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ABSTRACT: Enabled by the newly developed ligand, Ming-Phos, the first example of palladium-catalyzed highly enanti-
oselective coupling of racemic propargylic benzoates with organoboronic acids for chiral allenes synthesis has been de-
veloped. Excellent asymmetric induction has been achieved with a decent substrate scope. Synthetic potentials for the
construction of polycyclic compounds with multiple chiral centers have been demonstrated.

INTRODUCTION

As an important class of unsaturated hydrocarbons, al-
lenes are different from alkenes, 1,3-alkadienes, and al-
kynes due to the intrinsic axial chirality of the 1,2-diene
functionality”* and have been drawing more and more
attention from organic chemists,> medicinal chemists,*
and materials scientists.” On the other hand, transition
metal-catalyzed cross coupling reaction of propargylic
alcohol derivatives and organometallic reagents has also
been applied to the syntheses of racemic allene.® So far,
chiral allene syntheses via the chirality transfer strategy
utilizing optically pure propargylic alcohols derivatives
and organometallic reagents as the starting materials
have been relatively well developed.”™ On the other hand,
enantioselective coupling of propargylic alcohol deriva-
tives with hard nucleophiles to afford chiral alkynes has
been reported (Scheme 1, path a).” Such a catalytic enan-
tioselective coupling for chiral allenes syntheses has never
been realized (Scheme 1, path b)."*" Recently, one of the
corresponding authors, Junlinag Zhang, developed a new
type of chiral sulfinamide-phosphine ligands, which have
demonstrated very unique potentials in enantioselective
catalysis.® With the joint efforts of these two groups,”
herein, we are able to conquer this challenge and report
here the first palladium-catalyzed enantioselective cou-
pling reaction of readily available racemic propargylic
alcohol derivatives with organoboronic acids by using
Ming-Phos affording allenes with an excellent enantiose-
lectivity."”

Scheme 1. Transition Metal-Catalyzed Coupling Reac-
tion from Racemic Propargylic Alcohol Derivatives.
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RESULTS AND DISCUSSION

We began our study on the coupling of 1-phenylhept-2-
ynyl methyl carbonate (1a-A) and phenylboronic acid (2a).
Various commercially available chiral ligands were tested
for this reaction in dioxane under the catalysis of
Pd,(dba),»CHC], at the room temperature (Table 1). Un-
fortunately, no allene product was detected with Li-Lig.
The reaction proceeded smoothly to afford (R)-3aa in 76%
NMR yield with L2o as the ligand; however, the enantio-
meric excess was only 2%. SKP ligand L21 could improve
the ee to 35%.

Table 1. Primary Ligand Screening with 1a-A as Sub-
strate.”
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0CO,Me 2mol% Pdy(dba)s"CHCl; | g "
PhB(OH) 8 mol% ligand :\
+ , ——— .
=z Ph dioxane, 1t, 9 h Pr Ph
BT A (R)-3aa
0, OO0 <° & @
PPh, P(3,5-Xyl), o PPh,  MeO PAr,
] O PPh, l O P(3,5-Xyl), o i PPh,  MeO. ! PAr,
[e)
L3 L4 Ar = 4-MeOCgH,
no deslred pdt no deslred pdt no desired pdt no desired pdt no desired pdt
Me><Me
P t-Bu PPhy
O S o o
HH R—/ NH HN
P=t-Bu |
O PPh, PPh, PPhz PhoP
L6 L7
no desired pdt no desired pdt no deslred pdt no des\red pdt
PPhZO

PPh,
O Me~— N N-Me  Me"

‘ NH Phy P PPh, Me
‘Q

LlO L11
no desired pdt no desired pdt

SOk
th% ~NMez @/ Q OO
Ph v@ o M OO OO

L13
no desired pdt

no deslred pdt

e, PPNz P
L14 Me |15 L16 L17 OO
no desired pdt no desired pdt no desired pdt no desired pdt

O :
SN Pr PPh,
e Q
oo CO

PPh,
PPh, Ph,P

L18 L19 L20 L21
no desired pdt no desired pdt 76%, 2% ee 23%, 35% ee

2 The reaction was conducted with 1a-A (0.5 mmol), 2a (0.75 mmol), Pd,(dba)3*CHCI3 (2.0 mol%), and ligand (8 mol%)
in dioxane (2 mL) at r.t. under Ar atmosphere. Tthe yield was determined by 'H NMR analysis and ee value was
determined by HPLC analysis.

To our delight, Ming-Phos L22 could serve as the ligand
to yield 44% of (R)-3aa with 23% ee (Table 2). Benefitted
from the easy synthesis of Ming-Phos, we designed a se-
ries
Table 2. The First Round Screening of Ming-Phos Lig-
ands with 1a-A as Substrate.”

0COM 2 mol% Pdy(dba)g*CHCl;
2He 8mol% Ming-Phos =~ "% H
" Ph  + PhB(OH) ™
nB dioxane, 35 °C, 16 h Ph Ph
1a-A 2a (R)-3aa
Ar Q
H
PPh, L24
Ming-Phos 44%, 23% ee 40%, 24% ee 93%, 1% ee
OMe MeO
L25 L26 L27 L28

44%, 24% ee 41%, 17% ee 97% , 0% ee

N Ny

L29 L31 L32
47% , 30% ee 59% 6% ee 37% , 35% ee 34%, 42% ee

55%, 31% ee

@ The reaction was conducted with 1a-A (1.0 mmol), 2a (1.2 mmol), Pd(dba)3*CHCI3 (2.0
mol%), and ligand (8 mol%) in dioxane (2 mL) at 30 °C under Ar atmosphere. The yield
was determined by "H NMR analysis and ee value was determined by HPLC analysis.

of Ming-Phos with different substituents and examined
their performances in this asymmetric coupling reaction
(Table 2). The efficiency of para- or meta-methyl substi-
tuted Ming-Phos (L22 and L23) was similar. The ortho-
methyl substituted L24 could afford 93% of allene product
(R)-3aa, however, the ee was only 1%. para-Methoxy-
substituted Ming-Phos L26 could improve the ee to 31%.
The performance of ortho-methoxy-substituted L28 was
similar to L24. It’s obvious that para-substituent is more
efficient for this asymmetric transformation. Other para-
substituents, such as OEt, t-Bu, Ph, and F were then stud-
ied, Ming-Phos L32 could afford 34% of (R)-3aa with 42%
ee.

Various palladium catalysts were then screened with
L32 as the ligand: No expected allene product was formed
with PdCl,, [Pd(mr-allyl)Cl],, and [Pd(rm-cinnamyl)Cl], (Ta-
ble 3, entries 1-3); Lower yields were obtained with
Pd(OAc),, Pd(acac),, or Pd(OTf), (Table 3, entries 4-6);
among Pd(o) catalysts, such as Pd(dba),, Pd(dmdba),, and
Pd,(dba),*CHCl;, Pd(dmdba), was the best affording 26%
of (R)-3aa with 46% ee (Table 3, entry 8). With the opti-
mal palladium catalyst in hand, we studied the solvent
effect (Table 4). Most of the examined ether solvents
could afford (R)-3aa in 22-68% yields with 28-54% ee (en-
tries 1-7). No improvement was obtained when ethyl ace-
tate or chlorine-containing solvents, such as DCM and
DCE, was applied (entries 8-10). Moderate yield and enan-
tioselectivity were obtained when toluene was used (entry
11); c-hexane was the best in terms of the enantioselectivi-
ty (entry 12). With this information, we went back to tune
the structure of Ming-Phos again (Table 5) with the para-
position being substituted with Me (L22), OMe (L26), t-
Bu (L30), Ph (L31), and F (L32). L26 was identified to be
the best. Ligands L33 and L34 with 1- or 2-naphthyl as the
Ar group failed to give better results.

Table 3. The Effect of Palladium Catalysts.”

5 mol% [Pd]

QCOMe 10 mol% L32 n-Bu H
n-Bu Z + PRBOr: dioxane, 30 °C, 24 h Ph A\Ph

1a-A 2a (R)-3aa
Entry [Pd] T%ﬁif'&ﬁf (R)f";i:f(%)

1 PdCl, / /

2 [Pd(n-allyl)Cl], / /

3 [Pd(n-cinnamyl)Cl], / /

4 Pd(OAC), 35 26

5 Pd(acac), 33 19

6 Pd(OTf), 17 14

7 Pd(dba), 50 26

8 Pd(dmdba), 26 46

9 Pdydba)sCHCl; 61 26

2 The reaction was conducted with 1a-A (0.5 mmol), 2a (1.0 mmol),
palladium source ([Pd] 5 mol%), and L32 (10 mol%) in dioxane (2.0
mL) at 30 °C under Ar atmosphere. The yield was determined by
"H NMR analysis and ee value was determined by HPLC analysis.
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Table 4. The Effect of Solvent.”

5 mol% Pd(dmdba),

QCOMe 10mol%L32  "MBU H
P PhB(OH), ———————— >'::\
-Bu solvent, 30 °C, 24 h Ph Ph
1a-A 2a (R)-3aa
Entry solvent T}%ﬁiflg’ A’o)f ( R)_e;:f(% )
1 Et,0 22 46
2 DME 30 33
3 THF 68 28
4 2-MeTHF 40 35
5 CPME 26 54
6 MTBE 62 38
7 dioxane 26 46
8 EtOAc 50 36
9 DCM 22 29
10 DCE 28 28
1" toluene 48 48
12 c-hexane 29 67

2 The reaction was conducted with 1a-A (0.5 mmol), 2a (1.0 mmol),
Pd(dmdba), (5 mol%), and L32 (10 mol%) in solvent (2.0 mL) at 30 °C
under Ar atmosphere. The yield was determined by 'H NMR analysis and
ee value was determined by HPLC analysis.

Reducing the loading of 2a to 1.2 equiv led to the drop
of yield and a higher ee of 87% at a concentration of 0.067
M (Table s, footnote b). Interestingly, after trial and error,
we found that with a mixed solvent of c-hexane and
MTBE (41) the reaction afforded (R)-3aa in 24% yield
with 76% ee in the presence of 0.5 equiv of water (see
Table S1 in supporting information for more details). The
yield could further improve to 44% when 2.5 mol% of

Pd,(dba), was used instead of Pd(dmdba),.

Table 5. The Second Round Screening of Ming-Phos
Ligands with Pd(dmdba),.”

0CO,Me 5 mol% Pdfdmdba)Q n-Bu H
10 mol% Ming-Phos :\‘

Ph + PhBOH), ——— >
Z c-hexane, 30°C, 241 PH Ph

1a-A 2a (R)-3aa

\(©/ Me \(©/OM6 \(©/ t-Bu
: PPh; L22 L26 L30

31%, 69% ee

37%, 69% ee

Ming-Phos

24%, 74% ee
14%, 87% ee®

NodNe g ee
L31 L32 L33 L34

36%, 51% ee 32%, 69% ee 28%, 72% ee 27%, 67% ee

2 The reaction was conducted with 1a-A (0.5 mmol), 2a (1.0 mmol), Pd(dmdba), (5.0 mol%),
and Ming-Phos (10 mol%) in c-hexane (1 mL) at 30 °C under Ar atmosphere. The yield was
determined by 'H NMR analysis and ee value was determined by HPLC analysis.
b The reaction was conducted with 1.2 equiv of 2a at a concentration of 0.067 M.

Then we turned our attention to the effect of leaving
group (Table 6). When benzyl carbonate was used instead
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of methyl carbonate, the yield of (R)-3aa was similar but
the ee dropped to 63% (Entry 2). We were pleased to
found that the enantiomeric excess was further improved
to 80% with benzoate as the leaving group (Entry 3). 1-
Naphthoate could further increase the ee to 82%, unfor-
tunately the yield dropped to 18% (Entry 4). Other pro-
pargylic carboxylates failed to improve the enantioselec-
tivity (Entries 5 and 6). The yield was improved to 96%
when 5 mol% of Pd,(dba),*CHCI; and 10 mol% of L26 were
applied (entry 7).

Table 6. The Effect of Leaving Group.”

0

OAR 2.5mol% Pdy(dba); .y H

10 mol% L26 s
/ Ph " PO T camTeE=1 o e
n-Bu 1 2a 0.5 equiv H,0, rt (R)-3aa
Entry R T;%iﬁ':'&ﬁf (R)geagf(%)

1 OMe 44 74

2 OBn 47 63

3 Ph 24 80

4 1-naphthyl 18 82

5 2-thienyl 33 71

6 Ad 7 77

7 Ph 9% 73

2 The reaction was conducted with 1 (0.1 mmol), 2a (0.12 mmol), Pd,(dba);
(2.5 mol%), L26 (10 mol%), and H,O (0.05 mmol) in c-Hex’MTBE (1.2
mL/0.3 mL) at rt under N, atmosphere. The yield was determined by "H
NMR analysis and ee value was determined by HPLC analysis. ® 1 (0.1
mmol), 2a (0.05 mmol), and Pd,(dba)3*CHCI3 (5.0 mol%) were used.

Based on these data, the structure of Ming-Phos was
tuned for the third time (Table 7). p-Oi-Pr (L35), SMe
(L36), and NMe, (L37) did not improve the enantioselec-
tivity. Poly-substituted ligands L38-L4o also failed. We
also tried the ligand with electron-withdrawing CF; sub-
stituent (L41), but no desired allene product was obtained.
The ligand with an ethyl group L42 was also examined,
however, only 7% ee of (R)-3aa was obtained. With 1-
naphthyl substituent the substituent effect of the aryl ring
linked to phosphorous atom was studied (L43 to L45) and
4,5-dimethoxyl substituted Ming-Phos L45 was found to
be the best with an ee of 93%. Further changing the 1-
naphthyl to 4-methoxy phenyl (L46) led the reaction to
afford (R)-3aa with 90% NMR yield and 9o% ee. When
Pd,(dba),*CHCI; was replaced with Pd(dmdba),, (R)-3aa
was formed in 61% yield with 95% ee (entry 1). The yield
was improved to 73% by increasing the water to 2 equiva-
lents (entry 2). As a control experiment (R)-3aa was only
obtained in 58% yield with 84% ee in the absence of water
(entry 3), which demonstrated the importance of water.
Further increasing 1a to 2.5 equivalents led to the optimal
reaction conditions: 10 mol% of Pd(dmdba),, 12 mol% of
L46, 2.5 equiv of 1a, and 2.0 equivalent of water in c-
Hex/MTBE at room temperature affording the desired
allene (R)-3aa in 84% NMR yield with 93% ee.
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Table 7. The Third Round Screening of Ming-Phos
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Ligands with 1a as Substrate.

5 mol% Pd,(dba);*CHCIl;

form the corresponding trisubstituted chiral allenes.
There is no obvious influence on the steric effect since
aryl boronic acids bearing the methyl group at the ortho-,
meta-, and para-position of the aryl group all afforded the
desired products with high ee ((R)-3ab to (R)-3ad). Aryl
boronic acids substituted with different halides are suita-
ble substrates for this transformation ((R)-3af to (R)-3ah).
2-Naphthyl and heteroaryl boronic acids were also appli-
cable, affording products (R)-3ai to (R)-3ak with high
enantioselectivies. Moreover, alkenyl boronic acids also
worked well in this reaction, affording the desired en-
allene products (R,E)-3al in 67% yield with 92% ee and
(R,E)-3am in 71% yield with 93% ee. The reaction is ame-
nable to the cyclic alkenyl boronic acids by furnishing the
corresponding products with excellent enantioselectivies
((R,E)-3an and (R,E)-3a0). However, no desired allene
product was observed when alkyl (R = Me or cyclopropyl)
boronic acid was applied.

Scheme 3. Scope of Boronic Acids.”

10 mol% Pd(dmdba),
OBz 12 mol% L46

n-Bu H
2.0 equiv H,O "
+ RB(OH), =
/ Ph c-HexIMTBE = 4/1 R Ph
mBUT cta 2 23°C, Ny, 24 h (R)-3

Page 4 of 10

QB2 10 mol% Ligand n-Bu>: H
PhB(OH): =
Ph + 2
/\ H,0 (1.0 equiv), c-Hex’/MTBE = 4:1 Ph Ph
nBuT 4 2a Ar 1t 24 h (R)-3aa
Oi-Pr SMe NMe, ~0
HE Y =9 © g
.S, -S., .S .S,
N~ "t-Bu N~ “t-Bu N°" “t-Bu N~ “tBu
H H H H
PPh, PPh, PPh, PPh,
L35 L36 L37 L38
quantitative, 70% ee 84%, 58% ee 96%, 66% ee 46%, 65% ee
OMe Me,_ Me
+Bu tBu FsC CF,
O o x
T 0 o9 O S
A ’ ) ‘. _S. N""t-Bu
N/S “t+Bu N/S “t-Bu N S “t-Bu ©\AH
H H H PPh,
PPh, PPh, PPh,
L39 L40 L4 L42
64%, 51% ee 48%, 4% ee trace 72%, 7% ee
OMe
MeO. : (‘s‘) i ‘cs‘) MeO. : (‘s)‘ MeO. H g
© Nty O Nt N B N~ tBu
H ( it H it
PPh, o PPh, MeO PPh, MeO PPh,
L43 L44 L45 L46
86%, 78% ee 74%, 60% ee 50%, 93% ee 90%, 90% ee
OMe Entry Further varations® (R)-3aa
1 10 mol% Pd(dmdba), 61%, 95% ee
10 mol% Pd(dmdba), o ono
eo H (‘S)‘ 2 2 equiv H,0 73%, 94% ee
©f S, 10 mol% Pd(dmdba);
N gl=] 2
]@\AH tBu 3 without H,0 58%, 84% ce
MeO PPhy c 10 mol% Pd(dmdba), o o
La6 4 JequivH,0,25equivia 4% 93%ee

2 The reaction was conducted with 1a (0.1 mmol) and 2a (0.05 mmol), Pdy(dba)3*CHCI; (5 mol%), ligand (10
mol%), and H,O (0.05 mmol) in c-Hex/MTBE (1.2 mL/0.3 mL) at r.t. under N2 atmosphere. The yield was
determined by 1H NMR analysis and ee value was determined by HPLC analysis. ® Pd(dmdba), (10 mol%)
and L46 (12 mol%) were used. ® The reaction was conducted with 1a (1.25 mmol) and 2a (0.5 mmol).

Ming-Phos (S,Rs)-L46 was easily synthesized on a gram
scale from commercial available  2-bromo-4,5-
dimethoxybenzaldehyde in three steps (Scheme 2). Pd-
catalyzed coupling with diphenylphosphine followed by
condensation with (R)-tert-butansulfinamide would form
the (R)-sulfinyl imine. Subsequent addition reaction of (4-
methoxyphenyl)magnesium bromide to 10 mmol of the
(R)-sulfinyl imine afforded 4.80 g of (S,Rs)-L46 in 85%
yield.

Scheme 2. Synthesis of (S,R;)-L46.

o
1.3 equiv PhyPH HoN"""t-Bu i
M !
eo]@f\) 0.7 mol% Pd(PPhy); MeOD\Ao (1.1 equiv) MEOD\A\N Sutpu
-7 mol% PA(PPhal _ (tequy)
MeO Br 1.0 equiv EtzN MeO PPh, 2.0 equiv Ti(Oi-Pr)g ey PPh,
toluene, reflux 83% THF, 50 °C 80%
OMe
2
MeO <& MBI ThF, .48°C R
-Bu
MeO PPh, MeO ]@\ﬁ f
MeO PPh,
10 mmol (S.Rg)-L46
85%, 4.80 g

With the optimal conditions in hand, we next investi-
gated the generality of the reaction substrates. First, the
reactivity of the different boronic acids was tested for the
reaction with 1a (Scheme 3). A variety of organoboronic
acids with electron-neutral, electron-rich, and electron-
deficient aryl moieties all reacted smoothly with 1a to

n-Bu H n-Bu H n-Bu H n-Bu H
-:\ -:'\ .“\ -4'\
Ph Ph Ph Ph
Me Me
(R)-3aa (R)-3ab (R)-3ac® M€ (R)-3ad
74%, 93% ee 54%, 93% ee 75%, 90% ee 67%, 93% ee
n-Bu, H n-Bu H n-Bu, H n-Bu H
Ph Ph Ph Ph
t-Bu (R)-3ae F (R)-3af Cl (R)-3ag Br (R)-3ah

65%, 94% ee 72%, 91% ee 61%, 92% ee 55%, 93% ee

n-Bu H n-Bu H n-Bu H n-Bu H
o:'\ -:'\ o -:\
Ph — Ph S { Ph \ Ph
§ ) 8 <
Q n-Pr
(R)-3ai (R)-3aj (R)-3ak (R E)-3al
64%, 94% ee 28%, 94% ee 23%, 92% ee 67%, 92% ee
n-Bu _\H n-Bu H n-Bu H
=\ .:‘\ = n-Bu H
(™ ™ T s
R Ph
Ph
(R,E)-3am°® (R.E)-3an (R,E)-3a0%¢ R = Me or cyclopropyl

71%, 93% ee 68%, 94% ee 38%, 90% ee not observed

2 The reaction was conducted with 1.25 mmol of 1a, 0.5 mmol of 2, 10 mol% of Pd(dmdba),, 12
mol% of L46, and 1.0 mmol of H,O in 12 mL of cyclohexane and 3 mL of methyl tertiary-butyl
ether at 23 °C for 24 h under N, atmosphere.  The reaction was carried out at 30 °C for 18 h. ©
The NMR yield is presented with CH,Br; as internal standard. The compound is unstable and
characterized by converting to the corresponding cyclic products shown in Scheme 7. 930 h.

Next, we studied the substrate scope of propargylic al-
cohol derivatives (Scheme 4). Ortho-methyl substituted
(R)-3ba was obtained with 69% ee while meta- or para-
methyl substituted (R)-3ca and (R)-3da in 90~01% ee,
indicating that the steric hindrance has a great effect on
the enantioselectivity. Various functional groups, includ-
ing halogens ((R)-3ea to (R)-3ga) and ester ((R)-3ha) are
compatible. R" group could be carbon chain substituted
with functional groups, such as halogen ((R)-3ja) and C=C
bond ((R)-3ka and (R)-3kn). The absolute configuration
of the products was established via the specific optical
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rotation of (R)-3kn.” For the substrates with R*being an
alkyl group were also studied, however, no corresponding
allene products were obtained ((R)-3lg and (R)-3ma). We
tried to synthesize tetra-substituted allenes via the devel-
oped protocol by subjecting the racemic tertiary propar-
gylic benzoate (1) and phenylboronic acid (2a) to the
optimal conditions, however, no desired product was ob-
served. It is noteworthy that excellent regioselectivity was
achieved in all these succeeded cases without observing
the formation of any alkyne product.”

Scheme 4. Scope of Propargylic Derivatives.”

10 mol% Pd(dmdba),

OBz 12 mol% L46 Rt RS
2.0 equiv H,0 "
Age + RBOH), ——S D =
" Z Rs c-Hex/MTBE = 4/1 R R2
RY raca 2 23°C, Ny, 24 h (R)-3
n Bu>: H nfBu>: H nfBu>: H n Bu>: H
Ph Ph Ph Ph
Me Me
(R)-3ba (R)-3ca (R)-3da Me (R)-3ea F
69%, 69% ee 63%, 91% ee 71%, 90% ee 81%, 92% ee
n-Bu H n-Bu H n-Bu>: H
Ph>: Ph>: PH
4\
(R)-3fa cl (R)-3ga Br (R)-3ha  CO,Me R -3ia
91%, 92% ee 82%, 92% ee 52%, 90% ee 65% 92% ee
Ph H
cl
(R)-3ja (R)-3ka (R)-3kn
82% 90% ee 7%, 94% ee 65%, 95% ee not observed
n—Bu>: H n-Bu>: Me
o« .:\
Ph 4\~B n Ph Ph

not observed not observed

2 The reaction was conducted with 1.25 mmol of 1a, 0.5 mmol of 2, 10 mol% of Pd(dmdba),, 12
mol% of L46, and 1.0 mmol of H,O in 12 mL of cyclohexane and 3 mL of methyl tertiary-butyl ether
at 23 °C for 24 h under N, atmosphere.

In order to unveil of the role of each chiral center in
Ming-Phos for enantiocontrol, the remaining three iso-
mers of (S,Rs)-L46 were synthesized. As expected, when
the enantiomeric ligands (S, Rs)-L46 and (R, Sg)-L46 were
applied, both enantiomers (R)-3aa and (S)-3aa could ob-

tained with 93% and 94% ee, respectively (Scheme 5a & b).

(R)-3aa and (S)-3aa were afforded with a lower ee of 89%
ee when the diastereomeric ligands (S, Ss)-L46 and (R,
Rs)-L46 were used (Scheme s5c¢ & d). These data led to the
conclusion that the configurations of these two chiral
centers also helped to ensure the observed excellent en-
antioselectivity.

Scheme 5. Ligand Effect on Enantioselectivity of the
Product.

Journal of the American Chemical Society

Meo SN tBu
H
MeO PPh,

n-l Bu H S,Rs)-L46 (R,S;)-L46
(SR >: #
h phm\a 55 /m
(R)-3aa with (S,R)-L46 with (R, S)-L46

(S)-3aa
Z 77%, 94% ee
n-BU” rac1a
standard conditions
d\  with (RRy)-L46 "'BU>: A
Otfe PH Ph
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The synthetic potentials of the alkenyl allenes (R,E)-3al
and 3a0 have been demonstrated via their Diels-Alder
reaction with N-methylmaleimide and maleic anhydride
to afford bicyclic products 4, 5, and 6 with three continu-
ous chiral centers with excellent enantioselectivities and
diastereoselectivities (Scheme 6).”* The absolute configu-
rations in these bicyclic products were established by X-
ray single crystal diffraction study. Moreover, the one-pot
strategy could also be applied for the synthesis of tricyclic
compounds 7 and 8 from the cyclic alkenyl boronic acid
with an excellent diastereoselectivity.

Scheme 6. Diels-Alder Reaction of En-Allene (R, E)-3al
to (R, E)-3a0 with Dienophiles.
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b One-pot to achieve tricyclic compounds
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MECHANISTIC STUDIES AND DISCUSSION

In addition, we found the ee of recovered benzoate 1a
after the complete reaction was 35%, indicating that the
reaction was mostly a dynamic kinetic resolution (Scheme
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7a). To gain insight into the mechanism, the relationship
between the ee value of L46 and that of 3aa was investi-
gated (Scheme 7b). A positive non-linear effect was ob-
served at both lower” and higher conversions, which in-
dicates that more than one Ming-Phos L46 may coordi-
nate to the palladium atom.*** However, further studies
are needed to clarify the nature of the key intermediates.

Scheme 7. Mechanistic Studies.
a) Ee of recovered 1a
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Based on these data and literature, a mechanism is pro-
posed as shown in Scheme 8a. L*,Pd(0) (L* = L46) would
undergo Syz2-type anti-oxidative addition’ with (S)- or
(R)-enantiomer in the racemic propargylic benzoate 1 to
give the same allenylic palladium intermediate (R,)-I
through o-n-c rearrangement23 of (S,)-Ivia the intermedia-
cy of n?-I as shown in Scheme 8b. Due to the ee value of
the recovered 1a, there should be a rate difference for step
1a and step 1b. The benzoate anion may be protonated
with water to generate Pd hydroxide intermediate II,7%7
which may undergo easier transmetalation with boronic
acid to form the intermediate III. Reductive elimination

of allenylic intermediate III affords the allene product 3
and regenerates the catalytically active Pd(o) complex.
The flexible coordination nature of the ligand L46 invited
more than just one ligand in the catalytic cycle, which led
to the observation of positive non-linear effect shown in
Scheme 7b.

Scheme 8. The Proposed Mechanism

a) Proposed catalytic cycle
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CONCLUSION

In summary, we have developed the first asymmetric
coupling between propargylic derivatives and organobo-
ronic acids for the synthesis of chiral allenes. It is a new
addition to the family of catalytic asymmetric syntheses of
allenes without using stoichiometric amounts of chiral
starting materials: Enabled by the newly developed Ming-
Phos, this Pd-catalyzed reaction proceeds efficiently un-
der mild conditions with a decent compatibility of syn-
thetically usefully functional groups. Preliminary mecha-
nistic studies demonstrated that the reaction was mostly
dynamic kinetic resolution. Further studies in this area
including the exact role of water on the reaction are being
actively pursued in this laboratory.
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