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ABSTRACT: The recombination of electron-hole pairs severely detracts the efficiency of photocatalysts. This issue could be 

addressed in metal-organic frameworks (MOFs) through optimization of the charge-transfer kinetics can be optimized via rational 

design of structures at atomic level. Herein, a pyrazolyl porphyrinic Ni-MOF (PCN-601), integrating light harvesters, active 

catalytic sites, and high surface areas all in one, has been demonstrated as a superior and durable photocatalyst for visible-light-

driven overall CO2 reduction with H2O vapor at room temperature. Kinetic studies reveal that the robust coordination spheres of 

pyrazolyl groups and Ni-oxo clusters endow PCN-601 with proper energy band alignment and ultrafast ligand-to-node electron 

transfer. Consequently, the CO2-to-CH4 production rate of PCN-601 far exceeds those of the analogous MOFs based on carboxylate 

porphyrin and the classic Pt/CdS photocatalyst by more than 3 and 20 times respectively. Conspicuously, the reaction avoids the 

use of hole scavengers, and proceeds in a gaseous phase which can take full advantage of the high gas uptake of MOFs. This work 

demonstrates that the rational design of coordination spheres in MOF structures not only reconciles the contradiction between 

reactivity and stability but also greatly promotes the interfacial charge transfer to achieve optimized kinetics, providing guidance 

for the design of highly efficient MOF photocatalysts.

INTRODUCTION

Overall photocatalytic CO2 reduction, mimicking the natural 

photosynthesis in plants, can capture and transform 

greenhouse CO2 with H2O into value-added products, which 

has attracted tremendous research interests in the past 

several years.1-3 Besides being thermodynamic allowed for 

both CO2 and H2O half-reactions, an efficient photocatalyst 

for overall CO2 photoreduction has to be superior in many 

kinetic aspects, such as reactants adsorption and activation, 

charge separation and transfer, as well as the subsequent 

charge utilization. Apparently, controlling these complicated 

kinetic properties is challenging. For traditional 

semiconductor-based photocatalysts, some strategies have 

been explored to optimize these kinetic behaviors, e.g., 

hetero-component incorporation,4 facet and defect 

engineering,5-6 and morphology regulation.7-8 However, 

these strategies are usually restricted by tedious synthetic 

procedures and loss of atomic-scale control, hampering the 

improvements on the photocatalytic performance.

Metal-organic frameworks (MOFs), a class of porous 

crystalline materials demonstrating great potentials in 

various applications in gas storage,9 sensing,10 catalysis,11 

and so on, are advantageous in regard to the capability of 

precisely designing and tailoring structures at atomic level 

for functional motifs.12-15 These features endow MOFs with 

the unique opportunity to orderly integrate light harvesters, 

catalytic sites, and high surface areas all in one and 

simultaneously optimize both the thermodynamics and 

kinetics for efficient gaseous CO2 capture and reaction. With 

this notion in mind, several MOF catalysts based on photo-

responsive organic ligands have been fabricated and applied 

for CO2 photoreduction recently.16-21 In these MOF 

catalysts, high valent metal ions (e.g. Zr4+, Al3+) and 

carboxyl groups are usually employed to achieve high 

stability, which, however, induce high energy barriers for 

reactants activation on metal nodes22, making the ligand-to-

node charge transfer energetically unfavored.23-26 

Conversely, MOFs with coordination spheres consisted of 

reactive metal species (e.g. Ni(II),27 Co(II)28 and Cu(II)29) 

and carboxyl groups are severely suffering from the 
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structural lability even in ambient atmosphere.30 It is clear 

that the photocatalytic performances of MOFs are usually 

limited by the contradiction between stability and reactivity. 

Another challenge for overall CO2 photoreduction is the 

kinetically sluggish nature of the multi-electron-involved 

CO2 reduction half-reaction. To unilaterally attain 

considerable activities for CO2 reduction, hole scavengers or 

electron donors are commonly used to rapidly consume 

photo-generated holes in situ and supply abundant free 

electrons. Nevertheless, these operations are uneconomical 

and will confine the reactions to liquid phase rather than 

gaseous CO2 atmosphere, and hence the high gas uptakes of 

MOFs are of no avail. Towards an overall CO2 

photoreduction in the gas phase, a boosted catalytic 

performance can be anticipated if one can aggregate highly 

active catalytic species for both half-reactions in robust 

coordination spheres and that permit a facile ligand-to-node 

charge transfer in the structure.

Herein, we have realized this hypothesis by employing a 

MOF (denoted as PCN-601), composed of reactive Ni-oxo 

cluster nodes and light-harvesting metalloporphyrin ligands 

connected via pyrazolyl group, as a catalyst for gas-phase 

overall CO2 photoreduction with H2O vapor at room 

temperature. In contrast to the carboxylate chelating groups 

in the conventional MOF photocatalysts, the pyrazolyl 

groups in our case possess a larger K� �	.���'��	 system, 

and cause higher K�% orbital overlaps with Ni-oxo nodes.31 

This alteration allows us to integrate catalytic active species 

into a robust framework, and consequently reconcile the 

conflict between stability and reactivity for MOF-based 

photocatalysts. Most importantly, such a coordination 

sphere dramatically accelerates the ligand-to-node electron 

transfer and effectively suppresses the charge 

recombination, offering sufficient electrons for the reduction 

process at the reactive Ni-oxo nodes. These features promise 

PCN-601 to be an efficient and durable photocatalyst for the 

overall CO2 reduction. The predominant reduction product 

was determined to be CH4, accomplishing the kinetically-

challenging eight-electron half-reaction (CO2 + 8H+ + 8e- � 

CH4 + 2H2O). The oxidation product of H2O2 was also 

detected (2H2O + 2h+ �  2H+ + H2O2). To the best of our 

knowledge, this work is the first report on sole-MOF-

executing overall CO2 photo-reduction in gas-solid 

condition. Notably, the CH4 production rate of PCN-601 far 

exceeds those of analogous porphyrinic MOFs and the well-

known Pt/CdS system by at least 3 and 20 times, 

respectively. The CO2-to-CH4 conversions under visible 

light (10.1 L,�+M�-1M�-1) and simulated solar irradiation 

(AQY = 2.18%) are among the state-of-the-art cases for 

room-temperature CO2 photoreduction free from hole 

scavengers.

RESULT AND DISCUSSION

Synthesis and characterizations of PCN-601. PCN-601 

(Figure 1a) was synthesized according to the literature32 and 

the phase purity was verified by PXRD patterns (Figure 1b). 

The microporosity of the sample was confirmed by N2 

sorption isotherm (Figure 1c) with a BET surface area of 

918.7 cm3/g which is very close to the theoretical value (969 

m2/g) calculated by the Zeo++ software33. The upturn in the 

high-pressure region can be ascribed to the aperture induced 

by the agglomeration of nanoparticles (50 ~ 100 nm as 

revealed in SEM image, Figure 1d). The 1H-NMR spectra of 

porphyrin ligand (H4TPP) and acid-digested MOFs were 

compared to confirm the metallization of Ni2+ in the 

porphyrin center. As shown in Figure 1e, the peaks at Q = -

2.72 ppm (2H at porphyrin core) and Q = 13.63 ppm (4H at 

four pyrazole branches) presented in H4TPP were absent in 

the digested PCN-601, indicating the deprotonation of 

porphyrin centers and pyrazole groups respectively. Thus, 

the target PCN-601 with Ni metalloporphyrin centers and 

pyrazole-NiOx coordination spheres has been successfully 

constructed. 

Thermodynamic feasibility for CO2 reduction and 

H2O oxidation. PCN-601 displays a wide-range visible-

light absorbance

a b

c

d

e
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coordination spheres. In PCN-222, the high valent Zr-oxo 

metal nodes, permitting the framework robustness though 

(based on the Hard and Soft Acid and Base theory), does not 

facilitate the catalytic reaction because of its high energy 

barrier. Although Ni3TCPP integrates active Ni-oxo metal 

nodes into the framework, it makes a severe compromise on 

chemical stability. Different from the carboxylate groups in 

the above two MOFs, the pyrazolyl groups in PCN-601 

possess a larger K� �	.���'��	 system and lead to a higher 

degree of K�% orbital overlaps with Ni2+.

Figure 3. Photocatalytic performances of PCN-601 for CO2 reduction: (a) Time-resolved CO (left) and CH4 (right) productions; (b) Mass 

spectrum of produced 13CH4 via isotope 13CO2 reduction under visible light (inset: standard mass spectrum of CH4 in data library); (c) 

Chromogenic detection of H2O2 after 10 hours� photocatalysis by the DPD (N, N-diethyl-1,4-phenylenediamine)/POD (horseradish 

peroxidase) method; (d) Gas yields of 5 reaction cycles (50 hours in total) and corresponding product selectivity; (e) Comparison of CO 

(left) and CH4 (right) production rate of PCN-601 and other reported photocatalysts; (f) Comparison of the moles of photo-generated 

electrons utilized in CO2 reduction.

These features would cause stronger coordination bonds and 

faster ligand-to-metal interfacial charge transfer. As a result, 

PCN-601 gave higher CO and CH4 production rates than the 

other two MOFs (Figure 3e). Notably, the CH4 production 

rate, 10.1 L,�+M�-1M�-1(1.13 L�M�-1 per 5mg) is almost 3 times 

and 17 times higher than those of PCN-222 and Ni3TCPP, 

respectively. To put the present work into a broader context, 

we also evaluated the activity of PCN-601 under simulated 

solar irradiation (AM 1.5G), which gave rise to a higher 

CH4 production rate of 92.0 L,�+M�-1M�-1
 (10.3 L�M�-1 per 

5mg, Figure S16). The apparent quantum yield (AQY) for 

CH4 production under this condition was calculated to be 

2.18%. To the best of our knowledge, the CO2-to-CH4 

conversion by PCN-601 reported here is among the top 

records including all-inorganic photocatalyst systems 

without hole scavengers under either visible light or 

simulated solar light at room temperature (Table S4). The 

comparison of the moles of effective electrons in the 

reaction catalyzed byPCN-601, PCN-222 and Ni3TCPP as 

well as 1%Pt/CdS reveals that PCN-601 utilized far more 

photo-generated electrons which mostly contributed to the 

CH4 production (Figure 3d). After destroying the pyrazole-

NiOx connection by acid treatment, the CH4 production rate 

of PCN-601 sharply drops from 10.1 L,�+M�-1M�-1 to 1.5 

L,�+M�-1M�-1 while the CO production remains at the same 

level (Figure S17). This further indicate the vital role of 

pyrazole-NiOx coordination sphere for CO2 photoreduction, 

especially the CH4 evolution.

Exploration of charge transfer pathways and 

harvesting sites. To gain a deeper insight into the charge 

transfer behaviors in PCN-601, the transfer pathways and 

harvesting sites of photo-generated electrons and holes were 

investigated. Electron paramagnetic resonance (EPR) 

spectra of the mixture of PCN-601 suspended in 

TEOA/acetonitrile solution (TEOA acted as hole scavenger) 

were collected with and without light irradiation. As shown 

in Figure S18, in contrast to the very weak signals detected 

in dark condition, visible-light irradiation induced much 

enhanced Ni(I) signals at g�  = 2.05 and g� = 2.1146-48. The 

origin of the Ni(I) signal cannot be identified by the EPR 

result alone, as Ni atoms exist in both the ligand and the 

metal node in PCN-601. Given this reason, theoretical 

calculations were performed to acquire more information. In 

the unit cell of PCN-601, the [Ni8(OH)4(H2O)2] (denoted as 

[Ni8] nodes) coordinates with twelve porphyrin ligands via 

pyrazole groups in three directions (denoted as L1, L2 and 

L3, respectively, Figure 4a). The calculated partial density 

of states (PDOS) reveal that the location of the lowest 

unoccupied molecular orbital (LUMO) of [Ni8] node is 

nearly identical to that of porphyrin ligand (contributed by 

L3), while the highest occupied molecular orbital (HOMO) 

of porphyrin ligand (contributed by L1 and L2) is 

significantly higher than that of [Ni8] node (Figure 4b and 
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~420 nm due to the state-filling effect caused by photo-

generated electrons and holes (Figure 6, S24). By probing 

the absorption intensity at U = 418 nm, the kinetic curves of 

GSB recovery were acquired. In principle, the GSB 

recovery corresponds to the decrease of excited states, 

which can be induced by either charge recombination or 

charge separation and transfer. For the sole H4TPP(Ni) 

without ligand-to-node charge 

Figure 5. (a) Charge mobilities of PCN-601 and PCN-222 

revealed by gas-sensing currents measured in Ar flow; (b) 

Solid-state PL spectra of PCN-601 and PCN-222 excited at U = 

422 nm.

Figure 6. TA spectra of samples dispersed in DMF: (a) H4TPP(Ni), (b) PCN-601; (c) Corresponding normalized TA kinetic curves probed 

at 418 nm; (d) Normalized TA kinetic curves of PCN-601, PCN-222, and Ni3TCPP (probe at U = 418 nm); (e) Crystal structures and 

coordination spheres of PCN-601 (top), PCN-222 (middle), and Ni3TCPP (bottom).

transfer, the observed GSB recovery should mainly arise 

from the charge recombination. Figure 6a-c shows that 

PCN-601 with the ligand-to-node electron transfer pathway 

exhibits similar TA spectral features to that of the ligand but 

a much faster GSB recovery. To verify whether electron 

transfer or charge recombination play the key role to the 

faster GSB recovery in PCN-601, we examined the TA 

kinetics of H4TPP(Ni) ligand with the addition of [6,6]-

phenyl-C61-butyric acid methyl ester (PCBM, a well-known 

electron acceptor molecule) for comparison. It turns out that 

the addition of PCBM induced a faster GSB recovery than 

the sole H4TPP(Ni) system (Figure 6c, S24a). Therefore, we 

can attribute the accelerated GSB recovery in PCN-601 to 

the efficient ligand-to-node electron transfer.54 To compare 

the electron transfer rates in PCN-601, PCN-222 and 

Ni3TCPP, the average GSB recovery times were calculated 

by fitting the kinetic curves with exponential decay 

functions,55 which were 72 ps for PCN-601, 215 ps for 

PCN-222, and 1286 ps for Ni3TCPP, respectively (Figure 

6d, Table S7). The fastest GSB recovery of PCN-601 

demonstrates the most efficient ligand-to-node electron 

transfer among these three MOFs,56 confirming the 

superiority of pyrazole-NiOx coordination sphere than 

carboxyl-ZrOx and carboxyl-NiOx configurations (Figure 

6e). 

The affinities and activations for reactants. The 

affinities between reactants and catalysts, an important 

aspect in kinetics especially for a heterogenous gas-solid 

reaction, were evaluated in PCN-601. As displayed in 

Figure 7a, compared with many famous sole-MOF 

photocatalysts (Table S6), PCN-601 exhibits a high 

absorption capacity (82.4 cm3/g at 273K, 1 atm) and a 

moderate adsorption enthalpy (21.7 kJ/mol) for CO2, 

demonstrating the desired CO2 affinity for photocatalysis. 

As described above, in N2 atmosphere, EPR spectra of PCN-

601 showed characteristic Ni(I) signals (g� = 2.05 and g� = 

2.11) under visible-light illumination. These signals lasted 

for over 20 minutes even after turning light off, suggesting 

that the harvested electrons were hardly delivered to N2 

(Figure 7b). However, with a substitution of N2 for CO2, 

these signals disappeared, which be explained by the fact 

that the electron at Ni(I) migrated to CO2 for initial 

activation and then Ni(I) turn back into diamagnetic Ni(II). 

Meanwhile, the DFT calculations of the PCN-601 model 

(Figure S25) show that CO2 molecules were preferentially 

adsorbed at the Ni atoms of the Ni-oxo cluster where most 

of the photo-excited electrons localized. And the adsorption 

energy (Eads) was enhanced with the presence of photo-

excited electron, which could benefit the activation of CO2 

(Table S8). The affinity for H2O, the other reactant in 

overall 
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