
German Edition: DOI: 10.1002/ange.201411338Alkaloids
International Edition: DOI: 10.1002/anie.201411338

Catalytic Asymmetric Total Synthesis of (�)-Galanthamine and
(�)-Lycoramine**
Lei Li, Qiao Yang, Yuan Wang, and Yanxing Jia*

Dedicated to Professor Jieping Zhu on the occasion of his 50th birthday

Abstract: The catalytic asymmetric total syntheses of (�)-
galanthamine (1) and (�)-lycoramine (2) have been achieved
by using a conceptually new strategy featuring two metal-
catalyzed reactions as the key steps. A new method for the
construction of 3,4-fused benzofurans has been developed
through a palladium-catalyzed intramolecular Larock annu-
lation reaction, which was successfully applied to the con-
struction of the ABD tricyclic skeleton of 1 and 2. To achieve
the asymmetric synthesis of 1 and 2, a ScIII/N,N’-dioxide
complex was used to catalyze the enantioselective conjugate
addition of 3-alkyl-substituted benzofuranone to methyl vinyl
ketone for the construction of a chiral quaternary carbon
center.

The 3,4-fused (dihydro)benzofuran skeleton, in which the 3-
position of the (dihydro)benzofuran is bridged to the 4-
position, represents the key structural motif of a diverse group
of natural products which exhibit a wide range of biological
activities (Figure 1). These natural products include the
medicinally important galanthamine-type Amaryllidaceae

alkaloids and the Opium alkaloids, which could serve as
ideal model compounds for the development of new synthetic
methods and strategies.[1]

As a continuation of our ongoing projects focused on the
total synthesis of 3,4-fused indole alkaloids,[2] we have
recently developed a general and convenient strategy for
the construction of 3,4-fused indoles by an intramolecular
Larock indolization reaction (Scheme 1a).[3] Considering the

structural similarity of 3,4-fused benzofurans with 3,4-fused
indoles, we were curious whether the palladium-catalyzed
intramolecular Larock annulation could be applied to the
preparation of 3,4-fused benzofurans (Scheme 1b). If this
idea could be realized, then we would have opportunity to
explore a new strategy for the synthesis of (�)-galanthamine
(1) and (�)-lycoramine (2).

(�)-Galanthamine (1), a representative member of the
Amaryllidaceae alkaloids, has been clinically used for the
treatment of Alzheimer�s disease and other memory impair-
ments.[4] (�)-Lycoramine (2) has a similar, albeit less potent
activity as an acetylcholinesterase inhibitor and an allosteric
potentiating ligand.[5] Because of the high cost of its isolation
and the limited natural sources, a number of total syntheses of
1 have been reported.[6–16] According to the strategy for the
formation of the ring system, these syntheses can be divided
into two categories: 1) synthesis proceeding from AC ring!
ADC ring!ABCD ring (Scheme 2, path a),[6–8] and it mainly
involves intramolecular phenolic oxidative coupling followed
by intramolecular oxa-Michael addition to form the benzo-
furan B ring, and 2) synthesis proceeding from the AC(AB)
ring!ABC ring!ABCD ring (Scheme 2, path b),[9–16] in
which the formation of the bridged seven-membered D ring is
placed at the late stage of the synthesis. To our knowledge, no
synthesis from the ABD ring!ABCD ring (Scheme 2,
path c) has been reported.
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Figure 1. Representative 3,4-fused (dihydro)benzofuran natural
products.

Scheme 1. Synthesis of 3,4-fused indoles and 3,4-fused benzofurans by
an intramolecular Larock annulation.
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Structurally, galanthamine-type alkaloids contain a chiral
all-carbon quaternary center, and the enantioselective con-
struction of this sterically congested quaternary center[17] is
the critical step in the total synthesis of these alkaloids.
Although numerous asymmetric total syntheses of these
alkaloids have been reported,[7–16] only the groups of Trost,[9,15]

and Fan,[13] as well as that of Zhou and Xie,[14] have recently
achieved catalytic asymmetric synthesis of galanthamine (1)
and related alkaloids.

To explore a new strategy for the effective construction of
polycyclic ring systems and a new method for the catalytic
asymmetric establishment of the crucial chiral all-carbon
quaternary stereocenter, a retrosynthetic analysis of 1 and 2 is
outlined in Scheme 3. We envisioned that both 1 and 2 could

be derived from the same advanced intermediate 3. The
tetracyclic compound 3 could be generated from the tricyclic
compound 4 by intramolecular ketone–lactone condensation.
In turn, 4 could be accessed from 5 by key catalytic
asymmetric Michael addition with methyl vinyl ketone
(MVK). The benzofuranone 5 should be readily prepared
by oxidation of 3,4-fused benzofunan 6, which could be
derived from 7 by a novel palladium-catalyzed annulation
reaction.

We firstly examined the feasibility of our strategy for the
synthesis of 3,4-fused benzofuran by an intramolecular
Larock annulation reaction (Scheme 4).[18, 19] A variety of
reaction conditions were screened and we found that under
the reaction conditions of [Pd2(dba)3]·CHCl3 (5 mol %) and

P(tBu)3·HBF4 (20 mol %) at 100 8C, the desired product 9a
was obtained in 95% yield (see the Supporting Informa-
tion).[20] The substrate scope of this reaction was subsequently
examined. The transformation was found to be quite general,
and a variety of 3,4-fused benzofurans containing either
carbon, oxygen, or nitrogen tethers were obtained in reason-
able yields (Table 1).

We then set out to apply this method to the assembly of
the ABD ring system of 1 and 2 (Scheme 5). Reductive
coupling of the known aldehyde 10[9c] and amine 11,[3a] and
subsequent protection with Boc2O provided 7 in 81% yield.
Treatment of 7 under our aforementioned reaction conditions

Scheme 2. Strategies for the synthesis of galanthamine (1).

Scheme 3. Retrosynthetic analysis for 1 and 2. Boc= tert-butoxycar-
bonyl, TES = triethylsilyl.

Scheme 4. Realization of the intramolecular Larock annulation reac-
tion. dba= dibenzylideneacetone, Ts = 4-toluenesulfonyl, DMF= N,N-
dimethylformamide.

Table 1: Synthesis of 3,4-fused benzofurans.[a]

[a] Yields are those of the isolated products. TMS= trimethylsilyl.
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successfully afforded the 3,4-fused benzofuran 12 in 89%
yield. Removal of the TES group in 12 with TBAF (95 %),
and subsequent oxidation with m-CPBA, afforded 5 in 56%
yield.

After successful construction of the ABD ring system, we
turned our attention to the construction of the chiral all-
carbon quaternary stereocenter in 1 and 2. Although a few
catalytic enantioselective conjugate additions of 3-substituted
benzofuranones were reported,[21] to the best of our knowl-
edge, the catalytic enantioselective conjugate addition of 3-
alkyl-substituted benzofuranone to MVK has not been
reported.

Initially, various amine-thiourea or urea bifunctional
organocatalysts were screened for the conjugate addition of
5 to MVK. However, the highest enantioselectivity obtained
was 55% ee (see the Supporting Information). These results
prompted us to investigate alternative catalytic reaction
systems. Inspired by the recent work of Feng and co-work-
ers,[22] we turned our attention to examining an asymmetric
Michael addition using the chiral metal/N,N’-dioxide com-
plexes. As described in Table 2, we initially investigated the
Michael addition, in CH2Cl2 at room temperature, catalyzed
by Yb(OTf)3/13 complexes (entries 1–3). But only Yb(OTf)3/
13c gave the desired product 4 in 10 % yield with 42% ee
(entry 3). When the solvent was changed to ethanol, 4 was
obtained in higher yield (33 %) with similar ee value (entry 4).
However, when Sc(OTf)3 was used instead of Yb(OTf)3 at
room temperature, the reaction proceeded smoothly to afford
4 in 85 % yield with 93% ee (entry 5). Additionally, when the
reaction was run at 10 8C, 4 was obtained in 85% yield with
94% ee (entry 6). Under the aforementioned reaction con-
ditions, conjugate additions of several 3-alkyl-substituted
benzofuranones to MVK were investigated. The results
showed that both the yield and the ee values were excellent
(Table 3).

With 4 in hand, we proceeded with the total synthesis of
1 (Scheme 6). Treatment of 4 with LDA yielded the cycliza-
tion product 3 in 95 % yield. Subsequent direct reduction of
the 3 with Et3SiH provided the b-alcohol 16 in 73% yield and
a-alcohol 17 in 12 % yield, with the simultaneous reduction of
ketone and removal of the Boc group.[23] Selective protection
of the amine in 16 and 17 with methyl chloroformate and
subsequent oxidiation with Dess–Martin periodinane pro-

vided the known ketone 18, the key intermediate in Fan�s
total synthesis of 1, in 75 % yield over three steps. The
physical properties (1H and 13C NMR spectra, MS data, and
[a]D) of 18 are consistent with those described in the
literature.[13] Treatment of 18 with TMSOTf and Et3N
provided the corresponding silyl enol ether, which was
oxidized under Saegusa conditions to give the enone 19 in
67% yield. Finally, 19 was readily converted into 1 in a two-
step sequence.[13]

After completion of the synthesis of 1, we turned our
attention to the synthesis of 2 (Scheme 7). Considering the
lower yield in the conversion of 3 into 17 (Scheme 6), we tried
to develop a more efficient approach. Thus, stereoselective
reduction of 3 with L-selectride gave the sole a-alcohol 20 in
91% yield. Reduction of 20 with Et3SiH provided 17 in 88%
yield. Reaction of 17 and formaldehyde under standard
reaction conditions [NaBH4, NaBH3CN or NaBH(OAc)3]
gave 2 in only 30–40 % yield. Methylation of 17 under

Scheme 5. Construction of ring B/D in the tricyclic synthon. m-CPBA=

meta-chloroperoxybenzoic acid, TBAF = tetra-n-butylammonium fluo-
ride.

Table 2: Michael addition catalyzed by Lewis acid/N,N’-dioxide com-
plexes.[a]

Entry Lewis acid Ligand Solvent Yield [%][b] ee [%][c]

1 Yb(OTf)3 13a CH2Cl2 n.r. –
2 Yb(OTf)3 13b CH2Cl2 n.r. –
3 Yb(OTf)3 13c CH2Cl2 10 42
4 Yb(OTf)3 13c EtOH 33 38
5 Sc(OTf)3 13c EtOH 85 93
6[d] Sc(OTf)3 13c EtOH 85 94

[a] Reaction conditions: 5 (0.1 mmol), MVK (0.15 mmol), solvent
(0.3 mL). [b] Yield of isolated product. [c] Determined by HPLC using
a chiral stationary phase. [d] The reaction was run at 10 8C. n.r. =no
reaction, Tf = trifluoromethanesulfonyl.

Table 3: Substrate scope of the asymmetric Michael reaction.[a]

[a] Reaction conditions: 14 (0.1 mmol), MVK (0.15 mmol), EtOH
(0.3 mL). Yields are those of the isolated products. Enantiomeric excess
was determined by HPLC using a chiral stationary phase.
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Eschweiler–Clarke conditions (HCO2H, HCHO, reflux)[24]

and subsequent treatment of the resulting product with
K2CO3/MeOH/H2O afforded 2 in 84 % yield over two steps.

In summary, an asymmetric total synthesis of both (�)-
galanthamine (1) and (�)-lycoramine (2) have been achieved
based on a conceptually new strategy by employing two
metal-catalyzed reactions. A new method for the construction
of 3,4-fused tricyclic benzofurans, the core structure of
a variety of bioactive important natural products, has been
developed using a palladium-catalyzed intramolecular Larock
annulation reaction. In addition, a ScIII/N,N’-dioxide complex
catalyzed the enantioselective conjugate addition reaction of
3-alkyl-substituted benzofuranone to MVK for the construc-
tion of a quaternary carbon center was developed for the first
time.

Keywords: alkaloids · asymmetric catalysis · natural products ·
palladium · total synthesis
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How gallant : The catalytic asymmetric
total synthesis of both (�)-galanthamine
and (�)-lycoramine were achieved by
using a conceptually new strategy. Two
metal-catalyzed reactions were used as
the key steps, and include a palladium-

catalyzed intramolecular Larock annula-
tion reaction and enantioselective conju-
gate addition reaction catalyzed by a ScIII/
N,N’-dioxide complex. Boc = tert-butoxy-
carbonyl, TES = triethylsilyl.
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