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Abstract: The 1,4-diazabicyclic[2.2.2]octane
(DABCO)-catalyzed intermolecular Rauhut-Curri-
er reaction of maleimides with electron-deficient al-
lenes has been investigated, affording the corre-
sponding products in good to high yields under
mild conditions. The first example of a B-isocuprei-
dine (B-ICD)-catalyzed highly enantioselective in-
termolecular Rauhut-Currier reaction of male-
imides with allenoates and penta-3,4-dien-2-one has
been also developed, allowing the synthesis of opti-
cally active functionalized allene derivatives in
good to high yields along with good to excellent
enantioselectivities.

Keywords: allenes; chiral y-butenolides; 1,4-
diazabicyclic[2.2.2]octane (DABCO); enantioselec-
tivitve Rauhut—Currier reaction; f-isocupreidine (-
ICD); maleimides

The Rauhut-Currier (RC) reaction, also known as vi-
nylogous Morita-Baylis—Hillman (MBH) reaction, in-
volves the coupling of one active alkene/latent eno-
late to a second Michael acceptor, producing a new
C—C bond between the a-position of one activated
alkene and the p-position of a second alkene under
the catalysis of a nucleophilic species.!! This reaction
was first reported by Rauhut and Currier in 1963 in
the dimerization of electron-deficient alkenes cata-
lyzed by tertiary phosphine.'"™ A few years later, a
series of phosphine-catalyzed intermolecular RC reac-
tions was subsequently explored, demonstrating the
wide synthetic utility of this reaction.”) Moreover, in
1986, Amri and Villieras® first disclosed that tertiary
amines such as  1,4-diazabicyclic[2.2.2]octane
(DABCO) could also efficiently catalyze the intermo-
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lecular RC reactions under mild conditions and since
then, this type of tertiary amine-catalyzed intermolec-
ular RC reactions has been further developed by Ba-
savaiah and co-workers as well as other researchers
during the last decades.!*! The first asymmetric version
of an intermolecular Rauhut-Currier reaction was
presented by Wang and co-workers using a Cinchona
alkaloid thiourea as a catalyst in a novel asymmetric
Michael-Michael cascade reaction of trans-3-(2-mer-
captophenyl)-2-propenoic acid ethyl ester with trans-
B-nitrostyrene in 2008.°' Almost at the same time,
scandium triflate [Sc(OTf);] combined with (R,R)-Ph-
pybox was used as a catalyst by Scheidt and co-work-
ers in an intermolecular RC reaction of silyloxyal-
lenes with o,fp-unsaturated ketones, affording the cor-
responding product in 72% yield, 20:1 (Z:E) and
70% ee.l! However, to the best of our knowledge,
there has been no report on the asymmetric intermo-
lecular RC reaction involving electron-deficient al-
kenes with allenes promoted by the amine-based or-
ganocatalyst, although enantioselective intramolecular
RC-type reactions have achieved a great progress in
recent years.”® In this paper, we would like to dis-
close the application of quinidine-derived 3-isocuprei-
dine (B-ICD) as organocatalyst for the asymmetric in-
termolecular RC reaction of maleimides with elec-
tron-deficient allenes, giving the corresponding prod-
ucts in high yields and good to high ee values under
mild conditions.

We initiated our investigations by seeking the best
conditions for the intermolecular RC reaction be-
tween maleimide la and ethyl allenoate 2a. After
screening of the catalysts and investigating the effects
of solvent, reaction time and temperature on the reac-
tion outcomes, we determined that the optimized re-
action conditions are to carry out the reaction in 1,4-
dioxane at room temperature for 3 h using DABCO
(20 mol%) as the catalyst [Scheme 1, Eq. (a)] (see
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(a) /Bn
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o DABCO N o
NeBn + (20 mol%) EtOOC
COOEt 1,4-dioxane,
5 rt,3h
1a 2a 3a, 85% yield
(b) R!
0 o N
DABCO o
I N-R! + ¢\ (20 mol%) R20C
COR? 1,4-dioxane,
o rt,3h
1 2

—96% Vi
R' = alkyl, aryl, benzyl, H 3, 62-96% yield

R2 = OEt, O-i-Pr, O-t-Bu, Me

Scheme 1. DABCO-catalyzed RC reactions of maleimides 1
with allenes 2.

Table SI-1 in the Supporting Information for details).
Under the optimal reaction conditions, we next set
out to examine the scope and limitations of this reac-
tion using various maleimides 1 and electron-deficient
allenes 2 and it was found that all of these N-alkyl-,
N-aryl-, and N-benzyl-substituted maleimides 1 could
react with 2 smoothly to give the corresponding RC
products 3 in moderate to good yields (62-96%)
under the standard conditions [Scheme 1, Eq. (b)]
(see Table SI-2 in the Supporting Information for de-
tails).

In view of our results on the intermolecular RC re-
actions of maleimides 1 with allenoates and penta-3,4-
dien-2-one effectively catalyzed by DABCO, the next
logical step was to investigate the asymmetric version
of this reaction by using nitrogen-containing chiral or-
ganocatalysts (Figure 1). First, quinidine and quinine
were used as the catalysts in this RC reaction of 1a
with 2a. We found that using quinidine (20 mol%) as
the catalyst afforded 3aa in 65% yield along with
66% ee in 1,4-dioxane at 25°C for 7 days (Table 1,
entry 1); using quinine as the catalyst, a similar result
was obtained, giving 3aa in 63% yield and 61% ee
with the reversed absolute configuration (determined
by chiral HPLC) under the same reaction conditions
(Table 1, entry 2). Gratifyingly, it was found that (-
ICD was the more effective catalyst in this reaction,
giving 3aa in 93% yield and 81% ee within 16 h
(Table 1, entry 3). Catalyst LB1 synthesized from f3-
ICD by protecting the OH group with tert-butyl-
(diphenyl)chlorosilane (TBDPSCI) could not catalyze
this reaction under the standard conditions, suggesting
that the C-6'-OH group of B-ICD is very important
for the reaction (Table 1, entry 4). Another Cinchona
alkaloid-derived catalyst LB2 was also examined in
this reaction, giving 3aa in 92% yield and 71% ee
within one day (Table 1, entry 5).
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Figure 1. Nitrogen-containing chiral

screened.

organocatalysts

Using B-ICD (20 mol%) as the catalyst, we next ex-
amined the solvent effects and reaction temperature
on the reaction outcome to further optimize the reac-
tion conditions. In solvents such as CH,Cl, (DCM),
THEF, toluene, CH;CN and Et,O, the corresponding
product 3aa was obtained in moderate to high yields
(from 68% to 96%) but with lower ee values (from
29% to 75%) (Table 1, entries 6-10). Protic solvents
such as methanol were not suitable media for this re-
action, affording complex product mixtures (Table 1,
entry 11). In the mixed solvent system CH,Cl,/diox-
ane=1:2 (v/v), 3aa was forme3d in 93% yield and
88% ee after 24 h (Table 1, entries 3 vs. 12) and no
improvement was observed when the reaction was
carried out at —20°C (Table 1, entry 13). On further
decreasing the reaction temperature to —40°C and
using the mixed solvent system CH,Cl,/dioxane=3:2
(v/v), 3aa was obtained in 85% yield and up to 90%
ee (Table 1, entry 14). Since 1,4-dioxane will freeze at
lower temperature in the reaction system, DCM was
used as the solvent instead of 1,4-dioxane to accurate-
ly examine the temperature effect. Upon decreasing
the reaction temperature from to 0°C to —20°C or
—40°C, we found that 3aa could be obtained in up to
92% yield and 96% ee when the reaction was carried
out at —20°C within 24 h (Table 2, entries 15-17). Re-
ducing the employed amount of $-ICD from 20 mol%
to 10 mol% or 5 mol% resulted in the same reaction
outcomes (Table 1, entries 18 and 19). Therefore, the
best reaction conditions have been identified as those

Adv. Synth. Catal. 2011, 353, 1973-1979


http://asc.wiley-vch.de

Enantioselective Intermolecular Rauhut—Currier Reaction of Electron-Deficient Allenes

Advanced
Synthesis &
Catalysis

Table 1. Optimization of the reaction conditions in the asymmetric RC reaction of 1a

with 2a.[
o /Bn
ON
I NeBn + Cat(0mol%)  _ iooc o
COOEt solvent, T (°C), t (h)
(0]
2a
1a 3aa
. . Yield [%]®]  ee [%]
Entry Catalyst Solvent Temp. [°C] Time [h] 3aa 3aa
1 quinidine dioxane 25 168 65 66
2 quinine dioxane 25 168 63 -61
3 p-ICD dioxane 25 16 93 81
4 LB1 dioxane 25 24 trace -
5 LB2 dioxane 25 24 92 71
6 B-1CD DCM 25 16 93 75
7 B-ICD THF 25 16 86 67
8 B-1CD toluene 25 16 68 69
9 B-ICD CH3;CN 25 16 90 29
10 p-ICD Et,O 25 16 96 50
11 p-ICD MeOH 25 16 complex -
DCM/dioxane
12 B-ICD = 1:2 (Vv) 0 24 93 88
DCM/dioxane
13 p-ICD = 1:2 (viv) -20 24 89 88
DCM/dioxane
14 B-ICD =32 (Viv) -40 24 85 90
15 B-ICD DCM 0 24 93 92
16 p-ICD DCM —20 24 92 96
17 B-ICD DCM —40 24 91 96
1gld] p-ICD DCM -20 24 92 96
190l B-ICD DCM -20 24 92 96

[ The reaction was carried out on a 0.15 mmol scale, and the ratio of 1/2 was 1.0/2.0.

I Isolated yields.

[l Determined by chiral HPLC.
[ 10 mol% B-ICD was used.

el 5 mol% B-ICD was used.

using 5 mol% of B-ICD as the catalyst and carrying
out the reaction in CH,Cl, at —20°C for 24 h.

With these optimal reaction conditions in hand, we
subsequently turned our attention to examine the sub-
strate scope of this interesting asymmetric RC reac-
tion with respect to a variety of maleimides and elec-
tron-deficient allenes. The results of these experi-
ments are summarized in Table 2. As can be seen
from Table 2, N-benzylmaleimide 1a and a variety of
N-benzylmaleimide derivatives 1b-1i having electron-
rich or electron-poor aromatic groups on their R
groups or N-2-thienylmethylmaleimide 1j bearing a
heteroaromatic group as its R' group could react with
electron-deficient allenes 2a, 2b and 2d smoothly to
give the corresponding RC products 3bb-3pp in good
to high yields along with 91-98% enantiomeric ex-
cesses (Table 2, entries 1-16). In the cases of male-
imides 1k—1r in which R' are aromatic groups, the re-
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action should be carried out at —60°C in DCM for
72 h, affording the corresponding products 3qq-3yy in

Figure 2. ORTEP drawing of 3ww.
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Table 2. Substrate scope of the asymmetric RC reaction of maleimides 1 with electron-defi-
cient allenes 2 catalyzed by B-ICD!,

R1
0 O N
-ICD (5 mol% o)
N-R' + P-ICD ( ) R20C
COR2  CHCly, —20 °C, 24 h
0 2
3or4
Entry R? R2 Yield [%]®! ee [%]lcd]
1 1a, Bn 2a, OEt 3aa, 92 96 (S)
2 1b, (CgHs),CH 2a, OFt 3bb, 99 96 (S)
3 1¢, 1-naphthalenemethyl 2a, OEt 3cc, 97 98 (S)
4 1d, 4-MeOCgH,CH, 2a, OFt 3dd,92 94 (S)
5 1e, 3-MeOCgH4CH; 2a, OEt 3ee, 96 96 (S)
6 1f, 3, 4-(MeO),CeH3CH> 2a, OEt 3ff, 93 96 (S)
7 19, 4-BrCgH,CH; 2a, OEt 3gg, 98 92 (S)
8 1h, 4-FCeH,CH, 2a, OFEt 3hh, 94 94 (S)
9 1i, (4-BrCeH,)2CH 2a, OEt 3ii, 89 95 (S)
10 1j, 2-thienylmethyl 2a, OEt 3jj, 93 95 (S)
11 1b, (CgHs),CH 2b, O-i-Pr 3kk, 89 91 (S)
12 1¢, 1-naphthalenemethyl 2b, O-i-Pr 3l1, 91 95 (S)
13 1a, Bn 2b, O-i-Pr 3mm, 77 91 (S)
14 1a, Bn 2d, Me 3nn, 89 96 (S)
15 1d, 4-MeOCgH,CH, 2d, Me 300, 92 96 (S)
16 19, 4-BrCgH,CH> 2d, Me 3pp, 86 95 (S)
17 1k, Ph 2a, OFt 3qq, 70l 84lf g82tel 73If(S)
18 11, 4-MeOCgH,4 2a, OFEt 3rr, 900, 85!l g1tel 7101 (s)
19 1m, 3,5-(MeO),CeHs 2a, OFt 3ss, 88le], 921 83lel 7501 (S)
20 1n, 3-MeCgH,4 2a, OFt 3tt, 90le], gelfl s[el 751 (S)
21 10, 4-NO,CgHy 2a, OEt 3uu, 88l¢l, golf 72lel 5711 (S)
22 1p, 4-CICgH, 2a, OEt 3vv, 91(¢], 911f gotel, 6711 (S)
23 1q, 2,6-BryCeHs 2a, OEt 3ww, 91l¢] 85l¢l (99)ldl (S)
24 1r, 2,4,6-Br3CgHy 2a, OFEt 3xx, 83l 751 (S)
25 1k, Ph 2b, O-i-Pr 3yy, 68/°] 73€1(S)
26 1s, H 2a, OEt 32z, 81le] 92If g1lel 7211 (s)
27 1t, Me 2a, OFEt 4aa, 84l¢] golf 78lel, 6711 (S)
28 1u, Q\ 2a, OFEt 4bb, 86lel, 8711 751€, 5511 (S)
29 1u, Q\ 2¢, O-t-Bu 4cc, 68! 736l (3)

(@] The reaction was carried out on a 0.15-mmol scale with 5mol% B-ICD under Ar in

CH,CI, (1.0 mL) at
I Isolated yields.
[l Determined by chiral HPLC analysis.

—20°C for 24 h and the ratio of 1/2 was 1.0/2.0.

4l Absolute configuration was determined by X-ray diffraction of 3ww (see the Supporting

Information).
[l The reaction was carried out at

—60°C for 72 h.
' The yields and ee values were obtained by carrying out the reactions at

—20°C for 24 h.

el The ee value in the parenthesis was that of 3ww after a single recrystallization.

68-91% yields and 72-85% ee values (Table 2, en-
tries 17-25). A single recrystallization of 3ww with
85% ee from DCM/petroleum ether (1:4) afforded
the corresponding product in nearly enantiomeric
pure product (99% ee), indicating that a simple re-
crystallization can improve the enanatiomeric excess
of the obtained product (Table 2, entry 23). As for N-
H maleimide 1s, as well as the N-alkylmaleimide de-
rivatives 1t and 1lu, the reactions also proceeded
smoothly to give the corresponding RC products 3zz
and 4aa—4cc in 68-86% yields along with 73-81%

1976 asc.wiley-vch.de
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enantiomeric excesses at —60°C (Table 2, entries 26—
29). The relatively lower yields and enantiomeric ex-
cesses for entries 17-29 in Table 2 were presumably
due to the electronic and steric effects of N-aryl- or
N-alkylmaleimides 1k—1u.

The absolute configuration of products 3 or 4 was
unambiguously assigned as the S-configuration on the
basis of the X-ray crystallographic analysis of product
3ww which has two bromine atoms on the aromatic
ring (Figure 2).
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Scheme 2. Further transformation of the obtained chiral Rauhut—Currier reaction products 3aa and 3nn.

To illustrate the synthetic utility of the thus ob-
tained optically active RC reaction products 3 or 4,
the further transformation of 3aa or 3nm was per-
formed in the presence of transition metal catalysts
(Scheme 2). As shown in Scheme 2, the FeCly/PdCl,-
cocatalyzed coupling cyclization” of optically active
RC product 3aa (96% ee) with allylic bromide afford-
ed the corresponding f-allylic substituted y-buteno-
lide derivative 5 in 84% isolated yield with ee value
retained. Optically active product 3nn could be also
readily transformed into the corresponding function-
alized furan derivative 6 in 99% yield with ee value
retained in acetonitrile by the silver-catalyzed rear-
rangement of the allenic moiety."”! Furthermore, iso-
merization of product 3 catalyzed by PPh; has been
also performed in toluene and the result has been
summarized in Scheme SI-1 in the Supporting Infor-
mation.

Based on the above experimental findings and pre-
vious mechanistic studies,'!! we propose a plausible
mechanism of -ICD-catalyzed asymmetric RC reac-
tion in Scheme 3. The enolate A is generated upon
nucleophilic addition of (-ICD to the allenic sub-
strate, which is stabilized by the C-6'-OH group of -
ICD via an intramolecular hydrogen bonding interac-
tion. The subsequent 1,4-addition of A with malei-
mide 1 leads to the formation of zwitterionic inter-
mediate B. The following proton transfer is the key
step (rate-determining step) on the basis of previous
literature.'”! We believe that the acidic proton of the
C-6'-OH group serves as a “proton shuttle” to facili-
tate the intramolecular proton transfer from the a-
carbon to the oxygen anion. A plausible transition-
state model C indicating the favorable key proton
transfer step via intramolecular proton relay is also
shown in Scheme 3. This proton transfer step also
likely differentiates the four diastereomers of B and
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the major stereoisomer has been indicated in
Scheme 3, leading to the production of the desired
isomer D, which is then isomerized to intermediate E.
Finally, intermediate E undergoes f-elimination to
afford the RC adduct 3 or 4 and regenerate $-ICD at
the same time to complete the catalytic cycle.

In summary, we have developed an efficient
DABCO-catalyzed intermolecular Rauhut—Currier re-
action of maleimides with electron-deficient allenes to
afford the corresponding products in good to high
yields under mild conditions. Furthermore, the first
example of the highly enantioselective intermolecular
Rauhut-Currier reaction of maleimides with alle-
noates and penta-3,4-dien-2-one has also been dis-
closed to produce the corresponding functionalized
allenic derivatives in good to high yields along with
good to excellent enantioselectivities in the presence
of B-ICD (5mol%) in CH,Cl, at —20°C or —60°C.
These chiral functionalized allenic derivatives can be
further transformed to the corresponding chiral y-bu-
tenolide derivatives and furan derivatives in good
yields in the presence of transition metal catalysts.

Experimental Section

General Procedure for the DABCO- or -ICD-
Catalyzed Intermolecular Rauhut-Currier Reaction
of Maleimide 1 with Electron-deficient Allene 2

Maleimide 1 (0.15 mmol), allene 2 (0.30 mmol), DABCO
(0.030 mmol) or B-ICD (0.0075 mmol), and 1,4-dioxane or
dichloromethane (1.0 mL) were added into a Schlenk tube.
The reaction mixture was stirred at room temperature for
3 h or at —20°C for 24 h, the solvent was removed under re-
duced pressure, and the residue was purified by flash
column chromatography (PE/EA =4/1-2/1).
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via intramolecular proton relay

a plausible transition-state model.

Scheme 3. A plausible mechanism.

Supporting Information

Experimental procedures, chiral HPLC traces, and spectro-
scopic data for all new compounds, X-ray crystal structure
and CIF data for 3ww are available in the Supporting Infor-
mation.
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