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Carboxylation of carbon nucleophiles under atmospheric pressure
of CO2 as an electrophile is highly valuable as a straightforward
method for the synthesis of carboxylic acids, and development of
its catalytic variant has been a great challenge in synthetic
chemistry.1 Recently several groups including ours reported transi-
tion metal catalyzed carboxylation of less nucleophilic organome-
tallic reagents such as allylstannanes,2 aryl- or alkenylboronic
esters,3 or organozincs;4 however, such methodologies usually
require preparation of these reagents mostly from the corresponding
organic halides. Thus, catalytic generation of nucleophilic organo-
metallic species from easily available unsaturated hydrocarbons
would be highly desirable from the standpoint of the atom
economical synthetic methodology; however, such catalysis is
mostly limited to that based on Ni(0)-promoted oxidative cyclization
of rather specific unsaturated hydrocarbons.5,6 Herein we report a
new approach to the catalytic CO2-fixation reaction through the
generation of σ-allyl palladium species via hydropalladation of
allenes, followed by its nucleophilic addition to CO2 by using a
tridentate silyl pincer-type palladium hydride complex A as the
active catalyst in the presence of an appropriate reducing agent.7,8

We have designed the reaction based on the following expecta-
tions (Scheme 1).9 First, the allylpalladium intermediate B, gener-
ated by hydropalladation of an allene, would take the form of a
σ-allyl complex due to its PSiP-tridentate structure and is expected
to display nucleophilicity for carboxylation.10 Second, the nucleo-
philicity of σ-allylpalladium intermediate B would be enhanced due
to the strong electron-donating nature and trans influence of the
silicon atom at the center of the tridentate pincer backbone.11 Third,
a rather strained square planar structure of the PSiP-linkage tethered
by the benzene ring would facilitate structural change to a trigonal
bipyramidal geometry, allowing coordination of CO2 to realize facile
carboxylation as depicted in C. Finally, the pincer structure of the
complex would retard Pd(0) liberation and avoid side reactions such
as oxidative cyclization of allenes promoted by Pd(0).12

Examination of appropriate reductants was carried out with
3-methyl-5-phenyl-1,2-pentadiene 3a under 1 atm of CO2 in the
presence of 1 mol% of PSiP-Pd triflate complex 1 in several
solvents.13,14 After extensive screening of reaction conditions, the
use of 150 mol% of AlEt3 turned out to be the choice of the reducing
agent, affording the desired �,γ-unsaturated carboxylic acid 4a with
a quaternary carbon center at the R-position of the carbonyl in 88%
yield (Scheme 2).15,16 The catalyst loading could be reduced to
0.5 mol% without decreasing the yield (84% after 48 h). Although
higher temperature was required, ZnEt2 also showed good activity
as a reductant to give 4a in 84% yield at 60 °C.17 γ-Substituted
�,γ-unsaturated carboxylic acid, formed by carboxylation at the
less substituted carbon of the allyl palladium intermediate, was not
observed. The reaction is believed to start with generation of silyl
pincer-type palladium hydride complex A via transmetalation of
AlEt3 to 1 followed by �-hydride elimination. Hydrometalation of
1,1-disubstituted allene preferentially affords less congested σ-allyl

palladium intermediate D, which then undergoes nucleophilic
addition to CO2 at the γ-position of the palladium regioselectively
to give carboxylate palladium complex E. Finally, a transmetalation/
�-hydride elimination sequence regenerates catalytically active
palladium hydride A and releases the carboxylation product as its
Al-salt F (Scheme 2).18

Generality of 1,1-disubstituted allenes was investigated by using
150 mol% of AlEt3 as the reductant in DMF (Table 1). The reaction
of 3-methyl-1,2-butadiene 3b, Ph-conjugated allene 3c, and exo-
vinylidenecycloheptane 3g proceeded smoothly to give correspond-
ing R-quaternary �,γ-unsaturated carboxylic acids in good yield
as a single regioisomer (entries 1-2, 6). Another feature of this
carboxylation reaction is its high compatibility with various
functionalities. Silyl ether 3d, ester 3e, ketal 3i, and carbamate 3h
were successfully converted to the corresponding functionalized
carboxylic acids in moderate to excellent yield by using only 1
mol% of catalyst (entries 3, 4, 7, and 8). More importantly, alkene
and ketone moieties were not affected under the reaction conditions
(entries 5 and 9). High diastereoselectivity was attained when allene
3k was used (entry 10).19 Thus, this carboxylation reaction of 1,1-
disubstituted allenes provided a highly efficient entry to synthetically
useful R-quaternary �,γ-unsaturated carboxylic acids.

Furthermore, this carboxylation was applicable to mono- or 1,3-
disubstituted allenes. Although slight modification of reaction
conditions was required,20 alkyl- or Ph-substituted allenes 5a, 5b,
and 1,3-disubstituted allene 5c reacted smoothly to give R-substi-
tuted �,γ-unsaturated carboxylic acids 6a-c as a major product in
reasonable yield in the presence of 1-2.5 mol% of 1 and 150 mol%
of ZnEt2 at 60 °C (Table 2). Interestingly, careful analysis revealed

Scheme 1. Utilization of Silyl Pincer-Type Pd Complex

Scheme 2. 1-Catalyzed Hydrocarboxylation of Allene
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that a small amount of γ-substituted �,γ-unsaturated carboxylic
acids 7 and R,�-unsaturated acids 8 were obtained, which were
regioisomers in the carboxylation and hydrometalation step,
respectively.

In conclusion, we have developed a novel catalytic hydrocar-
boxylation of allenes by utilizing a silyl pincer-type palladium
complex as the catalyst. This protocol is highly attractive not only
as a CO2-fixation reaction but also as a methodology for the
synthesis of �,γ-unsaturated carboxylic acids due to its wide
generality and high efficiency. Detailed mechanistic studies and
application of this catalysis to other substrates are ongoing in our
group.
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Table 1. Generality of 1,1-Disubstituted Allenes

a 2.5 mol% of 1 was employed. b dr ) 91:9. c Isolated as its methyl
ester after treatment with TMSCHN2.

Table 2. Carboxylation of Mono- or Disubstituted Allenes

a 1.0 mol% of 1 was employed. b Yields were determined as
carboxylic acid without esterification. c E/Z ) 69:31.
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