Tetrahedron 71 (2015) 419-423

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Tetrahedror

New efficient synthesis of 1*H*-pyrimido[2,1-*b*]quinazoline-2, 6-diones via a tandem aza-Wittig/nucleophilic addition/intramolecular cyclization/isomerization reaction starting from the Baylis—Hillman adducts

Ding Yuan, Han-Han Kong, Ming-Wu Ding*

Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Central China Normal University, Wuhan 430079, PR China

ARTICLE INFO

Article history: Received 14 October 2014 Received in revised form 26 November 2014 Accepted 1 December 2014 Available online 5 December 2014

Keywords: 1H-Pyrimido[2,1-b]quinazoline-2,6-dione Aza-Wittig reaction Baylis—Hillman reaction Nucleophilic addition Isomerization

ABSTRACT

Iminophosphoranes **3**, obtained from the Baylis—Hillman adducts, reacted with 2-azidobenzoyl chloride to give the azides **4**. The sequential reaction of azides **4** with triphenylphosphine and isocyanate produced 1*H*-pyrimido[2,1-*b*]quinazoline-2,6-diones **9** in the presence of sodium ethoxide via a tandem aza-Wittig/nucleophilic addition/intramolecular cyclization/isomerization reaction.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The synthesis of quinazolinones has been the focus of continuing interest because these ring systems lie at the heart of a great number of biologically active poly- and diversely functionalized compounds. For example, some of the quinazolinones have been found to show antimicrobial,¹ antiinflammatory,² antifungal,³ anticancer,⁴ anticonvulsant,⁵ tankyrase inhibitive,⁶ phosphatidylinositol 4-kinase α (PI4KIII α) inhibitive,⁷ and histone deacetylase-6 inhibitive activities.⁸ In addition, quinazolinone ring has been the core structural skeleton in numerous alkaloids and a variety of natural products, such as schizocommunin,⁹ luotonin A,¹⁰ and oxoglyantrypine.¹¹ The range of biological activities and characteristic chemical structures has made synthetic studies of quinazolinones very attractive. On the other hand, the 4(3*H*)-pyrimidinone ring system also exhibits various biological activities; some of them have been used as kainate receptor antagonists,¹² mGluR5 antagonists,¹³ AMPA receptors,¹⁴ dipeptidyl peptidase IV (DPP-4) inhibitors,¹⁵ and non-nucleoside HIV-1 reverse transcriptase inhibitors.¹⁶ The introduction of a pyrimidinone ring to the quinazolinone system is expected to influence the biological activities significantly. However, there is no report about the synthesis of pyrimido[2,1-*b*]quinazoline-2,6-diones in the literature.

The Baylis—Hillman reaction provides a powerful method for the preparation of densely functionalized molecules via the construction of carbon—carbon bonds in a simple one-pot procedure.¹⁷ These densely functionalized molecules usually known as Baylis—Hillman adducts have been employed recently in further preparation of various heterocyclic compounds, such as 1,4oxazepan-7-ones,¹⁸ chromenes,¹⁹ benzoindazoles,²⁰ benzoxazonines,²¹ and hexahydroisoindoles.²² The aza-Wittig reactions of iminophosphoranes have also received great attention in view of their utility in the synthesis of heterocyclic compounds.²³ Thus, it is envisioned that combining the efficiency of the Baylis—Hillman reaction with a post-condensation aza-Wittig reaction would facilitate access to a series of biologically useful heterocycles.

Recently we have been interested in the synthesis of various heterocycles via aza-Wittig reaction²⁴ or by using the Baylis—Hillman adducts as starting materials.²⁵ Here we wish to report a onepot synthesis of previously unreported 1*H*-pyrimido[2,1-*b*]quinazoline-2,6-diones via a tandem aza-Wittig/nucleophilic addition/

^{*} Corresponding author. Tel.: +86 15327200455; fax: +86 27 67862041; e-mail address: mwding@mail.ccnu.edu.cn (M.-W. Ding).

intramolecular cyclization/isomerization reaction, starting from the Baylis-Hillman adducts.

2. Results and discussion

Azides **2**, obtained easily from the reaction of Baylis–Hillman adducts **1** with sodium azide in DMSO,²⁶ reacted with triphenylphosphine to give iminophosphoranes **3** via Staudinger reaction. Further reactions of iminophosphorane **3** with 2-azidobenzoyl chloride in the presence of triethylamine produced the azides **4** in good overall yield (73–86%, Scheme 1 and Table 1).

Scheme 1. Preparation of the azides 4a-4d.

Table 1Preparation of the azides 4a-4d

Entry	Compd	Ar	Yield ^a (%)
1	4a	4-ClC ₆ H ₄	86
2	4b	4-FC ₆ H ₄	73
3	4c	$4-CF_3C_6H_4$	77
4	4d	Ph	82

^a Isolated yields based on azides 2.

When the azides 4 were treated with triphenylphosphine in toluene at room temperature for 4 h, iminophosphoranes 5 were formed. As iminophosphoranes 5 were reacted with isocyanate and subsequently treated with sodium ethoxide, the previously unreported 1H-pyrimido[2,1-b]quinazoline-2,6-diones 9 were obtained directly in good overall yields (63-87%) (Scheme 2 and Table 2). Presumably, the conversion of 5 into 9 involves a consecutive process: an initial aza-Wittig reaction between the iminophosphorane **5** and the isocyanate gives a carbodiimide **6** as highly reactive intermediate, which easily undergoes ring closure through nucleophilic addition of the acylamino group to give guinazolinone 7. Further cyclization of 7 in the presence of catalytic amount of sodium ethoxide produces 8, which undertakes subsequent isomerization to give 1H-pyrimido[2,1-b]quinazoline-2,6-dione 9 directly through 1,3-H shift under the basic condition. It is noteworthy that the reaction can be easily carried out at mild room temperature and the overall transformation is run in a simple one-pot procedure from azides 4. Various isocyanates can be used in above one-pot cyclization to prepare 1*H*-pyrimido[2,1-*b*]quinazoline-2,6-diones **9**. As aliphatic isocyanates (compounds **9e** and **9o**, R=alkyl) were used, moderate yields (63-69%) of the products were obtained, whereas when aromatic isocyanates (compounds 9a-d and 9f-n, R=aryl) were utilized, better yields (74-87%) were reached regardless of the substituents (Cl, F, CH₃, CF₃) on the benzene ring. The Ar group has no obvious effects on the reaction yields.

The structure of compounds **9** was confirmed by their spectrum data. For example, the ¹H NMR spectrum of **9a** shows one singlet and one doublets at 8.54 and 8.25 ppm due to the 4-H and 7-H of 1H-pyrimido[2,1-*b*]quinazoline-2,6-dione ring. The signals

Scheme 2. Preparation of compounds 9a-9o.

Table 2	
Preparation of compounds 9a–90	

Comp.	Ar	R	Yield ^a (%)
9a	4-ClC ₆ H ₄	4-ClC ₆ H ₄	87
9b	4-ClC ₆ H ₄	4-CH ₃ C ₆ H ₄	82
9c	4-FC ₆ H ₄	4-ClC ₆ H ₄	79
9d	$4-ClC_6H_4$	$4-CF_3C_6H_4$	81
9e	4-ClC ₆ H ₄	<i>i</i> -Pr	69
9f	4-ClC ₆ H ₄	$4-FC_6H_4$	83
9g	4-ClC ₆ H ₄	3-CH ₃ C ₆ H ₄	77
9h	4-CF ₃ C ₆ H ₄	4-ClC ₆ H ₄	81
9i	Ph	4-ClC ₆ H ₄	77
9j	Ph	Ph	74
9k	Ph	4-CH ₃ C ₆ H ₄	79
91	4-FC ₆ H ₄	Ph	86
9m	4-CF ₃ C ₆ H ₄	4-CH ₃ C ₆ H ₄	80
9n	4-CF ₃ C ₆ H ₄	Ph	76
90	4-ClC ₆ H ₄	Et	63

^a Isolated yields based on azides 4.

attributable to other Ar–Hs are found at 7.68–7.20 ppm as multiplets. The signal of CH₂ is found at 3.84 ppm as singlet. The ¹³C NMR spectrum data in **9a** showed the signals of two CON carbons at 160.6 and 158.2 ppm. The CH₂ carbon absorbs at 33.5 ppm. The MS spectrum of **9a** shows molecular ion peak at m/z 447 with 100% abundance.

3. Conclusion

We report herein a one-pot synthesis of 1*H*-pyrimido[2,1-*b*] quinazoline-2,6-diones, by using a new tandem aza-Wittig/ nucleophilic addition/intramolecular cyclization/isomerization reaction starting from the Baylis—Hillman adducts. Due to the very simple operation of the synthetic approach, this synthetic method has the potential in preparation of various 1*H*-pyrimido[2,1-*b*] quinazoline-2,6-diones, which are of considerable interest as potential biological active compounds or pharmaceuticals.

4. Experimental

4.1. General

Melting points were determined using an X-4 model apparatus and were uncorrected. MS were measured on a Finnigan Trace MS spectrometer. NMR was recorded in $CDCl_3$ or $DMSO-d_6$ on a Varian Mercury 600 or 400 spectrometer and resonances relative to TMS. Elementary analyses were taken on a Vario EL III elementary analysis instrument.

4.2. Synthesis of azide 4

4.2.1. Methyl 2-((2-azidobenzamido)methyl)-3-(4-chlorophenyl)acrylate (4a). To the Baylis-Hillman azide 2a (Ar=4-ClC₆H₄, 0.50 g, 2 mmol) in methylene dichloride (10 mL) was added dropwise triphenylphosphine (0.52 g, 2 mmol) in methylene dichloride (5 mL). After the mixture was stirred at room temperature for 2–4 h, triethylamine (0.30 g, 3 mmol) and 2-azidobenzoyl chloride (0.36 g, 2 mmol) were added sequentially and the resulted mixture was stirred for 4 h. After the solvent was evaporated under reduced pressure, the crude reaction mixture was purified by recrystallization from methylene dichloride/petroleum ether to give azide 4a as white solid (0.64 g, 86%). Mp 67–69 °C: ¹H NMR (CDCl₃, 600 MHz) δ (ppm) 8.12 (d. *I*=7.8 Hz, 1H, Ar-H), 8.01 (br, 1H, NH), 7.79 (s. 1H, =CH), 7.57-7.18 (m, 7H, Ar-H), 4.54 (d, J=5.4 Hz, 2H, NCH₂), 3.88 (s, 3H, OCH₃); ¹³C NMR (CDCl₃, 150 MHz) δ (ppm) 167.8, 164.1, 140.9, 136.9, 135.1, 132.3, 132.2, 131.9, 130.9, 128.9, 128.7, 128.3, 124.8, 118.2, 52.1, 36.9. Anal. Calcd for C₁₈H₁₅ClN₄O₃: C, 58.31; H, 4.08; N, 15.11. Found: C, 58.54; H, 4.21; N, 15.12.

4.2.2. Methyl 2-((2-azidobenzamido)methyl)-3-(4-fluorophenyl)acrylate (**4b**). Operation as above with the Baylis–Hillman azide **2b** (Ar=4-FC₆H₄, 0.47 g, 2 mmol), compound **4b** (0.52 g, 73%) was also isolated as white solid. Mp: 108–110 °C; ¹H NMR (CDCl₃, 600 MHz) δ (ppm) 8.13 (d, *J*=7.8 Hz, 1H, Ar–H), 8.00 (br, 1H, NH), 7.81 (s, 1H, =CH), 7.64–7.12 (m, 7H, Ar–H), 4.55 (d, *J*=5.4 Hz, 2H, NCH₂), 3.88 (s, 3H, OCH₃); ¹³C NMR (CDCl₃, 150 MHz) δ (ppm) 167.6, 163.9, 161.9, 140.8, 136.7, 132.0, 131.9, 131.7, 131.5, 130.0, 127.4, 124.7, 124.6, 118.2, 118.1, 115.5, 115.3, 51.8, 36.7. Anal. Calcd for C₁₈H₁₅FN₄O₃: C, 61.01; H, 4.27; N, 15.81. Found: C, 61.13; H, 4.51; N, 15.52.

4.2.3. *Methyl* 2-((2-azidobenzamido)methyl)-3-(4-(trifluoromethyl) phenyl)acrylate (**4c**). Operation as above with the Baylis–Hillman azide **2c** (Ar=4-CF₃C₆H₄, 0.57 g, 2 mmol), compound **4c** (0.62 g, 77%) was also isolated as white solid. Mp: 171–172 °C; ¹H NMR (CDCl₃, 600 MHz) δ (ppm) 8.13 (d, *J*=7.8 Hz, 1H, Ar–H), 8.06 (br, 1H, NH), 7.85 (s, 1H,=CH), 7.74–7.19 (m, 7H, Ar–H), 4.53 (d, *J*=5.4 Hz, 2H, NCH₂), 3.91 (s, 3H, OCH₃); ¹³C NMR (CDCl₃, 150 MHz) δ (ppm) 167.5, 164.1, 140.4, 140.3, 137.7, 136.9, 132.3, 132.2, 132.0, 131.9, 129.9, 129.7, 125.4, 125.1, 124.9, 124.7, 118.4, 118.2, 52.3, 36.9. Anal. Calcd for C₁₉H₁₅F₃N₄O₃: C, 56.44; H, 3.74; N, 13.86. Found: C, 56.72; H, 3.66; N, 13.74.

4.2.4. Methyl 2-((2-azidobenzamido)methyl)-3-phenylacrylate (**4d**). Operation as above with the Baylis–Hillman azide **2d** (Ar=Ph, 0.43 g, 2 mmol), compound **4d** (0.55 g, 82%) was also isolated as white solid. Mp: 132–133 °C; ¹H NMR (CDCl₃, 600 MHz) δ (ppm) 7.87 (s, 1H, NH), 7.51–6.78 (m, 10H, Ar–H), 5.17 (s, 2H, NCH₂), 3.80 (s, 3H, OCH₃); ¹³C NMR (CDCl₃, 150 MHz) δ (ppm) 169.8, 167.5, 142.1, 137.2, 134.6, 131.7, 131.5, 129.4, 128.8, 128.3, 127.8, 123.9,

118.1, 118.0, 51.9, 41.7. Anal. Calcd for C₁₈H₁₆N₄O₃: C, 64.28; H, 4.79; N, 16.66. Found: C, 64.24; H, 4.66; N, 16.54.

4.3. One-pot synthesis of 1*H*-pyrimido[2,1-*b*]quinazoline-2,6diones 9

4.3.1. 3-(4-Chlorobenzvl)-1-(4-chlorophenvl)-1H-pvrimido[2.1-blauinazoline-2.6-dione (**9a**). To the azide **4a** (Ar=4-ClC₆H₄, 0.37 g. 1 mmol) in toluene (5 mL), was added dropwise triphenylphosphine (0.26 g, 1 mmol) in toluene (5 mL). After the reaction mixture was stirred for 2-4 h at room temperature, 4-chlorophenylisocyanate (0.15 g, 1 mmol) was added. The reaction mixture was stirred for 1 h and then NaOEt (0.014 g, 0.2 mmol) in ethanol was added. The reaction mixture was stirred for further 1-2 h at room temperature. After the solvent was evaporated under reduced pressure, the crude reaction mixture was eluted with ether/petroleum ether (3:1) through a short silica gel column to give the compound **9a** as white solid (0.39 g, 87%), mp 288–289 °C; ¹H NMR (CDCl₃, 600 MHz) δ (ppm) 8.54 (s, 1H, Ar–H), 8.25 (d, *J*=6.6 Hz, 1H, Ar–H), 7.68–7.20 $(m, 11H, Ar-H), 3.84 (s, 2H, CH_2); {}^{13}C NMR (CDCl_3, 100 MHz) \delta (ppm)$ 160.6, 158.2, 147.2, 144.0, 135.8, 135.7, 134.8, 133.9, 132.9, 130.5, 130.1, 129.9, 129.7, 128.9, 127.5, 127.0, 125.5, 120.7, 116.3, 33.5; MS (EI, 70 eV) *m*/*z* (%) 447 (M⁺, 100), 300 (11), 271 (29), 255 (9), 176 (14), 149 (16), 111 (22), 90 (18). Anal. Calcd for $C_{24}H_{15}Cl_2N_3O_2$: C, 64.30; H, 3.37; N, 9.37. Found: C, 64.13; H, 3.31; N, 9.62.

4.3.2. 3-(4-Chlorobenzyl)-1-p-tolyl-1H-pyrimido[2,1-b]quinazoline-2,6dione (**9b**). Operation as above with the 4-methylphenylisocyanate (0.13 g, 1 mmol), compound **9b** (0.35 g, 82%) was also isolated as white solid. Mp: 287–288 °C; ¹H NMR (CDCl₃, 600 MHz) δ (ppm) 8.54 (s, 1H, Ar–H), 8.24 (d, *J*=8.4 Hz, 1H, Ar–H), 7.67–7.13 (m, 11H, Ar–H), 3.85 (s, 2H, CH₂), 2.46 (s, 3H, CH₃); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 160.8, 158.3, 147.4, 144.3, 138.7, 135.8, 135.6, 132.8, 130.6, 130.2, 129.6, 129.5, 128.8, 128.2, 127.4, 127.0, 125.2, 120.8, 116.3, 33.5, 21.3; MS (EI, 70 eV) *m*/*z* (%) 427 (M⁺, 100), 398 (6), 250 (14), 235 (8), 192 (4), 157 (11), 91 (8). Anal. Calcd for C₂₅H₁₈ClN₃O₂: C, 70.18; H, 4.24; N, 9.82. Found: C, 70.40; H, 4.43; N, 9.98.

4.3.3. 3-(4-Fluorobenzyl)-1-(4-chlorophenyl)-1H-pyrimido[2,1-b] quinazoline-2,6-dione (**9c**). Operation as above with the azide **4b** (Ar=4-FC₆H₄, 0.35 g, 1 mmol), compound **9c** (0.34 g, 79%) was also isolated as white solid. Mp: 278–279 °C; ¹H NMR (CDCl₃, 600 MHz) δ (ppm) 8.52 (s, 1H, Ar–H), 8.25 (d, *J*=7.8 Hz, 1H, Ar–H), 7.69–7.01 (m, 11H, Ar–H), 3.85 (s, 2H, CH₂); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 160.7, 158.2, 147.2, 144.1, 135.8, 134.8, 134.0, 130.8, 130.7, 130.2, 130.1, 129.7, 127.5, 127.0, 125.5, 121.0, 116.4, 115.8, 115.6, 115.5, 33.3; MS (EI, 70 eV) *m/z* (%) 431 (M⁺, 100), 402 (10), 291 (7), 270 (16), 192 (9), 133 (15), 111 (13), 90 (10). Anal. Calcd for C₂₄H₁₅ClFN₃O₂: C, 66.75; H, 3.50; N, 9.73. Found: C, 66.69; H, 3.70; N, 9.65.

4.3.4. 3-(4-*Chlorobenzyl*)-1-(4-(*trifluoromethyl*)*phenyl*)-1*H*-*pyrimido*[2,1-*b*]*quinazoline*-2,6-*dione* (**9d**). Operation as above with the 4-trifluoromethylphenylisocyanate (0.19 g, 1 mmol), compound **9d** (0.39 g, 81%) was also isolated as white solid. Mp: 268–269 °C; ¹H NMR (CDCl₃, 600 MHz) δ (ppm) 8.56 (s, 1H, Ar–H), 8.25 (d, *J*=7.8 Hz, 1H, Ar–H), 7.69–7.26 (m, 11H, Ar–H), 3.85 (s, 2H, CH₂); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 160.6, 158.2, 149.1, 147.1, 144.0, 135.8, 135.7, 133.7, 132.9, 130.5, 130.3, 129.9, 128.9, 127.5, 127.0, 125.6, 121.8, 120.6, 116.3, 33.5; MS (EI, 70 eV) *m/z* (%) 481 (M⁺, 100), 422 (7), 321 (18), 305 (10), 193 (10), 176 (12), 149 (12), 125 (9), 90 (8). Anal. Calcd for C₂₅H₁₅ClF₃N₃O₂: C, 62.32; H, 3.14; N, 8.72. Found: C, 62.49; H, 3.10; N, 8.95.

4.3.5. 3-(4-Chlorobenzyl)-1-isopropyl-1H-pyrimido[2,1-b]quinazoline-2,6-dione (**9e**). Operation as above with the isopropylisocyanate (0.09 g, 1 mmol), compound **9e** (0.26 g, 69%) was also isolated as white solid. Mp: 195–196 °C; ¹H NMR (CDCl₃, 600 MHz) δ (ppm) 8.38 (s, 1H, Ar–H), 8.24 (d, *J*=8.4 Hz, 1H, Ar–H), 7.77–7.24 (m, 7H, Ar–H), 5.88–5.74 (m, 1H, NCH), 3.80 (s, 2H, CH₂), 1.62 (d, *J*=7.2 Hz, 6H, 2CH₃); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 160.8, 158.6, 147.4, 136.0, 135.6, 132.7, 130.4, 129.1, 129.0, 128.9, 127.4, 126.6, 125.0, 120.8, 116.0, 47.9, 33.4, 19.2; MS (EI, 70 eV) *m/z* (%) 379 (M⁺, 100), 308 (20), 274 (13), 198 (21), 176 (12), 145 (18), 136 (9), 119 (6). Anal. Calcd for C₂₁H₁₈ClN₃O₂: C, 66.40; H, 4.78; N, 11.06. Found: C, 66.54; H, 4.70; N, 11.25.

4.3.6. 3-(4-*Chlorobenzyl*)-1-(4-*fluorophenyl*)-1H-*pyrimido*[2,1-*b*] *quinazoline*-2,6-*dione* (**9***f*). Operation as above with the 4-fluorophenylisocyanate (0.14 g, 1 mmol), compound **9f** (0.36 g, 83%) was also isolated as white solid. Mp: 266–267 °C; ¹H NMR (CDCl₃, 600 MHz) δ (ppm) 8.55 (s, 1H, Ar–H), 8.25 (d, *J*=7.8 Hz, 1H, Ar–H), 7.68–7.24 (m, 11H, Ar–H), 3.85 (s, 2H, CH₂); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 160.8, 158.2, 147.2, 135.8, 135.7, 132.9, 131.2, 130.5, 130.4, 130.3, 129.8, 128.9, 127.5, 127.0, 125.5, 120.7, 116.6, 116.4, 116.3, 33.5; MS (EI, 70 eV) *m/z* (%) 431 (M⁺, 100), 402 (6), 272 (7), 254 (27), 239 (20), 184 (11), 160 (12), 125 (5), 95 (17). Anal. Calcd for C₂₄H₁₅ClFN₃O₂: C, 66.75; H, 3.50; N, 9.73. Found: C, 66.69; H, 3.71; N, 9.55.

4.3.7. 3-(4-Chlorobenzyl)-1-(m-tolyl)-1H-pyrimido[2,1-b]quinazoline-2,6-dione (**9g**). Operation as above with the 3-methylphenylisocyanate (0.13 g, 1 mmol), compound **9g** (0.33 g, 77%) was also isolated as white solid. Mp: 256–257 °C; ¹H NMR (CDCl₃, 600 MHz) δ (ppm) 8.53 (s, 1H, Ar–H), 8.22 (d, *J*=7.2 Hz, 1H, Ar–H), 7.65–7.06 (m, 11H, Ar–H), 3.83 (s, 2H, CH₂), 2.42 (s, 3H, CH₃); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 160.8, 158.3, 147.3, 144.2, 139.4, 135.8, 135.6, 135.4, 132.7, 130.5, 129.7, 129.2, 128.9, 128.8, 127.3, 127.0, 125.4, 125.2, 120.7, 116.2, 33.4, 21.4; MS (EI, 70 eV) *m/z* (%) 427 (M⁺, 100), 398 (8), 250 (14), 235 (8), 192 (5), 158 (11), 149 (6), 91 (17), 90 (7). Anal. Calcd for C₂₅H₁₈ClN₃O₂: C, 70.18; H, 4.24; N, 9.82. Found: C, 70.39; H, 4.50; N, 9.55.

4.3.8. 1-(4-Chlorophenyl)-3-(4-(trifluoromethyl)benzyl)-1H-pyrimido[2,1-b]quinazoline-2,6-dione (**9h**). Operation as above with the azide **4c** (Ar=4-F₃CC₆H₄, 0.40 g, 1 mmol), compound **9h** (0.39 g, 81%) was also isolated as white solid. Mp: 288–290 °C; ¹H NMR (CDCl₃, 600 MHz) δ (ppm) 8.61 (s, 1H, Ar–H), 8.25 (d, *J*=8.4 Hz, 1H, Ar–H), 7.70–7.20 (m, 11H, Ar–H), 3.94 (s, 2H, CH₂); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 160.6, 158.2, 147.2, 144.0, 141.4, 135.9, 135.8, 134.8, 133.9, 130.2, 130.1, 130.0, 129.5, 127.5, 127.0, 125.8, 125.7, 125.6, 120.1, 116.4, 34.0; MS (EI, 70 eV) *m/z* (%) 481 (M⁺, 100), 452 (5), 271 (10), 255 (4), 192 (7), 167 (9), 111 (8), 90 (7). Anal. Calcd for C₂₅H₁₅ClF₃N₃O₂: C, 62.32; H, 3.14; N, 8.72. Found: C, 62.49; H, 3.30; N, 8.61.

4.3.9. 3-Benzyl-1-(4-chlorophenyl)-1H-pyrimido[2,1-b]quinazoline-2,6-dione (**9i**). Operation as above with the azide **4d** (Ar=Ph, 0.34 g, 1 mmol), compound **9i** (0.32 g, 77%) was also isolated as white solid. Mp: >300 °C; ¹H NMR (CDCl₃, 600 MHz) δ (ppm) 8.51 (s, 1H, Ar-H), 8.23 (d, J=7.8 Hz, 1H, Ar-H), 7.68–7.21 (m, 12H, Ar-H), 3.88 (s, 2H, CH₂); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 160.7, 158.2, 147.2, 144.1, 137.1, 135.7, 134.7, 134.0, 130.1, 129.8, 129.7, 129.2, 128.8, 127.4, 127.0, 126.9, 125.4, 121.2, 116.4, 33.9; MS (EI, 70 eV) *m/z* (%) 413 (M⁺, 100), 384 (5), 271 (16), 220 (6), 192 (7), 167 (9), 142 (23). Anal. Calcd for C₂₄H₁₆ClN₃O₂: C, 69.65; H, 3.90; N, 10.15. Found: C, 69.69; H, 3.72; N, 10.25.

4.3.10. 3-Benzyl-1-phenyl-1H-pyrimido[2,1-b]quinazoline-2,6-dione (**9***j*). Operation as above with the azide **4d** (Ar=Ph, 0.34 g, 1 mmol) and phenylisocyanate (0.12 g, 1 mmol), compound **9***j* (0.28 g, 74%) was also isolated as white solid. Mp: >300 °C; ¹H NMR (CDCl₃, 600 MHz) δ (ppm) 8.52 (s, 1H, Ar–H), 8.23 (d, *J*=7.2 Hz, 1H, Ar–H),

7.64–7.26 (m, 13H, Ar–H), 3.89 (s, 2H, CH₂); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 160.9, 158.3, 147.3, 144.3, 137.3, 135.6, 129.7, 129.4, 129.2, 128.9, 128.8, 128.6, 127.4, 127.2, 127.1, 127.0, 125.2, 121.3, 116.3, 34.0; MS (EI, 70 eV) m/z (%) 379 (M⁺, 100), 350 (4), 236 (19), 142 (11), 115 (13), 77 (25). Anal. Calcd for C₂₄H₁₇N₃O₂: C, 75.97; H, 4.52; N, 11.08. Found: C, 75.69; H, 4.61; N, 11.25.

4.3.11. 3-Benzyl-1-(p-tolyl)-1H-pyrimido[2,1-b]quinazoline-2,6-dione (**9k**). Operation as above with the azide **4d** (Ar=Ph, 0.34 g, 1 mmol) and 4-methylphenylisocyanate (0.13 g, 1 mmol), compound **9k** (0.31 g, 79%) was also isolated as white solid. Mp: $>300 \degree$ C; ¹H NMR (CDCl₃, 600 MHz) δ (ppm) 8.50 (s, 1H, Ar–H), 8.22 (d, *J*=7.2 Hz, 1H, Ar–H), 7.64–7.15 (m, 12H, Ar–H), 3.88 (s, 2H, CH₂), 2.46 (s, 3H, CH₃); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 161.0, 158.3, 147.4, 147.3, 144.3, 138.7, 137.3, 135.5, 133.0, 130.1, 129.6, 128.8, 128.2, 127.4, 127.0, 126.9, 125.1, 121.4, 116.3, 34.0, 21.3; MS (EI, 70 eV) *m/z* (%) 393 (M⁺, 100), 364 (2), 288 (4), 235 (10), 142 (5), 91 (8). Anal. Calcd for C₂₅H₁₉N₃O₂: C, 76.32; H, 4.87; N, 10.68. Found: C, 76.25; H, 4.60; N, 10.55.

4.3.12. 3-(4-Fluorobenzyl)-1-phenyl-1H-pyrimido[2,1-b]quinazoline-2,6-dione (**9l**). Operation as above with the azide **4b** (Ar=4-FC₆H₄, 0.35 g, 1 mmol) and phenylisocyanate (0.12 g, 1 mmol), compound **9l** (0.34 g, 86%) was also isolated as white solid. Mp: >300 °C; ¹H NMR (CDCl₃, 600 MHz) δ (ppm) 8.54 (s, 1H, Ar–H), 8.24 (d, *J*=7.8 Hz, 1H, Ar–H), 7.67–7.01 (m, 12H, Ar–H), 3.86 (s, 2H, CH₂); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 163.1, 160.8, 158.3, 147.4, 144.3, 135.6, 133.0, 130.8, 130.7, 129.7, 129.5, 128.8, 128.6, 127.4, 127.0, 125.3, 121.1, 116.3, 115.7, 115.5, 33.3; MS (EI, 70 eV) *m/z* (%) 397 (M⁺, 100), 368 (5), 221 (12), 161 (5), 133 (16), 90 (5). Anal. Calcd for C₂₄H₁₆FN₃O₂: C, 72.54; H, 4.06; N, 10.57. Found: C, 72.55; H, 4.20; N, 10.35.

4.3.13. 3-(4-(*Trifluoromethyl*)*benzyl*)-1-(*p*-tolyl)-1H-pyrimido[2,1-*b*] quinazoline-2,6-dione (**9m**). Operation as above with the azide **4c** (Ar=4-F₃CC₆H₄, 0.40 g, 1 mmol) and 4-methylphenylisocyanate (0.13 g, 1 mmol), compound **9m** (0.37 g, 80%) was also isolated as white solid. Mp: 295–296 °C; ¹H NMR (DMSO-*d*₆, 600 MHz) δ (ppm) 8.77 (s, 1H, Ar–H), 8.15 (d, *J*=7.8 Hz, 1H, Ar–H), 7.74–7.18 (m, 11H, Ar–H), 3.98 (s, 2H, CH₂), 2.40 (s, 3H, CH₃); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 160.8, 158.4, 147.4, 144.3, 141.6, 138.8, 135.7, 132.8, 130.3, 130.2, 129.9, 129.8, 129.5, 128.3, 128.2, 127.4, 127.1, 125.7, 125.3, 120.3, 116.3, 34.0, 21.3; MS (EI, 70 eV) *m/z* (%) 461 (M⁺, 100), 432 (3), 367 (4), 317 (17), 288 (5), 221 (5), 191 (5). Anal. Calcd for C₂₆H₁₈F₃N₃O₂: C, 67.68; H, 3.93; N, 9.11. Found: C, 67.45; H, 3.80; N, 9.15.

4.3.14. 1-Phenyl-3-(4-(trifluoromethyl)benzyl)-1H-pyrimido[2,1-b] quinazoline-2,6-dione (**9n**). Operation as above with the azide **4c** (Ar=4-F₃CC₆H₄, 0.40 g, 1 mmol) and phenylisocyanate (0.12 g, 1 mmol), compound **9n** (0.34 g, 76%) was also isolated as white solid. Mp: >300 °C; ¹H NMR (CDCl₃, 600 MHz) δ (ppm) 8.62 (s, 1H, Ar–H), 8.25 (d, *J*=8.4 Hz, 1H, Ar–H), 7.66–7.26 (m, 12H, Ar–H), 3.95 (s, 2H, CH₂); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 160.7, 158.3, 147.3, 144.2, 141.5, 135.7, 135.5, 130.0, 129.5, 129.4, 129.1, 128.9, 128.5, 127.4, 127.0, 125.7, 125.6, 125.4, 125.3, 120.2, 116.3, 34.0; MS (EI, 70 eV) *m/z* (%) 446 (M⁺–1, 100), 418 (7), 338 (22), 221 (16), 150 (8), 90 (9), 77 (18). Anal. Calcd for C₂₅H₁₆F₃N₃O₂: C, 67.11; H, 3.60; N, 9.39. Found: C, 67.25; H, 3.50; N, 9.55.

4.3.15. 3-(4-*Chlorobenzyl*)-1-*ethyl*-1*H*-*pyrimido*[2,1-*b*]*quinazoline*-2,6-*dione* (**90**). Operation as above with ethylisocyanate (0.07 g, 1 mmol), compound **90** (0.23 g, 63%) was also isolated as white solid. Mp: >300 °C; ¹H NMR (CDCl₃, 400 MHz) δ (ppm) 8.39 (s, 1H, Ar–H), 8.20 (d, *J*=8.0 Hz, 1H, Ar–H), 7.74–7.24 (m, 7H, Ar–H), 4.40 (q, *J*=7.2 Hz, 2H, NCH₂), 3.80 (s, 2H, CH₂), 1.33 (t, *J*=7.2 Hz, CH₃); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm) 160.1, 158.4, 147.7, 142.9, 135.9, 135.6, 132.7, 130.4, 129.0, 128.8, 127.4, 126.6, 124.9, 120.3, 116.1, 37.9, 33.4, 12.4; MS (EI, 70 eV) *m/z* (%) 365 (M⁺, 100), 337 (90), 274 (25),

198 (70), 145 (31), 90 (17). Anal. Calcd for C₂₀H₁₆ClN₃O₂: C, 65.67; H, 4.41; N, 11.49. Found: C, 65.84; H, 4.50; N, 11.27.

Acknowledgements

We gratefully acknowledge financial support of this work by the National Natural Science Foundation of China (No. 21172085, 21032001).

Supplementary data

Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.tet.2014.12.006.

References and notes

- 1. (a) Chen, K.; Aowad, A. F. A.; Adelstein, S. J.; Kassis, A. I. J. Med. Chem. 2007, 50, 663; (b) Shi, L.-P.; Jiang, K.-M.; Jiang, J.-J.; Jin, Y.; Tao, Y.-H.; Li, K.; Wang, X.-H.; Lin, J. Bioorg. Med. Chem. Lett. 2013, 23, 5958.
- 2. Manivannan, E.; Chaturvedi, S. C. Bioorg. Med. Chem. Lett. 2012, 20, 7119.
- (a) Wang, X.; Li, P.; Li, Z.; Yin, J.; He, M.; Xue, W.; Chen, Z.; Song, B. J. Agric. Food Chem. 2013, 61, 9575; (b) Guillon, R.; Pagniez, F.; Picot, C.; Hédou, D.; Tonnerre, A.; Chosson, E.; Duflos, M.; Besson, T.; Logé, C.; Pape, P. L. ACS Med. Chem. Lett. 2013. 4. 288.
- 4. (a) Liu, J. F.; Kaselj, M.; Isome, Y.; Ye, P.; Sargent, K.; Sprague, K.; Cherrak, D.; Wilson, C. J.; Si, Y.; Yohannes, D.; Ng, S. C. J. Comb. Chem. 2006, 8, 7; (b) Mulakayala, N.; Kandagatla, B.; Ismail; Rapolu, Ř. K.; Rao, P.; Mulakayala, C.; Kumar, C. S.; Iqbal, J.; Oruganti, S. Bioorg. Med. Chem. Lett. 2012, 22, 5063.
- (a) Ugale, V. G.; Bari, S. B. Eur. J. Med. Chem. 2014, 80, 447; (b) Malik, S.; Bahare, 5 . S.; Khan, S. A. Eur. J. Med. Chem. 2013, 67, 1.
- 6. Hua, Z.; Bregman, H.; Buchanan, J. L.; Chakka, N.; Guzman-Perez, A.; Gunaydin, H.; Huang, X.; Gu, Y.; Berry, V.; Liu, J.; Teffera, Y.; Huang, L.; Egge, B.; Emkey, R.; Mullady, E. L.; Schneider, S.; Andrews, P. S.; Acquaviva, L.; Dovey, J.; Mishra, A.; Newcomb, J.; Saffran, D.; Serafino, R.; Strathdee, C. A.; Turci, S. M.; Stanton, M.; Wilson, C.; DiMauro, E. F. J. Med. Chem. 2013, 56, 10003.
- 7. Leivers, A. L.; Tallant, M.; Shotwell, J. B.; Dickerson, S.; Leivers, M. R.; McDonald, O. B.; Gobel, J.; Creech, K. L.; Strum, S. L.; Mathis, A.; Rogers, S.; Moore, C. B.; Botyanszki, J. J. Med. Chem. 2014, 57, 2091.
- 8. Yu, C.-W.; Chang, P.-T.; Hsin, L.-W.; Chern, J.-W. J. Med. Chem. 2013, 56, 6775.

- 9. Uehata, K.; Kimura, N.; Hasegawa, K.; Arai, S.; Nishida, M.; Hosoe, T.; Kawai, K.i.; Nishida, A. J. Nat. Prod. 2013, 76, 2034.
- 10 Ma, Z.-Z.; Hano, Y.; Nomura, T.; Chen, Y.-J. Heterocycles 1997, 46, 541.
- 11. Peng, J.; Lin, T.; Wang, W.; Xin, Z.; Zhu, T.; Gu, Q.; Li, D. J. Nat. Prod. 2013, 76, 1133
- Dolman, N. P.; Troop, H. M.; More, J. C. A.; Alt, A.; Knauss, J. L.; Nistico, R.; Jack, S.; Morley, R. M.; Bortolotto, Z. A.; Roberts, P. J.; Bleakman, D.; Collingridge, G. L.; Jane, D. E. J. Med. Chem. 2005, 48, 7867.
- Gichinga, M. G.; Olson, J. P.; Butala, E.; Navarro, H. A.; Gilmour, B. P.; Mascarella, S. W.; Carroll, F. I. ACS Med. Chem. Lett. 2011, 2, 882. 13
- 14 Dolman, N. P.; More, J. C. A.; Alt, A.; Knauss, J. L.; Troop, H. M.; Bleakman, D.; Collingridge, G. L.; Jane, D. E. J. Med. Chem. **2006**, 49, 2579.
- Zhang, Z.; Wallace, M. B.; Feng, J.; Stafford, J. A.; Skene, R. J.; Shi, L.; Lee, B.; Aertgeerts, K.; Jennings, A.; Xu, R.; Kassel, D. B.; Kaldor, S. W.; Navre, M.; Webb, D. R.; Gwaltney, S. L., II. J. Med. Chem. 2011, 54, 510.
 16. Zhang, J.; Zhan, P.; Wu, J.; Li, Z.; Jiang, Y.; Ge, W.; Pannecouque, C.; Clercq, E. D.;
- Liu, X. Bioorg. Med. Chem. 2011, 19, 4366.
- 17. (a) Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Chem. Rev. 2010, 110, 5447; (b) Declerck, V.; Martinez, J.; Lamaty, F. Chem. Rev. 2009, 109, 1; (c) Singh, V.; Batra, S. Tetrahedron 2008, 64, 4511.
- Kamimura, A.; Yamane, Y.; Yo, R.; Tanaka, T.; Uno, H. J. Org. Chem. 2014, 79, 18 7696
- Peng, J.; Huang, X.; Zheng, P.-F.; Chen, Y.-C. Org. Lett. 2013, 15, 5534.
 Lim, J. W.; Kim, K. H.; Kim, S. H.; Kim, J. N. Tetrahedron 2014, 70, 6831.
- 21. Basavaiah, D.; Reddy, B. S.; Lingam, H. Tetrahedron 2013, 69, 10060.
- 22. Kim, K. H.; Lee, S.; Lee, J.; Go, M. J.; Kim, J. N. Tetrahedron Lett. 2013, 54, 5739. (a) Kumar, R.; Ermolat'ev, D. S.; der Eycken, E. V. V. J. Org. Chem. 2013, 78, 5737; 23 (b) Attanasi, O. A.; Bartoccini, S.; Favi, G.; Filippone, P.; Perrulli, F. R.; Santeu-sanio, S. J. Org. Chem. **2012**, 77, 9338; (c) Akbarzadeh, R.; Amanpour, T.; Bazgir, A. Tetrahedron **2014**, 70, 8142; (d) Fesenko, A. A.; Shutalev, A. D. J. Org. Chem. 2013, 78, 1190; (e) Fesenko, A. A.; Shutalev, A. D. Tetrahedron 2014, 70, 5398; (f) Naganaboina, V. K.; Chandra, K. L.; Desper, J.; Rayat, S. Org. Lett. 2011, 13, 3718.
- (a) Wang, L; Wang, Y; Chen, M.; Ding, M. W. Adv. Synth. Catal. **2014**, 356, 1098; (b) Xie, H.; Yuan, D.; Ding, M. W. J. Org. Chem. **2012**, 77, 2954; (c) Nie, Y. B.; 24. Wang, L.; Ding, M. W. J. Org. Chem. **2012**, 77, 696; (d) Wang, L.; Ren, Z. L.; Chen, M.; Ding, M. W. Synlett 2014, 721; (e) Wang, Y.; Chen, M.; Ding, M. W. Tetrahedron 2013, 69, 9056; (f) Xie, H.; Liu, J. C.; Wu, L.; Ding, M. W. Tetrahedron 2012, 68, 7984; (g) Wang, Y.; Xie, H.; Pan, Y. R.; Ding, M. W. Synthesis 2014, 46, 336
- 25. (a) Zeng, X. H.; Wang, H. M.; Wu, L.; Ding, M. W. Tetrahedron 2013, 69, 3823; (b) Zhong, Y.; Wu, L.; Ding, M. W. Synthesis 2012, 44, 3085.
- 26. (a) Yadav, J. S.; Gupta, M. K.; Pandey, S. K.; Reddy, B. V. S.; Sarma, A. V. S. Tetrahedron Lett. 2005, 46, 2761; (b) Sá, M. M. J. Braz. Chem. Soc. 2003, 14, 1005.