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ABSTRACT: A novel ruthenium catalyst is introduced 
which contains solely achiral ligands and acquires its chi-
rality entirely from octahedral centrochirality. The con-
figurationally stable catalyst is demonstrated to catalyze 
the alkynylation of trifluoromethyl ketones with very high 
enantioselectivity (up to >99% ee) at low catalyst loadings 
(down to 0.2 mol%).  

Transition metal complexes represent one of the most 
powerful and versatile classes of homogeneous catalysts. 
Applied to asymmetric catalysis, metal ions are typically 
combined with carefully tailored chiral ligands.1 In a more 
simplistic design, only achiral ligands are employed but 
their assembly around the central metal creates metal-
centered chirality2 which is then responsible for the 
asymmetric induction during catalysis.3 We recently real-
ized this approach with the design of bis-cyclometalated 
iridium4 and rhodium5 complexes as chiral Lewis acids 
which provide excellent enantioselectivities and high 
turnover numbers for a variety of reactions. However, at 
the onset of this study it was unclear to what extend this 
design principle is general and applicable to chiral octa-
hedral metal complexes of other elements. In pioneering 

work, Fontecave reported that Λ- and ∆-[Ru(2,9-
dimethyl-1,10-phenanthroline)(MeCN)2]

2+ catalyze the 
oxidation of organic sulfides to their sulfoxides, albeit 
with a maximum of just 18% ee.3a Much higher enantiose-
lectivities for the synthesis of sulfoxides were achieved by 

Ye using chiral-at-metal Λ- and ∆-[Ru(2,2’-
bipyridine)2(pyridine)2]

2+ as recyclable chiral auxiliaries.6 
Hartung and Grubbs reported a chiral-at-ruthenium cata-
lyst for diastereo- and enantioselective ring-
opening/cross-metathesis. The complex contains addi-
tional carbon-centered stereogenicity and catalysis is 
supposed to occur via a trigonal bipyramidal intermedi-
ate.7 Here we demonstrate, that ruthenium complexes 
featuring exclusive octahedral centrochirality can serve as 
highly effective asymmetric catalysts for the enantioselec-
tive alkynylation of trifluoromethyl ketones. 

Our design is shown in Figure 1 and based on a struc-
tural scaffold reported by Hahn and co-workers.8 Ruthe-
nium in the oxidation state +2 is coordinated by two N-(2-
pyridyl)-subsituted N-heterocyclic carbene (PyNHC) bi-
dentate ligands in addition to two acetonitrile ligands.9 
The propeller-type arrangement of the two bidentate lig-

ands provides metal-centered Λ- (left-handed propeller) 

or ∆-configuration (right-handed propeller).  

 

Figure 1. Design of a ruthenium-based asymmetric catalyst 
relying solely on octahedral centrochirality. 
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Figure 2. Synthesis of enantiopure complexes Λ- and ∆-Ru1. 
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The chiral-at-metal ruthenium complex was synthe-
sized by reacting RuCl3 hydrate with the N-(2-pyridyl)-
imidazolium salt 1 in ethylene glycol at 200 °C followed by 
treatment with AgPF6 to afford the racemic complex rac-
Ru1 in 92% yield (see Supporting Information for a single 
crystal X-ray structure of rac-Ru1) (Figure 2).8 This race-
mic mixture was reacted with the chiral salicyloxazoline 

ligand (S)-2 to provide Λ-(S)-3 as a single diastereomer in 
36% yield.10-12 In analogy, using instead the auxiliary (R)-2, 

the complex ∆-(R)-3 was obtained. The individual dia-
stereomerically pure complexes were next treated with 

TFA in MeCN to generate Ru1 as individual Λ- and ∆-
enantiomer. CD spectra of both enantiomers are shown in 
Figure 3 and were used to assign the absolute configura-
tion by comparison with related enantiopure ruthenium 
complexes,13 and confirmed by an X-ray crystal structure 

of a derivative of ∆-Ru1. Revealingly, Λ- and ∆-Ru1 are 
constitutionally and configurationally surprisingly stable. 
At a temperature of 60 °C in THF, after 72 hours no signs 
of isomerization or decomposition could be observed (see 
Supporting Information for more details). 
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Figure 3. CD spectra (0.2 mM in CH3OH) of Λ- and ∆-Ru1. 

After some scouting experiments we found that Ru1 is 
an excellent catalyst for the enantioselective alkynylation 
of trifluoromethyl ketones.14,15 For example, the reaction 
of trifluoroacetophenone (4a) with phenylacetylene (5a) 

in the presence of Et3N (0.2 eq), catalyzed by 3.0 mol% Λ-
Ru1, provides the propargylalcohol (S)-6a with 97% yield 
and 99% ee (Table 1, entry 1). The catalyst loading can be 
reduced down to 0.2 mol% without any loss in yield or 
enantioselectivity (entries 2-4). As to be expected, mirror-

imaged ∆-Ru1 provides the mirror-imaged product (R)-6a 
with otherwise identical performance (entry 5). A refer-

ence catalyst devoid of the 3,5-Me2Ph substituents (Λ-Ru2) 
leads to a reduced enantioselectivity of 97% ee (entry 6), 
confirming the steric role of the substituents at the pyri-
dine ligands. Interestingly, previously reported chiral-at-
metal iridium4 and rhodium5 catalysts only display very 
sluggish reactivity for the alkynylation of trifluoromethyl 
ketones and a diminished enantioselectivity even at cata-
lyst loadings of 3.0 mol% (entries 7 and 8). 

A substrate scope with respect to terminal alkynes is 
shown in Figure 4, providing the propargylalcohols (S)-
6b-m in yields of 66-99% and with outstanding enanti-
oselectivities of 96 to >99% ee. The catalyst tolerates 
equally well phenylacetylenes with substituents in the 

phenyl moiety, 2-ethynylthiophene, the conjugated 
alkenyl acetylene 1-ethynylcyclohexene, aliphatic acety-
lenes, and trimethylsilylacetylene. Typically, catalyst load-

ings of just 0.5 mol% Λ-Ru1 are sufficient except for or-

tho-substituted phenylacetylenes which react more slug-
gish, presumably due to steric reasons.  

Table 1. Initial catalysis experiments
a 
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entry catalyst loading (mol%) t (h) yield (%)
b
 ee (%)

c
 

1 Λ-Ru1 3.0 16 97 99 (S) 

2 Λ-Ru1 1.0 16 93 99 (S) 

3 Λ-Ru1 0.5 16 95 99 (S) 

4 Λ-Ru1 0.2 30 98 99 (S) 

5 ∆-Ru1 0.5 16 95 99 (R) 

6 Λ-Ru2 0.5 16 93 97 (S) 

7 ∆-IrS 3.0 20 15 15 (R) 

8 ∆-RhS 3.0 20 28 93 (R) 

a
 Conditions: 4a and 5a (3.0 eq) with catalyst (0.2-3.0 mol%) 

and Et3N (20 mol%) in THF at 60 °C. 
b 

Isolated yields. 
c
 Enan-

tiomeric excess of 6a determined by chiral HPLC. 

 

Figure 4. Substrate scope with respect to terminal alkynes. 
a
 

1.0 mol% catalyst loading instead. 
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The scope of this reaction with respect to trifluorome-
thyl ketones is outlined in Figure 5. Trifluoroacetophe-
none with different substituents in the phenyl moiety 
provided the corresponding propargylalcohols in high 
yields and with almost perfect enantioselectivity except 
for ortho-methyl trifluoroacetophenone which reacts 
sluggish, reinforcing that the catalyst is sensitive to steric 
effects. It is also noteworthy that an aliphatic trifluorome-
thyl ketone and ethyl trifluoropyruvate are not suitable 
substrate for this catalysis. However, replacing one fluo-
rine of the trifluormethyl group with chlorine by using 2-
chloro-2,2-difluoroacetophenone as the substrate yields 
the corresponding propargyl alcohol in 99% yield and 
99% ee. 

 

Figure 5. Substrate scope with respect to trifluoromethyl 
ketones.

 a 
1.0 mol% catalyst loading instead. 

The here introduced synthetic methodology should be 
very valuable because propargylic alcohols constitute 
highly versatile synthetic building blocks and furthermore 
fluorinated compounds play an increasingly important 
role in drug development.16,17 Searching for an application, 
we turned our attention to Efavirenz,18 a potent HIV-1 
reverse transcriptase inhibitor and a key drug for the 
treatment of AIDS, which contains a quaternary stereo-
center bearing a CF3 and alkynyl group. Carreira reported 
the first catalytic asymmetric conversion of the trifluoroa-
cetylanilide 7 into the key intermediate (S)-8.19,20 However, 
the reaction requires a complicated cocktail out of Et2Zn, 
chiral ligand, and the chiral product. Instead, reacting 7 

with an excess of cyclopropylacetylene with 3 mol% ∆-
Ru1 under otherwise standard conditions provided (S)-8 
in a yield of 58% and with 92% ee. Thus, our novel chiral-
at-ruthenium catalyst provides a very convenient access 
to the chiral building block (S)-8. 

 

Figure 6. Catalytic asymmetric synthesis of (S)-8, a key in-
termediate in the synthesis of Efavirenz. 

Mechanistically, we propose that the reaction proceeds 
through an intermediate ruthenium acetylide which then 
tranfers the acetylide to the presumable ruthenium-
coordinated trifluoroketone.16 The observed fluoromethyl 
ketone substrate coordinates to the ruthenium ahead of 
the acetylide transfer. During this transfer, the metal-
centered chirality provides a suprisingly high asymmetric 
induction, thus reinforcing our catalyst design strategy. 
The rigidity of the propeller-type coordination sphere 
most likely contributes to the observed excellent enanti-
oselectivities but is also responsible for sensitivity to ste-
ric effects. It is worth noting that catalytic amounts of 
base are necessary in this reaction,21 which apparently 
serves as a proton shuttle. 

In summary, we here reported the first example of an 
octahedral chiral-only-at-metal ruthenium complex with 
high catalytic activity and excellent enantioselectivity. 
Key components of this new class of asymmetric catalysts 
are the two N-(2-pyridyl)-subsituted N-heterocyclic car-
bene (PyNHC) chelate ligands.8,9 First, the PyNHC ligands 
are tightly coordinating ligands which provide a strong 
ligand field important for the constitutional and configu-
rational stability of the bis-(PyNHC)Ru unit. Second, the 
propeller shape and high rigidity of the bis-(PyNHC)Ru 
provides an excellent asymmetric induction. And third, 

the strong σ-donating NHC-ligands22 in trans to the coor-
dinated acetonitrile ligands are crucial for labilizing the 
coordinated acetonitrile ligands (trans-effect23) thereby 
ensuring a high catalytic activity.24 The application of this 
novel class of chiral-at-metal ruthenium-based catalysts 
to other catalytic, enantioselective reactions is underway 
in our laboratory. 
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