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Abstract: The 1,4-diazabicyclic ACHTUNGTRENNUNG[2.2.2]octane
(DABCO)-catalyzed intermolecular Rauhut–Curri-
er reaction of maleimides with electron-deficient al-
lenes has been investigated, affording the corre-
sponding products in good to high yields under
mild conditions. The first example of a b-isocuprei-
dine (b-ICD)-catalyzed highly enantioselective in-
termolecular Rauhut–Currier reaction of male-ACHTUNGTRENNUNGimides with allenoates and penta-3,4-dien-2-one has
been also developed, allowing the synthesis of opti-
cally active functionalized allene derivatives in
good to high yields along with good to excellent
enantioselectivities.

Keywords: allenes; chiral g-butenolides; 1,4-
diazabicyclic ACHTUNGTRENNUNG[2.2.2]octane (DABCO); enantioselec-
tivitve Rauhut–Currier reaction; b-isocupreidine (b-
ICD); maleimides

The Rauhut–Currier (RC) reaction, also known as vi-
nylogous Morita–Baylis–Hillman (MBH) reaction, in-
volves the coupling of one active alkene/latent eno-
late to a second Michael acceptor, producing a new
C�C bond between the a-position of one activated
alkene and the b-position of a second alkene under
the catalysis of a nucleophilic species.[1] This reaction
was first reported by Rauhut and Currier in 1963 in
the dimerization of electron-deficient alkenes cata-
lyzed by tertiary phosphine.[1b] A few years later, a
series of phosphine-catalyzed intermolecular RC reac-
tions was subsequently explored, demonstrating the
wide synthetic utility of this reaction.[2] Moreover, in
1986, Amri and Villieras[3] first disclosed that tertiary
amines such as 1,4-diazabicyclic ACHTUNGTRENNUNG[2.2.2]octane
(DABCO) could also efficiently catalyze the intermo-

lecular RC reactions under mild conditions and since
then, this type of tertiary amine-catalyzed intermolec-
ular RC reactions has been further developed by Ba-
savaiah and co-workers as well as other researchers
during the last decades.[4] The first asymmetric version
of an intermolecular Rauhut–Currier reaction was
presented by Wang and co-workers using a Cinchona
alkaloid thiourea as a catalyst in a novel asymmetric
Michael–Michael cascade reaction of trans-3-(2-mer-
captophenyl)-2-propenoic acid ethyl ester with trans-
b-nitrostyrene in 2008.[5] Almost at the same time,
scandium triflate [Sc ACHTUNGTRENNUNG(OTf)3] combined with (R,R)-Ph-
pybox was used as a catalyst by Scheidt and co-work-
ers in an intermolecular RC reaction of silyloxyal-
lenes with a,b-unsaturated ketones, affording the cor-
responding product in 72% yield, 20:1 (Z :E) and
70% ee.[6] However, to the best of our knowledge,
there has been no report on the asymmetric intermo-
lecular RC reaction involving electron-deficient al-
kenes with allenes promoted by the amine-based or-
ganocatalyst, although enantioselective intramolecular
RC-type reactions have achieved a great progress in
recent years.[7,8] In this paper, we would like to dis-
close the application of quinidine-derived b-isocuprei-
dine (b-ICD) as organocatalyst for the asymmetric in-
termolecular RC reaction of maleimides with elec-
tron-deficient allenes, giving the corresponding prod-
ucts in high yields and good to high ee values under
mild conditions.

We initiated our investigations by seeking the best
conditions for the intermolecular RC reaction be-
tween maleimide 1a and ethyl allenoate 2a. After
screening of the catalysts and investigating the effects
of solvent, reaction time and temperature on the reac-
tion outcomes, we determined that the optimized re-
action conditions are to carry out the reaction in 1,4-
dioxane at room temperature for 3 h using DABCO
(20 mol%) as the catalyst [Scheme 1, Eq. (a)] (see
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Table SI-1 in the Supporting Information for details).
Under the optimal reaction conditions, we next set
out to examine the scope and limitations of this reac-
tion using various maleimides 1 and electron-deficient
allenes 2 and it was found that all of these N-alkyl-,
N-aryl-, and N-benzyl-substituted maleimides 1 could
react with 2 smoothly to give the corresponding RC
products 3 in moderate to good yields (62–96%)
under the standard conditions [Scheme 1, Eq. (b)]
(see Table SI-2 in the Supporting Information for de-
tails).

In view of our results on the intermolecular RC re-
actions of maleimides 1 with allenoates and penta-3,4-
dien-2-one effectively catalyzed by DABCO, the next
logical step was to investigate the asymmetric version
of this reaction by using nitrogen-containing chiral or-
ganocatalysts (Figure 1). First, quinidine and quinine
were used as the catalysts in this RC reaction of 1a
with 2a. We found that using quinidine (20 mol%) as
the catalyst afforded 3aa in 65% yield along with
66% ee in 1,4-dioxane at 25 8C for 7 days (Table 1,
entry 1); using quinine as the catalyst, a similar result
was obtained, giving 3aa in 63% yield and 61% ee
with the reversed absolute configuration (determined
by chiral HPLC) under the same reaction conditions
(Table 1, entry 2). Gratifyingly, it was found that b-
ICD was the more effective catalyst in this reaction,
giving 3aa in 93% yield and 81% ee within 16 h
(Table 1, entry 3). Catalyst LB1 synthesized from b-
ICD by protecting the OH group with tert-butyl-ACHTUNGTRENNUNG(diphenyl)chlorosilane (TBDPSCl) could not catalyze
this reaction under the standard conditions, suggesting
that the C-6’-OH group of b-ICD is very important
for the reaction (Table 1, entry 4). Another Cinchona
alkaloid-derived catalyst LB2 was also examined in
this reaction, giving 3aa in 92% yield and 71% ee
within one day (Table 1, entry 5).

Using b-ICD (20 mol%) as the catalyst, we next ex-
amined the solvent effects and reaction temperature
on the reaction outcome to further optimize the reac-
tion conditions. In solvents such as CH2Cl2 (DCM),
THF, toluene, CH3CN and Et2O, the corresponding
product 3aa was obtained in moderate to high yields
(from 68% to 96%) but with lower ee values (from
29% to 75%) (Table 1, entries 6–10). Protic solvents
such as methanol were not suitable media for this re-
action, affording complex product mixtures (Table 1,
entry 11). In the mixed solvent system CH2Cl2/diox-
ane=1:2 (v/v), 3aa was forme3d in 93% yield and
88% ee after 24 h (Table 1, entries 3 vs. 12) and no
improvement was observed when the reaction was
carried out at �20 8C (Table 1, entry 13). On further
decreasing the reaction temperature to �40 8C and
using the mixed solvent system CH2Cl2/dioxane =3:2
(v/v), 3aa was obtained in 85% yield and up to 90%
ee (Table 1, entry 14). Since 1,4-dioxane will freeze at
lower temperature in the reaction system, DCM was
used as the solvent instead of 1,4-dioxane to accurate-
ly examine the temperature effect. Upon decreasing
the reaction temperature from to 0 8C to �20 8C or
�40 8C, we found that 3aa could be obtained in up to
92% yield and 96% ee when the reaction was carried
out at �20 8C within 24 h (Table 2, entries 15–17). Re-
ducing the employed amount of b-ICD from 20 mol%
to 10 mol% or 5 mol% resulted in the same reaction
outcomes (Table 1, entries 18 and 19). Therefore, the
best reaction conditions have been identified as those

Figure 1. Nitrogen-containing chiral organocatalysts
screened.

Scheme 1. DABCO-catalyzed RC reactions of maleimides 1
with allenes 2.
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using 5 mol% of b-ICD as the catalyst and carrying
out the reaction in CH2Cl2 at �20 8C for 24 h.

With these optimal reaction conditions in hand, we
subsequently turned our attention to examine the sub-
strate scope of this interesting asymmetric RC reac-
tion with respect to a variety of maleimides and elec-
tron-deficient allenes. The results of these experi-
ments are summarized in Table 2. As can be seen
from Table 2, N-benzylmaleimide 1a and a variety of
N-benzylmaleimide derivatives 1b–1i having electron-
rich or electron-poor aromatic groups on their R1

groups or N-2-thienylmethylmaleimide 1j bearing a
heteroaromatic group as its R1 group could react with
electron-deficient allenes 2a, 2b and 2d smoothly to
give the corresponding RC products 3bb–3pp in good
to high yields along with 91–98% enantiomeric ex-
cesses (Table 2, entries 1–16). In the cases of male-ACHTUNGTRENNUNGimides 1k–1r in which R1 are aromatic groups, the re-

action should be carried out at �60 8C in DCM for
72 h, affording the corresponding products 3qq–3yy in

Table 1. Optimization of the reaction conditions in the asymmetric RC reaction of 1a
with 2a.[a]

[a] The reaction was carried out on a 0.15 mmol scale, and the ratio of 1/2 was 1.0/2.0.
[b] Isolated yields.
[c] Determined by chiral HPLC.
[d] 10 mol% b-ICD was used.
[e] 5 mol% b-ICD was used.

Figure 2. ORTEP drawing of 3ww.
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68–91% yields and 72–85% ee values (Table 2, en-
tries 17–25). A single recrystallization of 3ww with
85% ee from DCM/petroleum ether (1:4) afforded
the corresponding product in nearly enantiomeric
pure product (99% ee), indicating that a simple re-
crystallization can improve the enanatiomeric excess
of the obtained product (Table 2, entry 23). As for N-
H maleimide 1s, as well as the N-alkylmaleimide de-
rivatives 1t and 1u, the reactions also proceeded
smoothly to give the corresponding RC products 3zz
and 4aa–4cc in 68–86% yields along with 73–81%

enantiomeric excesses at �60 8C (Table 2, entries 26–
29). The relatively lower yields and enantiomeric ex-
cesses for entries 17–29 in Table 2 were presumably
due to the electronic and steric effects of N-aryl- or
N-alkylmaleimides 1k–1u.

The absolute configuration of products 3 or 4 was
unambiguously assigned as the S-configuration on the
basis of the X-ray crystallographic analysis of product
3ww which has two bromine atoms on the aromatic
ring (Figure 2).

Table 2. Substrate scope of the asymmetric RC reaction of maleimides 1 with electron-defi-
cient allenes 2 catalyzed by b-ICD[a] .

[a] The reaction was carried out on a 0.15-mmol scale with 5 mol% b-ICD under Ar in
CH2Cl2 (1.0 mL) at �20 8C for 24 h and the ratio of 1/2 was 1.0/2.0.

[b] Isolated yields.
[c] Determined by chiral HPLC analysis.
[d] Absolute configuration was determined by X-ray diffraction of 3ww (see the Supporting

Information).
[e] The reaction was carried out at �60 8C for 72 h.
[f] The yields and ee values were obtained by carrying out the reactions at �20 8C for 24 h.
[g] The ee value in the parenthesis was that of 3ww after a single recrystallization.
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To illustrate the synthetic utility of the thus ob-
tained optically active RC reaction products 3 or 4,
the further transformation of 3aa or 3nn was per-
formed in the presence of transition metal catalysts
(Scheme 2). As shown in Scheme 2, the FeCl3/PdCl2-
cocatalyzed coupling cyclization[9] of optically active
RC product 3aa (96% ee) with allylic bromide afford-
ed the corresponding b-allylic substituted g-buteno-
lide derivative 5 in 84% isolated yield with ee value
retained. Optically active product 3nn could be also
readily transformed into the corresponding function-
alized furan derivative 6 in 99% yield with ee value
retained in acetonitrile by the silver-catalyzed rear-
rangement of the allenic moiety.[10] Furthermore, iso-
merization of product 3 catalyzed by PPh3 has been
also performed in toluene and the result has been
summarized in Scheme SI-1 in the Supporting Infor-
mation.

Based on the above experimental findings and pre-
vious mechanistic studies,[11] we propose a plausible
mechanism of b-ICD-catalyzed asymmetric RC reac-
tion in Scheme 3. The enolate A is generated upon
nucleophilic addition of b-ICD to the allenic sub-
strate, which is stabilized by the C-6’-OH group of b-
ICD via an intramolecular hydrogen bonding interac-
tion. The subsequent 1,4-addition of A with malei-
mide 1 leads to the formation of zwitterionic inter-
mediate B. The following proton transfer is the key
step (rate-determining step) on the basis of previous
literature.[12] We believe that the acidic proton of the
C-6’-OH group serves as a “proton shuttle” to facili-
tate the intramolecular proton transfer from the a-
carbon to the oxygen anion. A plausible transition-
state model C indicating the favorable key proton
transfer step via intramolecular proton relay is also
shown in Scheme 3. This proton transfer step also
likely differentiates the four diastereomers of B and

the major stereoisomer has been indicated in
Scheme 3, leading to the production of the desired
isomer D, which is then isomerized to intermediate E.
Finally, intermediate E undergoes b-elimination to
afford the RC adduct 3 or 4 and regenerate b-ICD at
the same time to complete the catalytic cycle.

In summary, we have developed an efficient
DABCO-catalyzed intermolecular Rauhut–Currier re-
action of maleimides with electron-deficient allenes to
afford the corresponding products in good to high
yields under mild conditions. Furthermore, the first
example of the highly enantioselective intermolecular
Rauhut–Currier reaction of maleimides with alle-
noates and penta-3,4-dien-2-one has also been dis-
closed to produce the corresponding functionalized
allenic derivatives in good to high yields along with
good to excellent enantioselectivities in the presence
of b-ICD (5 mol%) in CH2Cl2 at �20 8C or �60 8C.
These chiral functionalized allenic derivatives can be
further transformed to the corresponding chiral g-bu-
tenolide derivatives and furan derivatives in good
yields in the presence of transition metal catalysts.

Experimental Section

General Procedure for the DABCO- or b-ICD-
Catalyzed Intermolecular Rauhut–Currier Reaction
of Maleimide 1 with Electron-deficient Allene 2

Maleimide 1 (0.15 mmol), allene 2 (0.30 mmol), DABCO
(0.030 mmol) or b-ICD (0.0075 mmol), and 1,4-dioxane or
dichloromethane (1.0 mL) were added into a Schlenk tube.
The reaction mixture was stirred at room temperature for
3 h or at �20 8C for 24 h, the solvent was removed under re-
duced pressure, and the residue was purified by flash
column chromatography (PE/EA= 4/1–2/1).

Scheme 2. Further transformation of the obtained chiral Rauhut–Currier reaction products 3aa and 3nn.
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Supporting Information

Experimental procedures, chiral HPLC traces, and spectro-
scopic data for all new compounds, X-ray crystal structure
and CIF data for 3 ww are available in the Supporting Infor-
mation.
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