma**, whereas *anti*-selective reduction with Zn(BH₄)₂ afforded the N-protected amino alcohol **8da**.^[20] The synthetic versatility of **7** and **8** can potentially be utilized in stereoselective transformations as reported by Corey and Link.^[9a,b] Furthermore, we also succeeded in the highly stereocontrolled synthesis of azetidines (Scheme 4). By treating **7da** with aqueous NaOH in 1,2-dimethoxyethane (DME), we obtained the azetidine-2-carboxylic acid **9da**. The

Scheme 4. Stereoselective synthesis of azetidines from trichloromethyl carbinols. Reagents and conditions: a) aq. NaOH, DME, 25 °C, 24 h; b) TMSCHN₂, MeOH/hexane, 25 °C. TMS = trimethylsilyl.

reaction is considered to proceed via a *gem*-dichlorooxirane intermediate.^[9a] Intramolecular ring opening affords the azetidine ring. After conversion into the corresponding methyl esters, methyl azetidine-2-carboxylate **10da** was isolated in 72% yield (two steps).^[21] From **8da**, *all-syn*-substituted methyl azetidine-2-carboxylate **12da** was obtained, albeit in moderate yield (57% in two steps). The relative configuration of **12da** was confirmed by single-crystal X-ray crystallographic analysis (Figure 1).^[21,22] Because stereoselective syntheses of 3,4-*syn*-substituted azetidine-2-carboxylic acids, particularly sterically hindered *all-syn*-substituted azetidines, are rare, the present stereoselective method should prove useful to medicinal chemists studying nonnatural amino acid motifs.^[23]

In summary, we successfully developed a chemoselective catalytic nucleophilic activation of trichloromethyl ketones and applied this method to intermolecular C–C bond-forming reactions. Direct Mannich-type additions of trichloromethyl ketones to various *N*-Dpp imines in the presence of catalytic

Figure 1. X-ray crystallographic structure of azetidine **12da**. Ellipsoids drawn at the 50% probability level.

amounts of a weak Brønsted base proceeded in good yield and high *syn* selectivity (62-96%, *syn/anti* = 6:1->20:1). Transformations of the Mannich adducts formed were demonstrated, including a highly stereoselective synthesis of azetidines. Efforts toward the use of trichloromethyl ketones in conjunction with chiral catalysts in Mannich and other addition reactions are ongoing.

Received: January 19, 2006 Published online: April 5, 2006

Keywords: asymmetric catalysis · azetidines ·

diastereoselectivity · Mannich reaction · trichloromethyl ketones

- For a review of the direct aldol reaction, see: a) B. Alcaide, P. Almendros, *Eur. J. Org. Chem.* 2002, 1595; for reviews of direct Mannich(-type) reactions, see: b) A. Córdova, *Acc. Chem. Res.* 2004, 37, 102; c) M. M. B. Marques, *Angew. Chem.* 2006, *118*, 356; *Angew. Chem. Int. Ed.* 2006, *45*, 348.
- [2] B. M. Trost, *Science* **1991**, *254*, 1471.
- [3] For selected recent examples of direct catalytic asymmetric Mannich-type reactions using metal catalysts and ketone nucleophiles, see: a) K. Juhl, N. Gathergood, K. A. Jørgensen, Angew. Chem. 2001, 113, 3083; Angew. Chem. Int. Ed. 2001, 40, 2995; b) B. M. Trost, L. R. Terrell, J. Am. Chem. Soc. 2003, 125, 338; c) S. Matsunaga, N. Kumagai, S. Harada, M. Shibasaki, J. Am. Chem. Soc. 2003, 125, 4712; d) S. Matsunaga, T. Yoshida, H. Morimoto, N. Kumagai, M. Shibasaki, J. Am. Chem. Soc. 2004, 126, 8777, and references therein.
- [4] a) D. A. Evans, J. S. Tedrow, J. T. Shaw, C. W. Downey, J. Am. Chem. Soc. 2002, 124, 392; b) D. A. Evans, C. W. Downey, J. T. Shaw, J. S. Tedrow, Org. Lett. 2002, 4, 1127; c) D. A. Evans, C. W. Downey, J. L. Hubbs, J. Am. Chem. Soc. 2003, 125, 8706.
- [5] a) G. Lalic, A. D. Aloise, M. D. Shair, J. Am. Chem. Soc. 2003, 125, 2852; b) D. Magdziak, G. Lalic, H. M. Lee, K. C. Fortner, A. D. Aloise, M. D. Shair, J. Am. Chem. Soc. 2005, 127, 7284.
- [6] a) Y. Suto, R. Tsuji, M. Kanai, M. Shibasaki, Org. Lett. 2005, 7, 3757, and references therein; b) N. Kumagai, S. Matsunaga, M. Shibasaki, J. Am. Chem. Soc. 2004, 126, 13632; c) N. Kumagai, S. Matsunaga, M. Shibasaki, Chem. Commun. 2005, 3600.
- [7] a) S. Harada, S. Handa, S. Matsunaga, M. Shibasaki, Angew. Chem. 2005, 117, 4439; Angew. Chem. Int. Ed. 2005, 44, 4365; for other exceptional examples of Mannich-type reactions using readily enolizable substrates, see: malonates and ketoesters as donors: b) M. Marigo, A. Kjærsgaard, K. Juhl, N. Gathergood, K. A. Jørgensen, Chem. Eur. J. 2003, 9, 2359; c) Y. Hamashima, N. Sasamoto, D. Hotta, H. Somei, N. Umebayashi, M. Sodeoka, Angew. Chem. 2005, 117, 1549; Angew. Chem. Int. Ed. 2005, 44, 1525; d) S. Lou, B. M. Taoka, A. Ting, S. E. Schaus, J. Am. Chem. Soc. 2005, 127, 11256; glycine Schiff base as a donor: e) L. Bernardi, A. S. Gothelf, R. G. Hazell, K. A. Jørgensen, J. Org. Chem. 2003, 68, 2583; f) T. Ooi, M. Kameda, J. I. Fujii, K. Maruoka, Org. Lett. 2004, 6, 2397.
- [8] For reactions of alkyl-substituted ketones and aldehydes promoted by organocatalysts, see reference [1b, c]; for selected examples, see: a) B. List, Acc. Chem. Res. 2004, 37, 548; b) W. Notz, F. Tanaka, C. F. Barbas III. Acc. Chem. Res. 2004, 37, 580; c) A. Córdova, Chem. Eur. J. 2004, 10, 1987; d) D. Enders, C. Grondal, M. Vrettou, G. Raabe, Angew. Chem. 2005, 117, 4147; Angew. Chem. Int. Ed. 2005, 44, 4079, and references therein; e) T. Kano, Y. Yamaguchi, O. Tokuda, K. Maruoka, J. Am. Chem. Soc. 2005, 127, 16408, and references therein.
- [9] a) E. J. Corey, J. O. Link, J. Am. Chem. Soc. 1992, 114, 1906;
 b) E. J. Corey, J. O. Link, Tetrahedron Lett. 1992, 33, 3431; c) T. Fujisawa, T. Ito, K. Fujimoto, M. Shimizu, H. Wynberg, E. G. J.

Angew. Chem. Int. Ed. 2006, 45, 3146-3150

Communications

Staring, *Tetrahedron Lett.* 1997, 38, 1593; d) Z. Wang, S. Campagna, K. Yang, G. Xu, M. E. Pierce, J. M. Fortunak, P. N. Confalone, J. Org. Chem. 2000, 65, 1889; e) B. Jiang, Y.-G. Si, Adv. Synth. Catal. 2004, 346, 669; f) R. Bejot, S. Tisserand, L. M. Reddy, D. K. Barma, R. Baati, J. R. Falck, C. Mioskowski, Angew. Chem. 2005, 117, 2044; Angew. Chem. Int. Ed. 2005, 44, 2008.

- [10] a) Haloform reaction: M. B. Smith, J. March, Advanced Organic Chemistry, 5th ed., Wiley, New York, 2001, p. 813; b) B. M. Trost, J. M. Balkovec, M. K. T. Mao, J. Am. Chem. Soc. 1986, 108, 4974; c) J. R. Salim, F. Nome, M. C. Rezende, Synth. Commun. 1989, 19, 1181; d) S. C. Hess, F. Nome, C. Zucco, M. C. Rezende, Synth. Commun. 1989, 19, 3037; e) M. Romero-Ortega, H. Reyes, A. Covarruvias-Zuñiga, R. Cruz, J. G. Avila-Zarraga, Synthesis 2003, 2765, and references therein.
- [11] For systematic studies on the leaving ability of the CCl₃ group, see: a) C. Zucco, C. F. Lima, M. C. Rezende, J. F. Vianna, F. Nome, *J. Org. Chem.* 1987, 52, 5356; b) M. Uieara, C. Zucco, D. Zanette, M. C. Rezende, F. Nome, *J. Chem. Soc. Perkin Trans.* 2 1987, 175; for structural aspects of trichloromethyl ketones, see: c) E. J. Corey, J. O. Link, S. Sarshar, Y. Shao, *Tetrahedron Lett.* 1992, *33*, 7103.
- [12] For exceptional results with methyl trichloromethylacetoacetate and 4,4,4-trichloromethyl-3-oxobutanal as nucleophiles in Knoevenagel condensations, see: a) L. F. Tietze, H. Meier, H. Nutt, *Chem. Ber.* **1989**, *122*, 643; b) J. P. Chupp, L. R. Smith, *J. Heterocycl. Chem.* **1988**, *25*, 1785.
- [13] For recent reports of Favorskii rearrangements and related reactions of acyclic trihalomethyl ketones, including trichloromethyl ketones under basic conditions, see: a) S. Braverman, M. Cherkinsky, E. V. K. S. Kumar, H. E. Gottlieb, *Tetrahedron* 2000, 56, 4521; b) B. Föhlisch, T. Franz, G. Kreiselmeier, *Eur. J. Org. Chem.* 2005, 4687, and references therein.
- [14] For the synthesis of trichloromethyl ketones 1a-d, see: a) E. J. Corey, J. O. Link, Y. Shao, *Tetrahedron Lett.* 1992, 33, 3435, and references therein; although trichloromethyl carbinols were oxidized mainly by using stoichiometric amounts of chromium(vI) reagents in the original report, we utilized the catalytic oxidation method reported by workers at Merck: b) M. Zhao, J. Li, Z. Song, R. Desmond, D. M. Tschaen, E. J. J. Grabowski, P. J. Reider, *Tetrahedron Lett.* 1998, 39, 5323; Swern oxidation is also applicable, see Supporting Information.
- [15] We selected a phenoxide base for its relevance to ongoing studies of the development of catalytic asymmetric reactions with chiral metal phenoxides such as 1,1'-bi-2-naphthol (binol) derivatives. Other bases with low nucleophilicity, such as Li{N-(SiMe₃)₂} (10 mol%), also promoted the Mannich reaction of imine 2d with 1a (5 equiv) at -40 °C in comparable yield (conv. 89%), albeit with lower *syn* selectivity (*syn/anti*=13:1) and longer reaction time (13 h) than the corresponding reactions in Table 1.
- [16] The N-Dpp group is useful because it is readily removed; for a review on the use of N-Dpp imines in organic synthesis, see: S. M. Weinreb, R. K. Orr, *Synthesis* 2005, 1205.
- [17] For the synthesis of enolizable alkyl *N*-Dpp imines 2k-2m, see:
 a) A. Côté, A. A. Boezio, A. B. Charette, *Proc. Natl. Acad. Sci.* USA 2004, 101, 5405;
 b) J.-N. Desrosiers, A. Côté, A. B. Charette, *Tetrahedron* 2005, 61, 6186;
 for related enolizable alkyl *N*-Ts (Ts = *p*-toluenesulfonyl) imines, see: c) F. Chemla, V. Hebbe, J.-F. Normant, *Synthesis* 2000, 75.
- [18] The relative configuration of 3 fa was unequivocally determined by single-crystal X-ray crystallographic analysis;^[22] the relative configurations of 3da and 3la were determined after conversion into known compounds; see Supporting Information.
- [19] For discussions on steric effects of the trichloromethyl group, see: M. B. Smith, J. March, Advanced Organic Chemistry, 5th

ed., Wiley, New York, **2001**, chap. 9, p. 374; see also reference [11c].

- [20] The relative configuration of **8da** was determined by X-ray crystallographic analysis of the corresponding cyclic carbamate; see Supporting Information.
- [21] For the determination of the relative configurations of **10da** and **12da**, see Supporting Information.
- [22] CCDC 295183–295185 (12 da, 3 fa, cyclic carbamate derived from 8 da, respectively) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [23] For the synthesis of azetidine-2-carboxylic acids (L-aze analogues) and their incorporation into peptides, see the review:
 a) F. Couty, G. Evano, D. Prim, *Mini-Rev. Org. Chem.* 2004, 1, 133, and references therein; for selected recent examples, see:
 b) D. Enders, J. Gries, *Synthesis* 2005, 3508, and references therein; c) F. Couty, G. Evano, N. Rabasso, *Tetrahedron: Asymmetry* 2003, 14, 2407; d) S. Hanessian, N. Bernstein, R.-Y. Yang, R. Maguire, *Bioorg. Med. Chem. Lett.* 1999, 9, 1437;
 e) A. P. Kozikowski, Y. Liao, W. Tückmantel, S. Wang, S. Pshenichkin, A. Surin, C. Thomsen, J. T. Wroblewski, *Bioorg. Med. Chem. Lett.* 1996, 6, 2559.