Contents lists available at SciVerse ScienceDirect

ELSEVIER

journal homepage: www.elsevier.com/locate/bmcl

Exercision Construction Constru

Synthesis and evaluation of pyridone-phenoxypropyl-*R*-2-methylpyrrolidine analogues as histamine H₃ receptor antagonists

Nadine C. Becknell*, Jacquelyn A. Lyons, Lisa D. Aimone, John A. Gruner, Joanne R. Mathiasen, Rita Raddatz, Robert L. Hudkins

Discovery Research, Cephalon, Inc., 145 Brandywine Parkway, West Chester, PA 19380, USA

ARTICLE INFO

Article history: Received 25 August 2011 Revised 19 September 2011 Accepted 21 September 2011 Available online 29 September 2011

Keywords: Histamine H₃ H₃ Antagonists CEP-26401 Pyridone Sleep-wake

ABSTRACT

 $6-\{4-[3-(R)-2-Methylpyrrolidin-1-yl)propoxy]-phenyl\}-2H-pyridazin-3-one$ **6**(Irdabisant; CEP-26401) was recently reported as a potent H₃R antagonist with excellent drug-like properties and in vivo activity that advanced into clinical evaluation. A series of pyridone analogs of**6**was synthesized and evaluated as H₃R antagonists. Structure–activity relationships revealed that the 5-pyridone regiomer was optimal for H₃R affinity.*N*-Methyl**9b**showed excellent H₃R affinity, acceptable pharmacokinetics and pharmaceutical properties. In vivo evaluation of**9b**showed potent activity in the rat dipsogenia model and robust wake-promoting activity in the rat EEG model.

© 2011 Elsevier Ltd. All rights reserved.

Histamine elicits physiological responses mediated by four G-protein coupled receptors (H_1R-H_4R) and exerts a variety of functions in the central nervous system (CNS).^{1.2} H_3Rs are highly expressed in the CNS and function as presynaptic autoreceptors regulating histamine release and as presynaptic heteroreceptors regulating release of multiple neurotransmitters including acetylcholine, dopamine, norepinephrine and serotonin.^{3.4} H_3R antagonists therefore have potential use for treatment of a variety of CNS diseases including sleep disorders, cognitive disorders, attention-deficit hyperactivity disorder (ADHD) and Alzheimer's disease (AD).^{3.4}

A number of H₃R antagonists have advanced to pre-clinical and clinical development stages (Fig. 1). For example, ABT-239 (1) was nominated for clinical development as a cognition enhancing agent but was ultimately terminated due to cardiovascular liabilities.^{5,11} GSK-189254 (2), a potent and selective H₃R ligand advanced into clinical trials for narcolepsy and AD.^{6,11} The Merck compound MK-0249 (4) completed phase II trials for ADHD, AD and cognitive impairments in schizophrenia.^{8,11} The Pfizer compound PF-3654746 (5) failed a Phase II ADHD trial and was discontinued while JNJ-31001074 (Bavisant, 3) is reportedly still in Phase II for ADHD.^{7,9,11} We identified a novel class of pyridazin-3-one H₃R antagonists/inverse agonists with exceptional drug-like properties and in vivo profiles.¹⁰ 6-{4-[3-(*R*)-2-Methylpyrrolidin-1-yl)pro-

* Corresponding author. Tel.: +1 610 738 6240. E-mail address: nbecknell@cephalon.com (N.C. Becknell). poxy]-phenyl}-2*H*-pyridazin-3-one **6** (Irdabisant; CEP-26401) was selected as a clinical candidate and recently completed phase I.¹⁰ As part of our H₃ discovery project studying the structure–activity relationships (SAR) around **6**, we actively pursued a variety of structural core modifications. One strategy, which is the focus of this Letter, was to synthesize and evaluate the pyridone replacements for the pyridazinone and evaluate the H₃R binding SAR, pharmacokinetics (PK), selectivity and drug-like properties for a series of pyri-

done-phenoxypropyl-R-2-methylpyrrolidine analogues. A general synthesis of pyridones **9** and **10** is shown in Scheme 1. Alkylation of 4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolane-2-yl)phenol (7) with 1-bromo-3-chloropropane and the subsequent reaction of the terminal chloride with (R)-2-methylpyrrolidine gave compound **8**.¹⁰ Suzuki coupling of **8** with various bromopyridones provided analogs 9 and 10.12 N-Methyl-bromopyridone fragments leading to compounds **9b-e** were synthesized by simple N-methylation of their commercially available bromopyridones with MeI in the present of K₂CO₃ in DMSO at room temperature. Syntheses of the required bromopyridone precursors to compounds 10a-e are shown in Scheme 2. N-Arylation of 11 with arylboronic acids provided compound **12a-b**.¹³ N-Benzylation of 5-bromopyridone **11** with BnBr gave compound 13. N-Methylation of pyridone 14 with MeI provided compound 15. Bromopyridone 17 was synthesized in a three steps sequence: N-methylation of 3-bromopyridone 16 with MeI, then Suzuki coupling of the bromide group with PhB(OH)₂, followed by region selective bromination at the 5-position with NBS.14a

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter \odot 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2011.09.091

e: R¹ = Me, R² = Ph Scheme 1. Reagents and conditions: (a) BrCH₂CH₂CH₂Cl, K₂CO₃, CH₃CN, 80 °C, 18 h; (b) (*R*)-2-methylpyrrolidine–HCl, NaI, K₂CO₃, CH₃CN, 80 °C, 24 h, 88% two steps; (c) bromopyridones, Pd(PPh₃)₄, Na₂CO₃, LiCl, PhCH₃–EtOH–H₂O (1:1:1.5), 100 °C, 18 h, 26–58% (except **9a** = 8%).

Syntheses of compounds **20** and **22** are presented in Scheme 3. N-Methylation of isoquinolinone **18** followed by region selective bromination at the 4-position gave compound **19**.^{14b} Suzuki coupling of **19** with **8** afforded compound **20**. Suzuki coupling of **21** with 5-bromo-1-methyl-pyridin-2-one, and the subsequence alkylation of the phenol with 1-bromo-3-chloropropane followed by reaction of the terminal chloride with (*R*)-2-methylpyrrolidine provided compound **22**.

q

R = H, Me

In general, the pyridone analogues bound the hH_3R with single digit nanomolar affinity comparable with the pyridazinone class. *N*-methyl pyridone **9b** (hH_3R $K_i = 0.7$ nM, rH_3R $K_i = 8.5$ nM) had excellent H_3R binding affinity for both human and rat receptors

(Table 1) whereas the *N*-H pyridone **9a** (hH₃R K_i = 7.7 nM, rH₃R K_i = 9.0 nM) had 11-fold weaker hH₃R affinity but similar rH₃R affinity. The pyridone regiochemistry appeared to play an important role in the H₃R binding affinity. The 4-pyridone **9c** (hH₃R K_i = 3.2 nM, rH₃R K_i = 12 nM) and 6-pyridone regiomers **9d** (hH₃R K_i = 4.9 nM, rH₃R K_i = 21 nM) with the *meta*-carbonyl orientation had comparable H₃R binding affinities in both species. However, the 5-pyridone regiomer **9b** had 5–7-fold higher hH₃R affinity compared to **9c** and **9d**. The 6-regiomer **9e** (hH₃R K_i = 18 nM, rH₃R K_i = 144 nM) was over 16-fold weaker for both human and rat H₃R than **9b**. Thus, the optimum pyridone regiomer had the carbonyl oriented at the para-position.

Me

10

a: R¹ = Ph, R² = H b: R¹ = 4-F-Ph, R² = H c: R¹ = Bn, R² = H d: R¹ = Me, R² = CN

Scheme 2. Reagents and conditions: (a) ArB(OH)₂, Cu(OAC)₂, pyridine, molecular sieves, CH₂Cl₂, 80–88%; (b) BnBr, K₂CO₃, DMSO, rt, 98%; (c) Mel, K₂CO₃, DMSO, rt, 97%; (d) Ph(OH)₂, Pd(PPh₃)₄, Na₂CO₃, LiCl, PhCH₃-EtOH-H₂O (1:1:1.5), 100 °C, 17 h; (e) NBS, CHCl₃, rt, 15 h, 78% (2 steps).

Scheme 3. Reagents and conditions: (a) Mel, K₂CO₃, DMSO, rt, 2 h; (b) NBS, CHCl₃, rt, 1 h, 42% (2 steps); (c) **8**, Pd(PPh₃)₄, Na₂CO₃, LiCl, PhCH₃–EtOH–H₂O (1:1:1.5), 100 °C, 21 h, 37%; (d) 5-bromo-1-methyl-pyridin-2-one, Pd(PPh₃)₄, Na₂CO₃, LiCl, PhCH₃–EtOH–H₂O (1:1:1.5), 100 °C, 5 h, 66%; (e) ClCH₂CH₂CH₂Br, K₂CO₃, CH₃CN, 80 °C, 24 h, 98%; (f) (*R*)-2-methylpyrrolidine–HCl, Nal, K₂CO₃, CH₃CN, 80 °C, 21 h, 33%.

The effect of substitution on the pyridone ring was also investigated (Table 2). Replacement of *N*-methyl with *N*-phenyl and *N*-benzyl groups (**10a–c**) or substitution at the 3-position of the pyridone ring with nitrile and phenyl (**10d** and **10e**) gave no improvement in hH₃R or rH₃R affinities with the exception of compound **10d** (rH₃R K_i = 3.0 nM). Interestingly, the 3,4-fused phenyl **20** (hH₃R K_i = 0.9 nM, rH₃R K_i = 2.4 nM) displayed about a 3-fold improvement in affinity compared to 3-phenyl **10e**. Moving the 3-((*R*)-2-methylpyrrolidin-1-yl)-propan-1-ol fragment from the 4- to the 3-position as in **22** resulted in significant loss of H₃R binding affinity, demonstrating that attachment of the pyridone at the 4-position of the central ring was clearly preferred.

Based on the target affinities, analogues **9a**, **9b**, **10a**, **10c** and **20** were screened for PK properties in the rat. Compared to the pyridazinone series,¹⁰ the pyridone series showed poor rat PK profiles. Compounds **9a**, **10a**, **10c** and **20** all suffered poor PK properties with high clearance (**9a** = 96 ml/min/kg), **10a** = 138 ml/min/kg, **10c** = 171 ml/min/kg, and **20** = 42 ml/min/kg), and low to no oral exposure (**9a** %*F* = 0, **10a** %*F* = 17, **10c** %*F* = 0, **20** %*F* = 8). *N*-Methyl **9b** demonstrated a slight improvement in the overall rat PK profile. The oral exposure was low (%*F* = 11), however the iv intrinsic properties were acceptable (t_{V_2} = 1.4 h, V_d = 1.4 L/kg, CL = 11 mL/min/kg) (Table 3). Following oral administration, the brain exposure was acceptable (brain to plasma ratio B/P = 1.7) and following administration of a 10 mg/kg ip dose 1 h brain levels of 2.9 µM were achieved (B/P = 1.9), sufficient to allow for proof-of-concept in vivo evaluation. Further, the *N*-methyl analog **9b** had excellent

hH₃R selectivity over hH₁R, hH₂R, and hH₄R subtypes ($K_i > 10 \mu$ M), acceptable drug-like properties with aqueous solubility at pH 7.4 (>0.3 mg/mL), stability in liver microsomes (human, mouse, rat, and monkey $t_{\nu_2} > 40 \min$) and low to no inhibition of cytochrome P450 enzymes (CYP1A2, 2C9, 2C19, 2D6, and 3A4 IC₅₀ > 30 μM).

The pyridone analogues were potent antagonists and inverse agonists of H₃R activity in vitro, in the guanosine 5'-(γ thio) trisphosphate ([³⁵S]GTP γ S) binding assay, as demonstrated with the pyridazinone series.¹⁵ Compound **9b** inhibited *R*- α -methylhistamine (RAMH)-induced [³⁵S]GTP γ S binding in membranes prepared from CHO cells recombinantly expressing hH₃R with a *K*_b, app value of 0.2 nM and inhibited basal activity in this assay with an EC₅₀ value of 0.7 nM.

The rat dipsogenia model was initially used in the project as an in vivo surrogate measure of H_3R functional inhibition in the brain following peripheral administration of compounds. Histamine and the H_3 -selective agonist, RAMH induce water drinking in the rat when administered either peripherally or centrally, an effect that is blocked by H_3R antagonists.¹⁶ **9b** potently and dose-dependently inhibited RAMH-induced dipsogenia with an ED₅₀ value of 0.03 mg/kg ip. Following the demonstration of potent in vivo H_3R functional activity in the brain, **9b** was further evaluated for wake-promoting activity in the rat.^{4,19,20}

A number of H_3R antagonists promote wake activity in preclinical species, and this effect has recently been reported in clinical trials with the H_3R antagonists pitolisant and MK-0249.^{17,18}

Table 1

Human and rat $H_3 Rs$ binding data for pyridone analogues¹⁵

^a K_i values are an average of two or more determination. The assay-to-assay variation was typically within 2.5-fold.

3

Table	2	(continued)
Tubic	~	(continucu)

Compounds	R	Regiomer	$hH_3RK_i (nM)^a$	$rH_3RK_i (nM)^a$
10e	Me N Ph	4-	3.5	7.9
20	Me O N	4-	0.9	2.4
22	N N N	3-	112	>500

^a K_i values are an average of two or more determination. The assay-to-assay variation was typically within 2.5-fold.

Table 3 Rat PK data for compound 9b			
iv (1 mg/kg) t _{1/2} (h) V _d (L/kg) CL (mL/min/kg)	1.4 1.4 11		
po (5 mg/kg) AUC _{0-t} (ng h/mL) C _{max} (ng/mL) %F B/P	867 190 11 1.7		

Compound **9b** was tested in the rat EEG/EMG model of wake promotion as previously described (Fig. 2).^{4,19,20} Compound **9b** increased wake activity dose dependently at 10 and 30 mg/kg ip based on cumulative wake 4 h post dosing (4 h AUC). AUC values were 160 ± 16 min at 10 mg/kg and 227 ± 5 min at 30 mg/kg ip compared to vehicle (114 ± 9 min). At 30 mg/kg the treated animals were awake 95% of the time for 4 h post dosing, a two-fold increase in wake time compared to the vehicle group. The maximal cumulative wake surplus (time awake compared to the vehicle group) at 30 mg/kg ip was 146 ± 8 min reached at 6 h post dosing. From 6 to 22 h post dosing, this group recovered sleep at a constant rate of 6.3 min per hour, and at 22 h post dosing, retained 35% of the surplus wake time (51 ± 27 min, *p* <0.05 vs 6 h, paired *t*-test). At 10 mg/kg ip, the maximum cumulative wake surplus was

Figure 2. EEG wake activity of compound **9b**. Compound **9b**-induced wake promotion; cumulative wake 4 h AUC values shown for each dose (mean + SEM, *n* = 8, 5, and 10 for vehicle, 10, and 30 mg/kg groups). Compound administered i.p. to rats with chronically implanted electrodes for recording EEG and EMG activity. **p* < 0.05 Dunnett's *post hoc* vs. vehicle.

Table 2

The substitution effect on pyridone ring¹⁵

 53 ± 10 min at 3 h and was not different at 22 h (33 ± 12 min). No adverse EEG activity was observed in either treatment group.

In conclusion, a series of pyridone phenoxypropyl-*R*-2-methylpyrrolidine analogues were synthesized and evaluated as H_3R ligands. They were found to have excellent binding affinities for both hH_3R and rH_3R . The pyridone series in general displayed unacceptable rat PK properties compared to the pyridazinone series. However, results from this study demonstrated that *N*-methyl **9b** showed acceptable target affinity, PK exposure and pharmaceutical properties for in vivo proof of concept studies.

References and notes

- Arrang, J.-M.; Garbarg, M.; Schwartz, J.-C. Nature 1983, 302, 832. Goering, B. K. Ph.D. Dissertation, Cornell University, 1995.
- Lovenberg, T. W.; Roland, B. L.; Wilson, S. J.; Jiang, X.; Pyati, J.; Huvar, A.; Jackson, M. R.; Erlander, M. G. Mol. Pharmacol. 1999, 55, 1101.
- Reviews: (a) Passani, M. B.; Lin, J.-S.; Hancock, A.; Crochet, S.; Blandina, P. *Trends Pharm. Sci.* 2004, 25, 618; (b) Cowart, M.; Altenbach, R.; Black, L.; Faghih, R.; Zhao, C.; Hancock, A. Mini-Rev. Med. Chem. 2004, 4, 979; (c) Leurs, R.; Bakker, R. A.; Timmernan, H.; De Esch, I. J. P. Nat. Rev. Drug Disc. 2005, 4, 107; (d) Hudkins, R. L.; Raddats, R. Annu. Rep. Med. Chem. 2007, 42, 49; (e) Sander, K.; Kottke, T.; Stark, H. Biol. Pharm. Bull. 2008, 31, 2163; (f) Raddatz, R.; Tao, M.; Hudkins, R. Curr. Top. Med. Chem. 2010, 10, 153; (g) Berlin, M.; Boyce, C. W.; de Lera Ruiz, M. J. Med. Chem. 2011, 54, 26.
- 4. Lin, J.-S.; Sergeeva, O. A.; Hass, H. L. J. Pharmacol. Exp. Ther. 2011, 336, 17.
- (a) Cowart, M.; Faghih, R.; Curtis, M. P.; Gfesser, G. A.; Bennani, Y. L.; Black, L. A.; Pan, L.; Marsh, K. C.; Sullivan, J. P.; Esbenshade, T. A.; Fox, G. B.; Hancock, A. A. J. Med. Chem. 2005, 48, 38; (b) Esbenshade, T. A.; Fox, G. B.; Krueger, K. M.; Miller, T. R.; Kang, C. H.; Denny, L. I.; Witte, D. G.; Yao, B. B.; Pan, L.; Wetter, J.; Marsh, K.; Bennani, Y. L.; Cowart, M. D.; Sullivan, J. P.; Hancock, A. A. J. Pharmacol. Exp. Ther. 2005, 313, 165; (c) Fox, G. B.; Esbenshade, T. A.; Foa, I. B.; Radek, R. J.; Krueger, K. M.; Yao, B. B.; Browman, K. E.; Buckley, M. J.; Ballard, M. E.; Komater, V. A.; Miner, H.; Zhang, M.; Faghih, R.; Rueter, L. E.; Bitner, R. S.; Drescher, K. U.; Wetter, J.; Marsh, K.; Lemaire, M.; Porsolt, R. D.; Bennani, Y. L; Sullivan, J. P.; Cowart, M. D.; Decker, M. W.; Hancock, A. A. J. Pharmacol. Exp. Ther. 2005, 313, 176; (d) Lyle, F. R. U.S. Patent 5,973,257, 1985; Chem. Abstr. 1985, 65, 2870.
- Medhurst, A. D.; Atkins, A. R.; Beresford, I. J.; Brackenborough, K.; Briggs, M. A.; Calver, A. R.; Cilia, J.; Cluderay, J. E.; Crook, B.; Davis, J. B.; Davis, R. K.; Davis, R. P.; Dawson, L. A.; Foley, A. G.; Gartlon, J.; Gonzales, M. I.; Heslop, T.; Hirst, W. D.; Jennings, C.; Jones, D. N. C.; Lacroix, L. P.; Martyn, A.; Ociepka, S.; Ray, A.;

Regan, C. M.; Roberts, J. C.; Schogger, J.; Southam, E.; Stean, T. O.; Trail, B. K.; Upton, N.; Wadsworth, G.; Wald, J. A.; White, T.; Whitherington, J.; Woolley, M. L.; Worby, A.; Wilson, D. M. *J. Pharmacol. Exp. Ther.* **2005**, *321*, 1032.

- Dvorak, C. A.; Apodaca, R.; Barbier, A. J.; Berridge, C. W.; Wilson, S. J.; Boggs, J. D.; Xiao, W.; Lovenberg, T. W.; Carruthers, N. I. *J. Med. Chem.* 2005, *48*, 2229.
- Nagase, T.; Mizutani, T.; Ishikawa, S.; Sekino, E.; Sasaki, T.; Fujimura, T.; Ito, S.; Mitobe, Y.; Miyamoto, Y.; Yoshimoto, R.; Tanaka, T.; Ishihara, A.; Tekenaga, N.; Tokita, S.; Fukami, T.; Sato, N. J. Med. Chem. 2008, 51, 4780.
- 9. (a) Wager, T. T.; Chandrasekaran, R. Y.; Butler, T. W. WO2007/049123, 2007.;
 (b) Wager, T. T.; Butler, T. W. WO 2008/090429, 2008.
- Hudkins, R. L.; Raddatz, R.; Tao, M.; Mathiasen, J. R.; Aimone, L. D.; Becknell, N. C.; Prouty, C. P.; Knutsen, L. J. S.; Yazdanian, M.; Moachon, G.; Ator, M. A.; Mallomo, J. P.; Marino, M. J.; Bacon, E. R.; Williams, M. J. Med. Chem. 2011, 54, 4781.
- 11. http://clinicaltrials.gov (accessed July 2011).
- Hasvold, L. A.; Wang, W.; Gwaltney, S. L., II; Rockway, T. W.; Nelson, L. T. J.; Mantei, R. A.; Fakhoury, S. A.; Sullivan, G. M.; Li, Q.; Lin, N.-H.; Wang, L.; Zhang, H.; Cohen, J.; Gu, W.-Z.; March, K.; Bauch, J.; Rosenberg, S.; Sham, H. L. Bioorg. Med. Chem. Lett. 2003, 13, 4001.
- 13. P.Y.S.; Clark, C. G.; Saubeern, S.; Adams, J.; Averill, K. M.; Chan, D. M. T.; Combs, A. Synlett **2000**, 674.
- (a) Passarella, D.; Favia, R.; Giardini, A.; Lesma, G.; Martinelli, M.; Silvani, A.; Danieli, B.; Efange, S. M. N.; Mash, D. C. *Bioorg. Med. Chem.* **2003**, *11*, 1007; (b) Muchowski, J. M.; Horning, D. E.; Lacasse, G. *Can. J. Chem.* **1971**, *49*, 2785.
- 15. (a) The H₃R SAR was developed using in vitro binding assays by displacement of [³H]N-α-methylhistamine ([³H]NAMH) in membranes isolated from CHO cells transfected with cloned human H₃ or rat H₃ receptors. An H₃R binding assay using membranes prepared from rat cortex was used to compare the recombinant rat assay to a native tissue.; (b) Bacon, E. R.; Bailey, T. R.; Becknell, N. C.; Chatterjee, S.; Dunn, D.; Hostetler, G. A.; Hudkins, R. L.; Josef, K. A.; Knutsen, L.; Tao, M.; Zulli, A. L. US2010273779, 2010.
- 16. Clapham, J.; Kilpatrick, G. J. Eur. J. Pharmacol. 1993, 232, 99.
- Lin, J. S.; Dauvilliers, Y.; Arnulf, I.; Bastuji, H.; Anaclet, C.; Parmentier, R.; Kocher, L.; Yanagisawa, M.; Lehert, P.; Ligneau, X.; Perrin, D.; Robert, P.; Roux, M.; Lecomte, J. M.; Schwartz, J. C. *Neurobiol. Dis.* **2008**, *30*, 74.
- James, L. M.; Iannone, R.; Palcza, J.; Renger, J. J.; Calder, N.; Cerchio, K.; Gottesdiener, K.; Hargreaves, R.; Murphy, M. G.; Boyle, J.; Dijk, D. J. Psychopharmacology **2011**, 215, 643.
- Le, S.; Gruner, J. A.; Mathiasen, J. R.; Marino, M. J.; Schaffhauser, H. J. Pharmacol. Exp. Ther. 2008, 325, 902.
- Hudkins, R. L.; Aimone, L. D.; Bailey, T. R.; Bendesky, R. J.; Dandu, R.; Dunn, D.; Gruner, J. A.; Josef, K. A.; Lin, Y.-G.; Lyons, J.; Marcy, V. R.; Mathiasen, J. R.; Sundar, B. G.; Tao, M.; Zulli, A. L.; Rita Raddatz, R.; Bacon, E. R. *Bioorg. Med. Chem. Lett.* **2011**, *21*, 5493.