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Abstract As an important building block, developing

efficient and green synthesis strategy of cyclohex-2-enones

is of great importance. In this present work, a general

approach to the mild synthesis of substituted cyclohex-2-

enones derivatives starting from simple aldehydes and ace-

tone have been achieved via D-aminoacylase-initiated Aldol

condensation/Robinson annulation cascade reaction using

imidazole as an additive in organic media. The influences of

reaction conditions including solvents, enzyme concentra-

tion, additives type, molar ratio of enzyme to additive, and

substrate scopes were systematically investigated. Further-

more, some experiments were designed to explore the cat-

alytic roles of D-aminoacylase and imidazole in the multistep

cascade process, and one possible mechanism was proposed.

Keywords Cascade reaction � D-Aminoacylase �
Imidazole � Substituted cyclohex-2-enones

Introduction

Compounds containing cyclohex-2-enone (Fig. 1) have

been considered as an important class of organic com-

pounds, not only because of its successful application as a

building block in the natural synthesis, but numerous

compounds with this scaffold have also exhibited significant

biological activities and are widely utilized as pheromone

(Mori et al. 1978; Plummer et al. 1976; Ross et al. 1996; Vité

et al. 1972), food additive (Authority 2011) or antitumor

(Nakayachi et al. 2004). Many works have focused on the

development of novel and efficient synthetic routes for the

preparation of cyclohex-2-enones derivatives and contin-

uing studies are in progress. So far, a variety of methods

have been established, including Hagemann’s or Knoeve-

nagel’s approach (Horning et al. 1944; Horning and Field

1946; Pollini et al. 2010; Smith and Eftax 1956), reductive

cyclization of 2,6-dimethyl-3,5-dicarboxyethyl-4-aryl-1,

4-dihydropyridines (Martı́nez et al. 1998), intramolecular

aldolization of 4-substituted 2,6-heptandiones (Zhou et al.

2008). However, they usually suffered from harsh reaction

conditions, longer synthesis step or low yields. Therefore,

developing an efficient and green approach for synthesis of

cyclohex-2-enone derivatives using commercially available

and simple materials is of great use and much interest.

The usefulness of various biocatalysts (such as enzymes

or whole sells) for organic synthesis has attracted more and

more attention from chemists and biochemists due to mild

reaction conditions, wide sources, broad range of substrates

and potential use of inexpensive regenerable resources

(Aleu et al. 2006; Feng et al. 2009; Kazlauskas 2005;

Pollard and Woodley 2007; Schmid et al. 2001; Wu et al.

2010). Particularly, enzymatic promiscuity, i.e., the ability

of a single active site of the enzyme to catalyze alternative

reactions that differ from their natural physiological reac-

tion, has been a subject of increasing research interest in

the recent few years (Baas et al. 2013; Busto et al. 2010;

Khersonsky and Tawfik 2010). Some promiscuous hydro-

lases-catalyzed carbon–carbon (Cai et al. 2011; Svedendahl

et al. 2005; Xu et al. 2007) and carbon–heteroatom (Car-

lqvist et al. 2005; Kitazume et al. 1986; Lou et al. 2008;
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Torre et al. 2004; Wu et al. 2005, 2006) bond-forming

reactions, such as Aldol reaction (He et al. 2012; Guan

et al. 2012) and Michael reaction (Wang et al. 2009), have

been done during the past decade. Although many pro-

miscuous enzyme-catalyzed transformations have been

reported, only a handful of enzymatic cascade reactions

have been described (Liu et al. 2013; Wu et al. 2011; Zhou

et al. 2013). For example, Renard and co-workers reported

that Lipozyme� could catalyze the acylation/cyclization

reactions between fatty acid and o-phenylenediamine to

give 2-alkyl-benzimidazoles in mild yields, and a further

study was also reported by the group of Yu (Renard and

Lerner 2007; Wang et al. 2010). Zhang et al. reported a

multistep cascade reaction, which was catalyzed by PPL in

the presence of water, producing spirooxindole derivatives

in excellent yields (Chai et al. 2011). Our group have also

developed a direct approach to 1,4-dihydropyridines by

lipase-catalyzed Hantzsch-type reaction starting from

aldehydes, 1,3-dicarbonyl compounds and acetamide in

one pot (Wang et al. 2011a).

As a part of our continuous efforts toward the devel-

opment of biocatalytic promiscuity, we are interested in the

study of enzyme-catalyzed synthesis of cyclic compounds

through cascade reactions, and fortunately found that D-

aminoacylase could catalyze Aldol–Robinson cascade

reaction between simple aldehydes and acetones to produce

5-aryl-3-methylcyclohex-2-enones in the presence of

imidazole. Although Zhao et al. and our group have found

that 5-aryl-3-methylcyclohex-2-enones were directly syn-

thesized from aldehydes and acetone using pyrrolidine/

propionic acid or lysine/imidazole as catalyst (Wang et al.

2011b; Xiang et al. 2013), no enzymatic methods for

preparation of 5-aryl-3-methylcyclohex-2-enones were

reported. In the present work, we reported a facile and

useful enzymatic strategy for the synthesis of 5-aryl-3-

methylcyclohex-2-enones in organic media in the presence

of imidazole (Scheme 1).

Results and discussion

In initial research, we chose p-nitrobenzaldehyde 1a and

acetone 2a as the model substrates, and investigated the

reaction between them under the catalysis of a series of

commercially available enzymes. The results showed that a

zinc-binding metallo-acylase, D-aminoacylase from Esch-

erichia coli, which naturally catalyzes the hydrolysis of N-

acyl-D-amino acids (Lin et al. 2007, 2009), displayed the

best activity (Table S1, entry 7). Although the main pro-

ducts of this reaction catalyzed by D-aminoacylase were

aldol product (3a, 34 %) and Knoevenagel condensation

product (4a, 56 %), it was found that 8 % targeted product

5a could be obtained after 48 h (Table 1, entry 2 and Table

S1, entry 7). Some other hydrolases, such as CAL-B,

Lipozyme�, PPL, HPL, PGA, and CCL, were also inves-

tigated and all of them exhibited no catalytic activity for

synthesis of 5a (Table S1, entries 1–6). Subsequently,

based on our previous research that the introduction of

organic molecules as additive had a great influence on the

results of biocatalytic reactions (Chen et al. 2011), we then

designed some experiments to explore the effect of dif-

ferent additives and found that the yield of 5a improved

from 8 to 27 % when 0.22-mmol imidazole was added to

the reaction system (Table S2, entries 1–9). In addition, it

could be also found that main product of this reaction could

be regulated by imidazole; for example, the main product

of this reaction without any additive were aldol product 3a

in the presence of D-aminoacylase, while the introduction

of 10-mg imidazole (0.22 mmol) to the reaction system

leading to the Knoevenagel condensation compound 4a as

main product after 12 h (Table 1, entry 1 versus entry 3),

and the yield of 5-aryl-3-methylcyclohex-2-enone (5a) was

improved from 8 to 27 % after 48 h (Table 1, entry 2

versus entry 4).

Furthermore, some controlled experiments were per-

formed to demonstrate the specific catalytic effect of D-

aminoacylase. When the reaction was incubated with BSA

or denatured D-aminoacylase (pretreated with urea at

100 �C for 8 h or pretreated with EDTA at 37 �C for 12 h),

or imidazole alone, no product was detected (Table 1,

entries 5–8). Without doubt, the reaction between aldehyde

and acetone could not occur without any catalysts (Table 1,

entries 9). These experimental results indicated that D-

aminoacylase-imidazole had the catalytic ability for the

cascade reaction.

Considering the reaction may be affected by the loading

amount of imidazole, corresponding experiments were

carried out. As shown in Fig. 2, it could be observed that

O O
2+ octane

O
1a-1n 5a-5n

DA
R

R

/imidazole

2a

Scheme 1 Enzymatic cascade reaction of aldehydes and acetones

produces 5-aryl-3-methylcyclohex-2-enones

O

R

O
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Fig. 1 Compounds containing cyclohex-2-enone
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the yields reached the maximum when the imidazole

loading amount was 0.22 mmol, and had no further

improvement while increasing the dosage of imidazole.

The influence of enzyme concentration on the reaction

efficiency was also investigated. According to the data

shown in Fig. 3, with the concentration of D-aminoacylase

changed from 5 to 50 mg/mL, the yield increased from 6 to

52 % and then decreased slightly. Therefore, the optimal

enzyme and imidazole concentration were 40 mg/mL and

0.22 mmol/mL, respectively.

The reaction medium is an important factor in the

enzymatic reaction, due to the fact that enzyme may have

slightly different conformation in different media and thus

show distinct catalytic activities (Dhake et al. 2010; Li

et al. 2009). To improve the activity of D-aminoacylase,

some conventional organic solvents with different log

p values were screened and the results are shown in

Table 2. It could be observed that octane was the most

efficient medium for this reaction, and the product was

obtained in yield of 52 % (Table 2, entry 4). Surprisingly,

we found that other low polar solvents, such as hexane and

toluene, showed no promotion for the reaction and gave the

targeted product 5a with yields \5 % (Table 2, entries

1–3). While the reactions could not occur in polar solvents,

Table 1 The catalytic activities of different catalysts

O O
2+

Octane

O

1a 5a

DA /imidazole +

O

3a

+

O

4a

HO

2a

O2N

O2N O2N O2N

Entry Enzyme Imidazole (mmol) Time (h) Yield (%)c 3a Yield (%)c 4a Yield (%)c 5a

1 D-Aminoacylase – 12 81 13 N.Dd

2 D-Aminoacylase – 48 56 34 8

3 D-Aminoacylase 0.22 12 9 73 12

4 D-Aminoacylase 0.22 48 3 70 27

5 – 0.22 48 7 5 N.D

6 D-Aminoacylase denatured with ureaa 0.22 48 10 7 N.D

7 D-Aminoacylase denatured with EDTAb 0.22 48 12 6 N.D

8 BSA – 48 9 7 N.D

9 No catalyst – 48 N.D N.D N.D

Reaction conditions: enzyme (25 mg), p-nitrobenzaldehyde (0.07 mmol), acetone (0.15 mL), octane (1 mL), 50 �C
a Pretreated with urea at 100 �C for 8 h
b Pretreated with EDTA at 37 �C for 12 h
c Yields were determined by HPLC
d Not detected
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Fig. 2 The influence of imidazole on the cascade reaction. Reaction

conditions: D-aminoacylase (25 mg), p-nitrobenzaldehyde

(0.07 mmol), acetone (0.15 mL), solvent (1 mL), 50 �C, 48 h; yields

were determined by HPLC
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Fig. 3 The influence of D-aminoacylase on the cascade reaction.

Reaction conditions: imidazole (0.22 mmol), p-nitrobenzaldehyde

(0.07 mmol), acetone (0.15 mL), solvent (1 mL), 50 �C, 48 h; yields

were determined by HPLC
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no matter whether protic or aprotic solvent, this may be due

to that polar solvents lower the catalyst activity of D-ami-

noacylase (Table 2, entries 5–10). Thus, octane was chosen

as the optimized medium for further investigation.

Based on the above optimal reaction conditions, some

other aldehydes bearing different substituents (1a–n) were

selected to expand the generality and scope of this new D-

aminoacylase/imidazole-catalyzed cascade reaction. These

results were summarized in Table 3. Generally speaking,

substitution with strong electron-withdrawing groups, such

as -CF3, -CN, -NO2, could enhance the reactivity of the

substrate and lead to good yields (Table 3, entries 1, 2 and

8–10), compared with electron-donating substituents

(Table 3, entries 12, 13). The reason for this result might

be the increase in the electron density of carbonyl carbon

atom as a result of the strong electron-donating effect of

electron-donating groups, thus reducing the reactivity of

the carbonyl group. Meanwhile, it was found that halogen

atom (-F, -Cl, -Br) in aromatic ring might have an

influence on the catalyst activity of D-aminoacylase and

could cause the decrease of yields (Table 3, entries 3–7).

Interestingly, the cascade reaction between benzaldehyde

and acetone could give final product 5k with a good yield

of 70 %, possibly due to smaller steric hindrance in the

active site of D-aminoacylase (Table 3, entry 11). On other

hand, we have also investigated the reaction between p-

nitrobenzaldehyde and unsymmetrical ketones (such as

2-butanone and 3-pentanone), it was found that only aldol

adducts were obtained and no targeted products could be

detected. This may be because D-aminoacylase has the

limited spatial structure, and possibly the steric hindrance

arisen from aldol adducts and unsymmetrical ketones could

not fit well with the binding pocket of D-aminoacylase,

which resulted in the failure of the Robinson annulations

reaction between aldol adducts and unsymmetrical ketones.

Moreover, this reaction between heterocyclic aldehyde and

acetone also gave the desired product with moderate yield

(Table 3, entry 14).

Next, considering the multistep feature and complexity

of this D-aminoacylase/imidazole-catalyzed cascade reac-

tion, one important issue should be discussed, namely what

catalytic roles the D-aminoacylase and imidazole played,

respectively, in these multisteps. As shown in Table 1, the

model reaction between p-nitrobenzaldehyde and acetone

can provide aldol product (3a), Knoevenagel condensation

product (4a), and the targeted product (5a). According to

our hypothesis, the cascade reaction possibly went through

several simple reaction processes such as aldol reaction,

dehydration (Knoevenagel condensation) and Robinson

annulations, and the detailed mechanism was discussed in

the next section. In order to further comprehend the role of

both D-aminoacylase and imidazole in each step of the

cascade reaction, some additional experiments were

needed.

In the model reaction shown in Table 4, when D-ami-

noacylase alone was used as the catalyst, the aldol product

3a was obtained in a yield of 80 %, while the Knoevenagel

condensation product (4a) was \10 % (Table 4, entry 3).

Compared with the reaction catalyzed by apoenzyme,

which was obtained from D-aminoacylase, the results

clearly showed that D-aminoacylase exhibited a good cat-

alytic promiscuity for aldol reaction (Table 4, entry 3

versus entry 2), which was in accord with our previous

results (Chen et al. 2011). Moreover, the addition of

imidazole greatly increased the yield of Knoevenagel

condensation product (4a) (from 6 % in entry 3 to 68 % in

entry 5, Table 4), which implied that imidazole possibly

accelerated the dehydration process of aldol product (3a) to

give Knoevenagel condensation product (4a). By the way,

imidazole had no catalytic activity for the aldol reaction

(Table 4, entry 1).

The role of imidazole in the dehydration process was

further verified by the following experiment, the dehydra-

tion of the intermediate product 3a (Table 5). Imidazole

exhibited strong ability of promoting the dehydration of 3a,

especially when adding the acetone to increase the disso-

lution of 3a, the highest yield of 78 % for 4a could be

obtained (Table 5, entries 1, 2). D-Aminoacylase also

showed certain activity for the dehydration of 3a to give

compound 4a (Table 5, entries 3, 4), and the addition of

acetone led to small amount of final product (5a). It is

noteworthy that no final product was detected when ace-

tone was added to the imidazole-catalyzed dehydration of

3a (Table 5, entry 2), which primarily implied that

Table 2 The influence of solvent on the cascade reaction of 1a and

acetone

Entry Solvent Log p Yield (%)a

1 Hexane 3.9 4

2 1,4-Dioxane -0.5 1

3 Toluene 2.6 \1

4 Octane 4.9 52

5 N,N-Dimethylformamide -1.0 N.Db

6 CHCl3 2.0 N.D

7 DMSO -1.3 \1

8 NMPc – N.D

9 EtOH – N.D

10 H2O – \1

Reaction conditions: D-aminoacylase (40 mg), p-nitrobenzaldehyde

(0.07 mmol), acetone (0.15 mL), imidazole (0.22 mmol), solvent

(1 mL), 50 �C, 48 h
a Yields were determined by HPLC
b Not detected
c N-methyl-2-pyrrolidone
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Table 3 D-Aminoacylase-

catalyzed cascade reaction of

aldehyde and acetone

Reaction conditions:

D-aminoacylase (40 mg),

aldehyde (0.07 mmol), acetone

(0.15 mL), imidazole (0.22

mmol), octane (1 mL), 50 oC,

48 h
a Yields were determined by

HPLC
b Not detected

4
O

Cl
1d Cl

O

5d 37

5
O

Cl
1e

O

Cl

5e 45

6
O

Br
1f Br

O

5f 42

7
O

Br
1g

OBr

5g 38

8
O

NC
1h NC

O

5h 67

9
O

CN
1i

O

CN

5i 73

10
O

F3C
1j

O

F3C 5j 74

11
O

1k

O

5k 70

12
O

1l

O

5l 21

13
O

HO
1m

O

HO 5m N.D [c]

14
O

N
1n

N

O

5n 32

O O
2+ octane

O1a-1n 5a-5n

DA
R

R
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Entry Substrate Products Yields (%) [a]

1
O

O2N
1a O2N

O

5a 52

2

O

NO2

1b

O

O2N

5b 74

3
O

F
1c F

O

5c 30
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imidazole had no activity for the subsequent process of

Robinson annulation. Without doubt, the combination of

imidazole and D-aminoacylase catalyzed the dehydration of

3a more efficiently than independent one (Table 5, entries

6 and 7). Especially, the addition of acetone promoted the

synthesis of final product 5a greatly (61 % yield). Control

reactions catalyzed by metal-free apoenzyme or without

catalyst further confirmed the catalytic role of imidazole

and D-aminoacylase (Table 5, entries 5, 8 and 9).

Furthermore, we investigated the Robinson annulation

of compound 4a and acetone, namely a cascade Michael

addition/intramolecular aldol condensation process. As

shown in Table 6, it was found that no product was

detected when imidazole or apoenzyme was used as the

catalyst, respectively, possibly due to the fact that imid-

azole or apoenzyme had no catalytic activity for some key

step in the Robinson annulations such as the step of

Michael addition (Table 6, entries 1, 2, 3, and 5) (Xu et al.

2007). While D-aminoacylase alone showed certain activity

for this Robinson annulation, and 10 % of 5a was detected

(Table 6, entry 1). Interestingly, the addition of imidazole

greatly improves the efficiency of the D-aminoacylase-

catalyzed Robinson annulations, and 72 % yield of 5a was

obtained (Table 6, entry 4). One possible reason for the

enhancement by imidazole addition was that imidazole

showed high activity for the dehydration process in the

Robinson annulations similar as in the Knoevenagel

condensation.

Table 4 The role of D-aminoacylase and imidazole in the reactions

CHO

O2N

O
+

1a
O2N

OH O

O2N

O

+

3a 4a

Entry D-Aminoacylase (mg) Imidazole (mmol) Yields (%) 3a Yields (%)a 4a

1 – 0.22 N.Dc N.D

2 40b – N.D N.D

3 40 – 80 6

4 – – N.D N.D

5 40 0.22 N.D 68

Reaction conditions: 1a (0.07 mmol), octane (1 mL), acetone (0.15 mL), 50 �C, 12 h
a Yields were determined by HPLC
b Metal-free apoenzyme
c Not detected

Table 5 The role of D-aminoacylase and imidazole in the process of dehydration

O2N

OH O

3a
O2N

O

4a

Entry D-Aminoacylase (mg) Imidazole (mmol) Acetone (mL) 4a Yields (%)a

1 – 0.22 – 12

2 – 0.22 0.15 78

3 40 – – 16

4 40 – 0.15 30 (5a: 8)

5 40b – 0.15 N.Dc

6 40 0.22 – 37

7 40 0.22 0.15 38 (5a: 61)

8 40b 0.22 – 9

9 – – – N.D

Reaction conditions: 3a (0.05 mmol), octane (1 mL), 50 �C, 12 h
a Yields were determined by HPLC
b Metal-free apoenzyme
c Not detected
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Based on the above experimental results and some

previous works concerning the catalytic mechanism of

promiscuous zinc-dependent acylase (Liu et al. 2013; Xu

et al. 2007), one possible mechanism of the synthesis of

3-methyl-5-aryl-2-cyclohexen-l-ones catalyzed by D-ami-

noacylase in the presence of imidazole was proposed

(Scheme 2). The zinc ion would coordinate with the car-

bonyl group of acetone, leading to render the acetone more

nucleophilic. Then Asp366 deprived one H of acetone, and

the nucleophile would add simultaneously to the carbonyl

group of aldehyde. Then one water molecule was lost to

form the Knoevenagel condensation product 4a. Next, the

Michael reaction between 4a and acetone occurred to form

intermediate 6, which was quickly converted to interme-

diate 7 through intramolecular aldol reaction because of the

combined action of Zn2? and Asp366. At last, intermediate

7 lost one molecular water to get the final product 5a. It

should be remarked that the dehydration process in the

cascade reaction was the catalyzing results of D-amino-

acylase and imidazole.

In conclusion, a novel one-pot enzymatic method to

construct 3-methyl-5-aryl-2-cyclohexen-l-ones via cascade

aldol condensation/Robinson annulation of aromatic alde-

hyde and acetone was first reported, using D-aminoacylase

as catalyst and imidazole as additive. This protocol pro-

vides an easy-operating and efficient synthetic route of

3-methyl-5-aryl-2-cyclohexen-l-one derivatives from sim-

ple aldehydes and acetones. It works with a wide range of

substrates with moderate to good yields. A series of

experiments were designed to explore the catalytic roles of

D-aminoacylase and imidazole in this cascade process.

More importantly, this simple enzymatic cascade reaction

provided a novel case of catalytic promiscuity which

reinforces the utilization of enzyme in organic synthesis

and the discovery of pharmaceutical structures.

Experimental section

Materials and general methods

D-Aminoacylase from E. coli (10,000 U/mg, 1 U is defined

as enzyme quantity, which produces 1 mmol of D-amino

acid per 30 min) and Acylase Amano from Aspergillus

oryzae (C30,000 U/g, 1 U is defined as enzyme quantity,

which produces 1 mmol of L-Amino acid per 30 min) were

purchased from Amano Enzyme Inc (Japan). Immobilized

penicillin G acylase from E. coli (EC 3.5.1.11, immobi-

lized on acrylic beads) was purchased from Hunan Flag

Biotech Co. All chemicals were obtained from commercial

suppliers and used without further purification. Unless

otherwise noted, all commercially available compounds

were used without further purification.

H

O

O2N

O

Asp

OO

Zn2+

H

H

H

O

O2N
O

Asp

OHO

Zn2+

H

-H2O

Asp

OOO

O

O2N

O

Zn2+

H H
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OO

O

O2N

O

Zn2+

H

H
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OO

O

O2N

Zn2+

H

O

Asp

OO

O

O2N

Zn2+

O

H

H

Asp

OHO

O

O2N

Zn2+

O

O

HO

Asp

NO2

O O

Zn2+

-H2O

4a
4a

6

O

O

Asp

NO2

O

Zn2+

7 5a

Scheme 2 Proposed

mechanism of the synthesis of

3-methyl-5-aryl-2-cyclohexen-l-

ones

Table 6 The role of D-aminoacylase and imidazole in the reactions
O

O2N O

O2N

4a
5a

+

O

Entry D-Aminoacylase (mg) Imidazole (mmol) Yieldsa

1 40 – 10

2 40c – \1

3 – 0.22 N.Db

4 40 0.22 72

5 40c 0.22 \1

Reaction conditions: 4a (0.05 mmol), acetone (0.15 mL), octane

(1 mL), 50 �C, 24 h
a Yields were determined by HPLC
b Not detected
c Metal-free apoenzyme
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The 1H and 13C NMR spectra were recorded with TMS as

internal standard using a Bruker AMX-400 MHz spectrom-

eter. Chemical shifts were expressed in parts per million and

coupling constants (J) in Hertz. IR spectra were measured

with a Nicolet Nexus FTIR 670 spectrophotometer. All the

known products were characterized by comparing the 1H

NMR data with those reported in the literature. The struc-

tures of new compounds were confirmed by IR, 1H NMR,
13C NMR, and HR-MS. Analytical HPLC was performed

using an Agilent 1100series with a reversed-phase Shim-

PackVP-ODS column(150 9 4.6 mm) and a UV detector

(250 nm).

General procedure for the enzymatic cascade

for synthesis of 5-aryl-3-methylcyclohex-2-enones

A suspension of 1a–n (0.7 mmol), acetone (1.5 mL),

2.1-mmol imidazole and 400*mg D-aminoacylase in

10-mL octane was incubated at 50 �C and shaken for

48 h. After the indicated time, the enzyme was filtered

off to terminate the reaction and solvent was evaporated

under vacuum to dryness. The crude residue was puri-

fied by flash chromatography on silica gel using petro-

leum/ethyl acetate mixtures. Product-containing

fractions were combined, concentrated, and dried to

give 5a–n.
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