Catalytic Asymmetric Total Synthesis of (–)-Galanthamine and (–)-Lycoramine**

Lei Li, Qiao Yang, Yuan Wang, and Yanxing Jia*

Dedicated to Professor Jieping Zhu on the occasion of his 50th birthday

Abstract: The catalytic asymmetric total syntheses of (-)-galanthamine (1) and (-)-lycoramine (2) have been achieved by using a conceptually new strategy featuring two metalcatalyzed reactions as the key steps. A new method for the construction of 3,4-fused benzofurans has been developed through a palladium-catalyzed intramolecular Larock annulation reaction, which was successfully applied to the construction of the ABD tricyclic skeleton of 1 and 2. To achieve the asymmetric synthesis of 1 and 2, a Sc^{III}/N,N'-dioxide complex was used to catalyze the enantioselective conjugate addition of 3-alkyl-substituted benzofuranone to methyl vinyl ketone for the construction of a chiral quaternary carbon center.

The 3,4-fused (dihydro)benzofuran skeleton, in which the 3position of the (dihydro)benzofuran is bridged to the 4position, represents the key structural motif of a diverse group of natural products which exhibit a wide range of biological activities (Figure 1). These natural products include the medicinally important galanthamine-type *Amaryllidaceae*

Figure 1. Representative 3,4-fused (dihydro)benzofuran natural products.

- [*] L. Li,^[+] Q. Yang,^[+] Dr. Y. Wang, Prof. Y. Jia State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences, Peking University Xue Yuan Rd. 38, Beijing 100191 (China) E-mail: yxjia@bjmu.edu.cn
- [⁺] These authors contributed equally to this work.
- [**] We are grateful to the National Natural Science Foundation of China (Nos. 21402003, and 21290183) for their financial support.
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201411338.

Angew. Chem. Int. Ed. 2015, 54, 1-6

alkaloids and the *Opium* alkaloids, which could serve as ideal model compounds for the development of new synthetic methods and strategies.^[1]

As a continuation of our ongoing projects focused on the total synthesis of 3,4-fused indole alkaloids,^[2] we have recently developed a general and convenient strategy for the construction of 3,4-fused indoles by an intramolecular Larock indolization reaction (Scheme 1 a).^[3] Considering the

a) Our previous work for the synthesis of 3,4-fused indoles:

b) This work for the synthesis of 3,4-fused benzofurans:

Scheme 1. Synthesis of 3,4-fused indoles and 3,4-fused benzofurans by an intramolecular Larock annulation.

structural similarity of 3,4-fused benzofurans with 3,4-fused indoles, we were curious whether the palladium-catalyzed intramolecular Larock annulation could be applied to the preparation of 3,4-fused benzofurans (Scheme 1b). If this idea could be realized, then we would have opportunity to explore a new strategy for the synthesis of (-)-galanthamine (1) and (-)-lycoramine (2).

(-)-Galanthamine (1), a representative member of the Amaryllidaceae alkaloids, has been clinically used for the treatment of Alzheimer's disease and other memory impairments.^[4] (-)-Lycoramine (2) has a similar, albeit less potent activity as an acetylcholinesterase inhibitor and an allosteric potentiating ligand.^[5] Because of the high cost of its isolation and the limited natural sources, a number of total syntheses of 1 have been reported.^[6-16] According to the strategy for the formation of the ring system, these syntheses can be divided into two categories: 1) synthesis proceeding from AC ring \rightarrow ADC ring \rightarrow ABCD ring (Scheme 2, path a),^[6–8] and it mainly involves intramolecular phenolic oxidative coupling followed by intramolecular oxa-Michael addition to form the benzofuran B ring, and 2) synthesis proceeding from the AC(AB) ring \rightarrow ABC ring \rightarrow ABCD ring (Scheme 2, path b),^[9-16] in which the formation of the bridged seven-membered D ring is placed at the late stage of the synthesis. To our knowledge, no synthesis from the ABD ring \rightarrow ABCD ring (Scheme 2, path c) has been reported.

Wiley Online Library

These are not the final page numbers!

Angewandte Communications

Scheme 2. Strategies for the synthesis of galanthamine (1).

Structurally, galanthamine-type alkaloids contain a chiral all-carbon quaternary center, and the enantioselective construction of this sterically congested quaternary center^[17] is the critical step in the total synthesis of these alkaloids. Although numerous asymmetric total syntheses of these alkaloids have been reported,^[7–16] only the groups of Trost,^[9,15] and Fan,^[13] as well as that of Zhou and Xie,^[14] have recently achieved catalytic asymmetric synthesis of galanthamine (**1**) and related alkaloids.

To explore a new strategy for the effective construction of polycyclic ring systems and a new method for the catalytic asymmetric establishment of the crucial chiral all-carbon quaternary stereocenter, a retrosynthetic analysis of **1** and **2** is outlined in Scheme 3. We envisioned that both **1** and **2** could

Scheme 3. Retrosynthetic analysis for 1 and 2. Boc = tert-butoxycarbonyl, TES = triethylsilyl.

be derived from the same advanced intermediate **3**. The tetracyclic compound **3** could be generated from the tricyclic compound **4** by intramolecular ketone–lactone condensation. In turn, **4** could be accessed from **5** by key catalytic asymmetric Michael addition with methyl vinyl ketone (MVK). The benzofuranone **5** should be readily prepared by oxidation of 3,4-fused benzofunan **6**, which could be derived from **7** by a novel palladium-catalyzed annulation reaction.

We firstly examined the feasibility of our strategy for the synthesis of 3,4-fused benzofuran by an intramolecular Larock annulation reaction (Scheme 4).^[18,19] A variety of reaction conditions were screened and we found that under the reaction conditions of $[Pd_2(dba)_3]$ ·CHCl₃ (5 mol%) and

Scheme 4. Realization of the intramolecular Larock annulation reaction. dba = dibenzylideneacetone, Ts = 4-toluenesulfonyl, DMF = N, N-dimethylformamide.

 $P(tBu)_3$ ·HBF₄ (20 mol%) at 100 °C, the desired product **9a** was obtained in 95% yield (see the Supporting Information).^[20] The substrate scope of this reaction was subsequently examined. The transformation was found to be quite general, and a variety of 3,4-fused benzofurans containing either carbon, oxygen, or nitrogen tethers were obtained in reasonable yields (Table 1).

Table 1: Synthesis of 3,4-fused benzofurans.[a]

[a] Yields are those of the isolated products. TMS = trimethylsilyl.

We then set out to apply this method to the assembly of the ABD ring system of **1** and **2** (Scheme 5). Reductive coupling of the known aldehyde $10^{[9c]}$ and amine $11,^{[3a]}$ and subsequent protection with Boc₂O provided **7** in 81% yield. Treatment of **7** under our aforementioned reaction conditions

www.angewandte.org

2

K These are not the final page numbers!

Scheme 5. Construction of ring B/D in the tricyclic synthon. *m*-CPBA = *meta*-chloroperoxybenzoic acid, TBAF = tetra-*n*-butylammonium fluo-ride.

successfully afforded the 3,4-fused benzofuran 12 in 89% yield. Removal of the TES group in 12 with TBAF (95%), and subsequent oxidation with *m*-CPBA, afforded 5 in 56% yield.

After successful construction of the ABD ring system, we turned our attention to the construction of the chiral allcarbon quaternary stereocenter in **1** and **2**. Although a few catalytic enantioselective conjugate additions of 3-substituted benzofuranones were reported,^[21] to the best of our knowledge, the catalytic enantioselective conjugate addition of 3alkyl-substituted benzofuranone to MVK has not been reported.

Initially, various amine-thiourea or urea bifunctional organocatalysts were screened for the conjugate addition of 5 to MVK. However, the highest enantioselectivity obtained was 55% ee (see the Supporting Information). These results prompted us to investigate alternative catalytic reaction systems. Inspired by the recent work of Feng and co-workers,^[22] we turned our attention to examining an asymmetric Michael addition using the chiral metal/N,N'-dioxide complexes. As described in Table 2, we initially investigated the Michael addition, in CH₂Cl₂ at room temperature, catalyzed by Yb(OTf)₃/13 complexes (entries 1–3). But only Yb(OTf)₃/ 13c gave the desired product 4 in 10% yield with 42% ee (entry 3). When the solvent was changed to ethanol, 4 was obtained in higher yield (33%) with similar ee value (entry 4). However, when Sc(OTf)₃ was used instead of Yb(OTf)₃ at room temperature, the reaction proceeded smoothly to afford 4 in 85% yield with 93% ee (entry 5). Additionally, when the reaction was run at 10°C, 4 was obtained in 85% yield with 94% ee (entry 6). Under the aforementioned reaction conditions, conjugate additions of several 3-alkyl-substituted benzofuranones to MVK were investigated. The results showed that both the yield and the ee values were excellent (Table 3).

With **4** in hand, we proceeded with the total synthesis of **1** (Scheme 6). Treatment of **4** with LDA yielded the cyclization product **3** in 95% yield. Subsequent direct reduction of the **3** with Et₃SiH provided the β -alcohol **16** in 73% yield and α -alcohol **17** in 12% yield, with the simultaneous reduction of ketone and removal of the Boc group.^[23] Selective protection of the amine in **16** and **17** with methyl chloroformate and subsequent oxidiation with Dess–Martin periodinane pro-

Table 2: Michael addition catalyzed by Lewis acid/N,N'-dioxide complexes.^[a]

[a] Reaction conditions: **5** (0.1 mmol), MVK (0.15 mmol), solvent (0.3 mL). [b] Yield of isolated product. [c] Determined by HPLC using a chiral stationary phase. [d] The reaction was run at 10 °C. n.r. = no reaction, Tf = trifluoromethanesulfonyl.

Table 3: Substrate scope of the asymmetric Michael reaction.^[a]

[a] Reaction conditions: **14** (0.1 mmol), MVK (0.15 mmol), EtOH (0.3 mL). Yields are those of the isolated products. Enantiomeric excess was determined by HPLC using a chiral stationary phase.

vided the known ketone **18**, the key intermediate in Fan's total synthesis of **1**, in 75% yield over three steps. The physical properties (¹H and ¹³C NMR spectra, MS data, and $[\alpha]_D$) of **18** are consistent with those described in the literature.^[13] Treatment of **18** with TMSOTf and Et₃N provided the corresponding silyl enol ether, which was oxidized under Saegusa conditions to give the enone **19** in 67% yield. Finally, **19** was readily converted into **1** in a two-step sequence.^[13]

After completion of the synthesis of **1**, we turned our attention to the synthesis of **2** (Scheme 7). Considering the lower yield in the conversion of **3** into **17** (Scheme 6), we tried to develop a more efficient approach. Thus, stereoselective reduction of **3** with L-selectride gave the sole α -alcohol **20** in 91 % yield. Reduction of **20** with Et₃SiH provided **17** in 88 % yield. Reaction of **17** and formaldehyde under standard reaction conditions [NaBH₄, NaBH₃CN or NaBH(OAc)₃] gave **2** in only 30–40% yield. Methylation of **17** under

www.angewandte.org

Scheme 6. Synthesis of 1. DMP = Dess-Martin periodinane, LDA = lithium diisopropylamide, THF = tetrahydrofuran.

Scheme 7. Synthesis of 2.

Eschweiler–Clarke conditions (HCO₂H, HCHO, reflux)^[24] and subsequent treatment of the resulting product with $K_2CO_3/MeOH/H_2O$ afforded **2** in 84% yield over two steps.

In summary, an asymmetric total synthesis of both (-)-galanthamine (1) and (-)-lycoramine (2) have been achieved based on a conceptually new strategy by employing two metal-catalyzed reactions. A new method for the construction of 3,4-fused tricyclic benzofurans, the core structure of a variety of bioactive important natural products, has been developed using a palladium-catalyzed intramolecular Larock annulation reaction. In addition, a Sc^{III}/N,N'-dioxide complex catalyzed the enantioselective conjugate addition reaction of 3-alkyl-substituted benzofuranone to MVK for the construction of a quaternary carbon center was developed for the first time.

Keywords: alkaloids \cdot asymmetric catalysis \cdot natural products \cdot palladium \cdot total synthesis

[1] For a recent review, see: a) U. Rinner, T. Hudlicky, *Top. Curr. Chem.* **2012**, *309*, 33; for recent syntheses reported after those

cited in Ref. [1a], see: b) M. Ichiki, H. Tanimoto, S. Miwa, R. Saito, T. Sato, N. Chida, *Chem. Eur. J.* **2013**, *19*, 264; c) J. Li, G.-L. Liu, X.-H. Zhao, J.-Y. Du, H. Qu, W.-D. Chu, M. Ding, C.-Y. Jin, M.-X. Wei, C.-A. Fan, *Chem. Asian J.* **2013**, *8*, 1105; d) V. Varghese, T. Hudlicky, *Angew. Chem. Int. Ed.* **2014**, *53*, 4355; *Angew. Chem.* **2014**, *126*, 4444.

- [2] For a review for the synthesis of 3,4-fused indoles, see: a) D. Shan, Y. Jia, *Chin. J. Org. Chem.* 2013, 33, 1144; b) Q. Liu, Y.-A. Zhang, P. Xu, Y. Jia, *J. Org. Chem.* 2013, 78, 10885; c) Y.-A. Zhang, Q. Liu, C. Wang, Y. Jia, *Org. Lett.* 2013, *15*, 3662; d) Q. Liu, Q. Li, Y. Ma, Y. Jia, *Org. Lett.* 2013, *15*, 4528; e) L. Guo, F. Zhang, W. Hu, L. Li, Y. Jia, *Chem. Commun.* 2014, *50*, 3299, and references therein.
- [3] a) D. Shan, Y. Gao, Y. Jia, Angew. Chem. Int. Ed. 2013, 52, 4902; Angew. Chem. 2013, 125, 5002; b) Y. Gao, D. Shan, Y. Jia, Tetrahedron 2014, 70, 5136; c) for a similar work, see: S. P. Breazzano, Y. B. Poudel, D. L. Boger, J. Am. Chem. Soc. 2013, 135, 1600.
- [4] For a review, see: a) J. Marco-Contelles, M. C. Carreiras, C. Rodríguez, M. Villarroya, A. G. García, *Chem. Rev.* 2006, 106, 116; for racemic syntheses reported after those cited in Ref. [4a], see: b) X.-D. Hu, Y.-Q. Tu, E. Zhang, S. Gao, S. Wang, A. Wang, C.-A. Fan, M. Wang, Org. Lett. 2006, 8, 1823; c) T. Ishikawa, K. Kudo, K. Kuroyabu, S. Uchida, T. Kudoh, S. Saito, J. Org. Chem. 2008, 73, 7498; d) M. G. Banwell, X. Ma, O. P. Karunaratne, A. C. Willis, Aust. J. Chem. 2010, 63, 1437; e) J. H. Chang, H.-U. Kang, I.-H. Jung, C.-G. Cho, Org. Lett. 2010, 12, 2016; f) Y. Feng, Z.-X. Yu, J. Org. Chem. 2015, 80, 1952.
- [5] For recent syntheses of lycoramine, see: a) W. P. Malachowski, T. Paul, S. Phounsavath, J. Org. Chem. 2007, 72, 6792; b) C.-A. Fan, Y.-Q. Tu, Z.-L. Song, E. Zhang, L. Shi, M. Wang, B. Wang, S.-Y. Zhang, Org. Lett. 2004, 6, 4691, and references therein.
- [6] D. H. R. Barton, G. W. Kirby, J. Chem. Soc. C 1962, 806.
- [7] a) K. Tomioka, K. Shimizu, S. Yamada, K. Koga, *Heterocycles* 1977, 6, 1752; b) K. Shimizu, K. Tomioka, S. Yamada, K. Koga, *Heterocycles* 1977, 8, 277.
- [8] a) S. Kodama, Y. Hamashima, K. Nishide, M. Node, Angew. Chem. Int. Ed. 2004, 43, 2659; Angew. Chem. 2004, 116, 2713;
 b) M. Node, S. Kodama, Y. Hamashima, T. Katoh, K. Nishide, T. Kajimoto, Chem. Pharm. Bull. 2006, 54, 1662.
- [9] a) B. M. Trost, F. D. Toste, J. Am. Chem. Soc. 2000, 122, 11262;
 b) B. M. Trost, W. Tang, Angew. Chem. Int. Ed. 2002, 41, 2795;
 Angew. Chem. 2002, 114, 2919; c) B. M. Trost, W. Tang, F. D. Toste, J. Am. Chem. Soc. 2005, 127, 14785.
- [10] V. Satcharoen, N. J. McLean, S. C. Kemp, N. P. Camp, R. C. D. Brown, Org. Lett. 2007, 9, 1867.
- [11] a) H. Tanimoto, T. Kato, N. Chida, *Tetrahedron Lett.* 2007, 48, 6267 (unnatural galanthamine); b) T. Kato, H. Tanimoto, H. Yamada, N. Chida, *Heterocycles* 2010, 82, 563.
- [12] P. Magnus, N. Sane, B. P. Fauber, V. Lynch, J. Am. Chem. Soc. 2009, 131, 16045.
- [13] P. Chen, X. Bao, L.-F. Zhang, M. Ding, X.-J. Han, J. Li, G.-B. Zhang, Y.-Q. Tu, C.-A. Fan, *Angew. Chem. Int. Ed.* **2011**, *50*, 8161; *Angew. Chem.* **2011**, *123*, 8311.
- [14] J.-Q. Chen, J.-H. Xie, D.-H. Bao, S. Liu, Q.-L. Zhou, Org. Lett. 2012, 14, 2714.
- [15] Y. Zang, I. Ojima, J. Org. Chem. 2013, 78, 4013.
- [16] J. Choi, H. Kim, S. Park, J. Tae, Synlett 2013, 379.
- [17] For recent reviews, see: a) I. Marek, Y. Minko, M. Pasco, T. Mejuch, N. Gilboa, H. Chechik, J. P. Das, J. Am. Chem. Soc. 2014, 136, 2682; b) A. Y. Hong, B. M. Stoltz, Eur. J. Org. Chem. 2013, 2745; c) J. P. Das, I. Marek, Chem. Commun. 2011, 47, 4593; d) C. Hawner, A. Alexakis, Chem. Commun. 2010, 46, 7295; e) S. Jautze, R. Peters, Synthesis 2010, 365; for selective recent examples on the catalytic asymmetric formation of all-carbon quaternary centers in natural product syntheses, see: f) Z. Li, S. Zhang, S. Wu, X. Shen, L. Zou, F. Wang, X. Li, F.

www.angewandte.org

© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

These are not the final page numbers!

Peng, H. Zhang, Z. Shao, *Angew. Chem. Int. Ed.* **2013**, *52*, 4117; *Angew. Chem.* **2013**, *125*, 4211; g) Z. Xu, Q. Wang, J. Zhu, *J. Am. Chem. Soc.* **2013**, *135*, 19127.

- [18] a) R. C. Larock, J. Organomet. Chem. 1999, 576, 111; b) R. C. Larock, E. K. Yum, M. J. Doty, K. C. Sham, J. Org. Chem. 1995, 60, 3270.
- [19] For the only example of the construction of 3,4-fused furan through intramolecular Larock-type annulation, see: a) A. Kojima, T. Takemoto, M. Sodeoka, M. Shibasaki, J. Org. Chem. 1996, 61, 4876; b) A. Kojima, S. Shimizu, M. Shibasaki, J. Heterocycl. Chem. 1998, 35, 1057.
- [20] T. Konno, J. Chae, T. Ishihara, H. Yamanaka, *Tetrahedron* 2004, 60, 11695.
- [21] a) X. Li, Z. Xi, S. Luo, J.-P. Cheng, Adv. Synth. Catal. 2010, 352, 1097; b) X. Li, S. Hu, Z. Xi, L. Zhang, S. Luo, J.-P. Cheng, J. Org.

Chem. 2010, 75, 8697; c) F. Pesciaioli, X. Tian, G. Bencivenni, G. Bartoli, P. Melchiorre, *Synlett* 2010, 1704.

- [22] a) X. H. Liu, L. L. Lin, X. M. Feng, Acc. Chem. Res. 2011, 44, 574; b) X. H. Liu, L. L. Lin, X. M. Feng, Org. Chem. Front. 2014, 1, 298.
- [23] a) G. A. Kraus, K. A. Frazier, B. D. Roth, M. J. Taschner, K. Neuenschwander, *J. Org. Chem.* **1981**, *46*, 2417; b) G. A. Kraus, J. Shi, D. Reynolds, *J. Org. Chem.* **1990**, *55*, 1105.
- [24] H. T. Clarke, H. B. Gillespie, S. Z. Weisshaus, J. Am. Chem. Soc. 1933, 55, 4571.

Received: November 29, 2014 Revised: March 3, 2015 Published online:

Communications

Catalytic Asymmetric Total Synthesis of (-)-Galanthamine and (-)-Lycoramine

How gallant: The catalytic asymmetric total synthesis of both (-)-galanthamine and (-)-lycoramine were achieved by using a conceptually new strategy. Two metal-catalyzed reactions were used as the key steps, and include a palladiumcatalyzed intramolecular Larock annulation reaction and enantioselective conjugate addition reaction catalyzed by a Sc^{III}/ N,N'-dioxide complex. Boc = tert-butoxycarbonyl, TES = triethylsilyl.

6 www.angewandte.org

C 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

These are not the final page numbers!