Alkaloids

Angéwandte

imeminalEdtiony Chemie

International Edition: DOI: 10.1002/anie.201411338
German Edition: DOI: 10.1002/ange.201411338

Catalytic Asymmetric Total Synthesis of (—)-Galanthamine and

(—)-Lycoramine**

Lei Li, Qiao Yang, Yuan Wang, and Yanxing Jia*

Dedicated to Professor Jieping Zhu on the occasion of his 50th birthday

Abstract: The catalytic asymmetric total syntheses of (—)-
galanthamine (1) and (—)-lycoramine (2) have been achieved
by using a conceptually new strategy featuring two metal-
catalyzed reactions as the key steps. A new method for the
construction of 3,4-fused benzofurans has been developed
through a palladium-catalyzed intramolecular Larock annu-
lation reaction, which was successfully applied to the con-
struction of the ABD tricyclic skeleton of 1 and 2. To achieve
the asymmetric synthesis of 1 and 2, a Sc"/N,N'-dioxide
complex was used to catalyze the enantioselective conjugate
addition of 3-alkyl-substituted benzofuranone to methyl vinyl
ketone for the construction of a chiral quaternary carbon
center.

The 3,4-fused (dihydro)benzofuran skeleton, in which the 3-
position of the (dihydro)benzofuran is bridged to the 4-
position, represents the key structural motif of a diverse group
of natural products which exhibit a wide range of biological
activities (Figure 1). These natural products include the
medicinally important galanthamine-type Amaryllidaceae
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Figure 1. Representative 3,4-fused (dihydro)benzofuran natural
products.
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alkaloids and the Opium alkaloids, which could serve as
ideal model compounds for the development of new synthetic
methods and strategies.["

As a continuation of our ongoing projects focused on the
total synthesis of 34-fused indole alkaloids,” we have
recently developed a general and convenient strategy for
the construction of 3,4-fused indoles by an intramolecular
Larock indolization reaction (Scheme 1a).! Considering the

a) Our previous work for the synthesis of 3,4-fused indoles:
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b) This work for the synthesis of 3,4-fused benzofurans:

Scheme 1. Synthesis of 3,4-fused indoles and 3,4-fused benzofurans by
an intramolecular Larock annulation.

structural similarity of 3,4-fused benzofurans with 3,4-fused
indoles, we were curious whether the palladium-catalyzed
intramolecular Larock annulation could be applied to the
preparation of 34-fused benzofurans (Scheme 1b). If this
idea could be realized, then we would have opportunity to
explore a new strategy for the synthesis of (—)-galanthamine
(1) and (—)-lycoramine (2).

(—)-Galanthamine (1), a representative member of the
Amaryllidaceae alkaloids, has been clinically used for the
treatment of Alzheimer’s disease and other memory impair-
ments."! (—)-Lycoramine (2) has a similar, albeit less potent
activity as an acetylcholinesterase inhibitor and an allosteric
potentiating ligand.” Because of the high cost of its isolation
and the limited natural sources, a number of total syntheses of
1 have been reported."'®! According to the strategy for the
formation of the ring system, these syntheses can be divided
into two categories: 1) synthesis proceeding from AC ring—
ADC ring—ABCD ring (Scheme 2, path a),/*® and it mainly
involves intramolecular phenolic oxidative coupling followed
by intramolecular oxa-Michael addition to form the benzo-
furan B ring, and 2) synthesis proceeding from the AC(AB)
ring—ABC ring—ABCD ring (Scheme 2, path b),’% in
which the formation of the bridged seven-membered D ring is
placed at the late stage of the synthesis. To our knowledge, no
synthesis from the ABD ring—ABCD ring (Scheme 2,
path c) has been reported.
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Scheme 2. Strategies for the synthesis of galanthamine (1

Structurally, galanthamine-type alkaloids contain a chiral
all-carbon quaternary center, and the enantioselective con-
struction of this sterically congested quaternary center!'”! is
the critical step in the total synthesis of these alkaloids.
Although numerous asymmetric total syntheses of these
alkaloids have been reported,” % only the groups of Trost,"*”!
and Fan,'* as well as that of Zhou and Xie,' have recently
achieved catalytic asymmetric synthesis of galanthamine (1)
and related alkaloids.

To explore a new strategy for the effective construction of
polycyclic ring systems and a new method for the catalytic
asymmetric establishment of the crucial chiral all-carbon
quaternary stereocenter, a retrosynthetic analysis of 1 and 2 is
outlined in Scheme 3. We envisioned that both 1 and 2 could

ketone-lactone
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Scheme 3. Retrosynthetic analysis for 1 and 2. Boc =tert-butoxycar-
bonyl, TES =triethylsilyl.

be derived from the same advanced intermediate 3. The
tetracyclic compound 3 could be generated from the tricyclic
compound 4 by intramolecular ketone-lactone condensation.
In turn, 4 could be accessed from 5 by key catalytic
asymmetric Michael addition with methyl vinyl ketone
(MVK). The benzofuranone 5 should be readily prepared
by oxidation of 34-fused benzofunan 6, which could be
derived from 7 by a novel palladium-catalyzed annulation
reaction.

We firstly examined the feasibility of our strategy for the
synthesis of 3,4-fused benzofuran by an intramolecular
Larock annulation reaction (Scheme 4).'%* A variety of
reaction conditions were screened and we found that under
the reaction conditions of [Pd,(dba);]-CHCl; (5 mol %) and

OMe
o Tse
Ts = [Pdx(dba)3]*CHClI3 (5 mol%) N
°N P(tBu)3*HBF 4 (20 mol%)

I - N
K,CO3, DMF, 100 °C O 5 O OMe
95%
OH 8a 9a

Scheme 4. Realization of the intramolecular Larock annulation reac-
tion. dba=dibenzylideneacetone, Ts =4-toluenesulfonyl, DMF = N,N-
dimethylformamide.

P(rBu);HBF, (20 mol %) at 100°C, the desired product 9a
was obtained in 95% yield (see the Supporting Informa-
tion).”” The substrate scope of this reaction was subsequently
examined. The transformation was found to be quite general,
and a variety of 3,4-fused benzofurans containing either

carbon, oxygen, or nitrogen tethers were obtained in reason-
able yields (Table 1).

Table 1: Synthesis of 3,4-fused benzofurans.!

[Pdy(dba)s]-CHCls (5 mol%)

Y P(tBu)a*HBF (20 mol%) Y
RN
@i N R KoCOj3 (5 equiv) N_r
- DMF, 100 °C, 1 h o
8 c=0.01m 0
MeO,C_ CO,Me
TsN TsN
I\ OMe | D—TES | D—1Mms
o o o
9a, 95% 9b, 88% 9c, 82%

o
9g, 95% 9h, 67% 9i, 48%
Me0,C $OMe
() {
LSO &* l o
o o
9j, 41% 9k, 68% 91, 50%
Me
OMe I \ OMe
OMe
OMe  gm, 88% Me 9n,27% 90: R = Boc, 89%

9p: R = CO,Me, 92%

[a] Yields are those of the isolated products. TMS =trimethylsilyl.

We then set out to apply this method to the assembly of
the ABD ring system of 1 and 2 (Scheme 5). Reductive
coupling of the known aldehyde 10”9 and amine 11,** and
subsequent protection with Boc,O provided 7 in 81 % yield.
Treatment of 7 under our aforementioned reaction conditions
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Scheme 5. Construction of ring B/D in the tricyclic synthon. m-CPBA=
meta-chloroperoxybenzoic acid, TBAF =tetra-n-butylammonium fluo-
ride.

successfully afforded the 3,4-fused benzofuran 12 in 89%
yield. Removal of the TES group in 12 with TBAF (95%),
and subsequent oxidation with m-CPBA, afforded 5 in 56 %
yield.

After successful construction of the ABD ring system, we
turned our attention to the construction of the chiral all-
carbon quaternary stereocenter in 1 and 2. Although a few
catalytic enantioselective conjugate additions of 3-substituted
benzofuranones were reported,?!! to the best of our knowl-
edge, the catalytic enantioselective conjugate addition of 3-
alkyl-substituted benzofuranone to MVK has not been
reported.

Initially, various amine-thiourea or urea bifunctional
organocatalysts were screened for the conjugate addition of
5 to MVK. However, the highest enantioselectivity obtained
was 55% ee (see the Supporting Information). These results
prompted us to investigate alternative catalytic reaction
systems. Inspired by the recent work of Feng and co-work-
ers,”” we turned our attention to examining an asymmetric
Michael addition using the chiral metal/N,N'-dioxide com-
plexes. As described in Table 2, we initially investigated the
Michael addition, in CH,Cl, at room temperature, catalyzed
by Yb(OTY),/13 complexes (entries 1-3). But only Yb(OTT),/
13¢ gave the desired product 4 in 10% yield with 42% ee
(entry 3). When the solvent was changed to ethanol, 4 was
obtained in higher yield (33 % ) with similar ee value (entry 4).
However, when Sc(OTf); was used instead of Yb(OTf); at
room temperature, the reaction proceeded smoothly to afford
41in 85 % yield with 93 % ee (entry 5). Additionally, when the
reaction was run at 10°C, 4 was obtained in 85% yield with
94% ee (entry 6). Under the aforementioned reaction con-
ditions, conjugate additions of several 3-alkyl-substituted
benzofuranones to MVK were investigated. The results
showed that both the yield and the ee values were excellent
(Table 3).

With 4 in hand, we proceeded with the total synthesis of
1 (Scheme 6). Treatment of 4 with LDA yielded the cycliza-
tion product 3 in 95 % yield. Subsequent direct reduction of
the 3 with Et;SiH provided the (3-alcohol 16 in 73 % yield and
a-alcohol 17 in 12 % yield, with the simultaneous reduction of
ketone and removal of the Boc group.® Selective protection
of the amine in 16 and 17 with methyl chloroformate and
subsequent oxidiation with Dess—Martin periodinane pro-
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Table 2: Michael addition catalyzed by Lewis acid/N,N’-dioxide com-
plexes.®!

@oc
N catalyst 13 (5.5 mol%)
o) Lewis acid (5 mol%)
- .
* A
solvent
o O RT, 3 days
MeO 5

?@Nw
@@ A @ @

Entry  Lewis acid Ligand  Solvent  Yield [%]"  ee [%]1
1 Yb(OTf), 13a CH,Cl, n.r. -
2 Yb(OTf), 13b CH,Cl, nr. -
3 Yb(OTH), 13c CH,Cl, 10 £
4 Yb(OTF), 13c EtOH 33 38
5 Sc(OTf), 13c EtOH 85 93
6l Sc(OTf),  13c EtOH 85 94

[a] Reaction conditions: 5 (0.1 mmol), MVK (0.15 mmol), solvent
(0.3 mL). [b] Yield of isolated product. [c] Determined by HPLC using
a chiral stationary phase. [d] The reaction was run at 10°C. n.r.=no
reaction, Tf=trifluoromethanesulfonyl.

Table 3: Substrate scope of the asymmetric Michael reaction.”!

@@:/Y

_Sc(OTN/3c

EtOH, RT

15a:t=10h
84% yield, 90% ee

15b:t=5h
92% yield, 90% ee

15c:t=24h
86% yield, 91% ee

16d:t=24h
83% yield, 91% ee

[a] Reaction conditions: 14 (0.1 mmol), MVK (0.15 mmol), EtOH
(0.3 mL). Yields are those of the isolated products. Enantiomeric excess
was determined by HPLC using a chiral stationary phase.

vided the known ketone 18, the key intermediate in Fan’s
total synthesis of 1, in 75% yield over three steps. The
physical properties (‘"H and *C NMR spectra, MS data, and
[a]lp) of 18 are consistent with those described in the
literature.™ Treatment of 18 with TMSOTf and Et;N
provided the corresponding silyl enol ether, which was
oxidized under Saegusa conditions to give the enone 19 in
67 % yield. Finally, 19 was readily converted into 1 in a two-
step sequence.["’!

After completion of the synthesis of 1, we turned our
attention to the synthesis of 2 (Scheme 7). Considering the
lower yield in the conversion of 3 into 17 (Scheme 6), we tried
to develop a more efficient approach. Thus, stereoselective
reduction of 3 with L-selectride gave the sole a-alcohol 20 in
91 % yield. Reduction of 20 with Et;SiH provided 17 in 88 %
yield. Reaction of 17 and formaldehyde under standard
reaction conditions [NaBH,, NaBH;CN or NaBH(OAc);]
gave 2 in only 30-40% yield. Methylation of 17 under
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Me
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— T
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RT, overnight . 0°C ‘0' 45°C o B
67% (2 steps) MeO H 60% (2 steps) MeO H OH
19 (-)-galanthamine (1)

Scheme 6. Synthesis of 1. DMP = Dess—Martin periodinane, LDA=
lithium diisopropylamide, THF =tetrahydrofuran.

Eoc
L-selectride BF3°Et,0, Et3SiH
5 THF.-78°C CH:CN
91% / 88%
MeO OH OH MeO
20 17
CH,0/H,0 KoCO4
HCO,H MeOH/H,0
CHCl3 84% (2 steps) 7
by o L
60 °C vy H OH

(—)-lycoramine (2)

Scheme 7. Synthesis of 2.

Eschweiler—Clarke conditions (HCO,H, HCHO, reflux)?"
and subsequent treatment of the resulting product with
K,CO5/MeOH/H,0 afforded 2 in 84 % yield over two steps.

In summary, an asymmetric total synthesis of both (—)-
galanthamine (1) and (—)-lycoramine (2) have been achieved
based on a conceptually new strategy by employing two
metal-catalyzed reactions. A new method for the construction
of 3,4-fused tricyclic benzofurans, the core structure of
a variety of bioactive important natural products, has been
developed using a palladium-catalyzed intramolecular Larock
annulation reaction. In addition, a Sc"/N,N'-dioxide complex
catalyzed the enantioselective conjugate addition reaction of
3-alkyl-substituted benzofuranone to MVK for the construc-
tion of a quaternary carbon center was developed for the first
time.

Keywords: alkaloids - asymmetric catalysis - natural products -
palladium - total synthesis
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