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Chiral Supramolecular U-Shaped Catalysts Induce the Multiselective 
Diels–Alder Reaction of Propargyl Aldehyde 
Manabu Hatano, Tatsuhiro Sakamoto, Tomokazu Mizuno, Yuta Goto, and Kazuaki Ishihara* 

Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan 

ABSTRACT: Diels–Alder reaction, which is a traditional [4 + 2] cycloaddition with two carbon–carbon bond formations, is one of 
the most powerful tools to synthesize versatile and unique 6-membered rings.  We show that chiral supramolecular U-shaped boron 
Lewis acid catalysts promote the unprecedented multiselective Diels–Alder reaction of propargyl aldehyde with cyclic dienes.  Inde-
pendent from the substrate-control, enantio-, endo/exo-, p-facial-, regio-, site-, and substrate-selectivities could be controlled by the 
present U-shaped catalysts.  The obtained reaction products could access to the concise synthesis of chiral diene ligands and a key 
intermediate of (+)-sarkomycin.  The results presented here might partially contribute the development of artificial enzyme-like 
supramolecular catalysts for multiselective reactions, which will be able to target organic compounds that have thus far eluded syn-
thesis. 

INTRODUCTION 
The control of multiple selectivities is one of the most challeng-
ing subjects in modern organic chemistry.  In this regard, the 
Diels–Alder (DA) reaction is a significant tool for the total syn-
thesis of complex organic molecules.1–8  Nevertheless, the DA 
reaction shows relatively strong substrate-dependence based 
on the HOMO/LUMO-frontier orbital theory,9–11 and uni-
versal control of multiselectivity is very difficult.  When actual-
ly used in the DA reaction, conventional chiral catalysts can 
discriminate the prochiral enantioface (i.e., re/si-face) of a 
dienophile regardless of the diene (two-dimensional discrimi-
nation).  However, most of them cannot control the diastereo- 
(i.e., endo/exo-), p-facial-, regio-, site-, nor substrate-selectivity, 
since this would require the three-dimensional discrimination 
of isomeric transition-state structures.  In general, enzymes in 
vivo can realize such multiselectivity among a myriad of other 
possibilities by using a chiral cavity, which provides a three-
dimensional space that includes an active site.12  The cavities 
of enzymes are conformationally flexible to catch substrates 
and release products (induced fit function).  To overcome the 
limited selectivity due to the small cavity and conformational 
rigidity of conventional chiral Lewis acid catalysts, supramo-
lecular catalysts,13–16 which are prepared in situ from small 
components by coordinating bonds, have been considered.  
Indeed, there are a few examples of the use of supramolecular 
O-shaped catalysts that induce unusual reactivity and/or selec-
tivity in DA reactions.17–23  However, their inherent catalytic 
activities are sometimes reduced due to their conformationally 
rigid structures.  In contrast, we envisioned that chiral supra-
molecular U-shaped catalysts, which are more conformationally 
flexible than O-shaped catalysts, can induce high catalytic activi-
ty with unusual multiselectivity.  Here we show, for the first 
time, that an asymmetric DA reaction of propargyl aldehyde24 
with cyclic dienes, triene, and tetraene can be controlled so as 
to provide multiselectivity by using chiral supramolecular U-
shaped catalysts,25 which should hold great potential for the 
non-enzymatic construction of fundamental and unusual mol-
ecules.  

 

Figure 1. Outline of our previous chiral cavity-controlled Diels–
Alder (DA) reaction of acroleins 2 with cyclopentadiene 1. (a) 
Previous results for the catalyst-controlled endo/exo-selective DA 
reaction using chiral U-shaped catalysts. (b) Endo-induced chiral U-
shaped catalyst (R)-5•2B(C6F5)3. (c) Exo-induced chiral U-shaped 
catalyst (R)-6•2B(C6F5)3. 
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Figure 2. General strategy for the present multiselective DA reaction of propargyl aldehyde 7 with cyclopentadiene 1. (a) A control exper-
iment using BF3•Et2O in the reaction between 1 and 7. (b) Multiselective induction in the DA reaction of 7 with 1 with the use of chiral 
supramolecular U-shaped catalysts. 

 
In general, endo/exo-selectivity in the DA reaction strongly 

depends on the substrates used (Figure 1a).26,27  In this regard, 
we have previously succeeded in the enantio- and endo/exo-
selective DA reactions of acroleins 2 with cyclopentadiene 1 
induced by chiral supramolecular U-shaped catalysts, (R)-
5•2B(C6F5)3 and (R)-6•2B(C6F5)3 (Figures 1b and 1c).25  These 
catalysts are prepared in situ from 3,3’-Lewis base-
functionalized chiral BINOL, arylboronic acid, and 
tris(pentafluorophenyl)borane, and the size of the U-shaped 
cavity can be tuned for each substrate: (R)-5•2B(C6F5)3, which 
has a deep and narrow chiral cavity, gives catalyst-controlled 
unusual endo-product 3a with 99% ee from methacrolein 2a 
overriding of intrinsic exo-product 4a, whereas (R)-6•2B(C6F5)3 
which has a shallow and wide chiral cavity, gives catalyst-
controlled unusual exo-product 4b with 94% ee from acrolein 
2b overriding of intrinsic endo-product 3b.25  Notably, the cen-
tered Lewis acidity of these catalysts was enhanced based on 
the concept of a Lewis acid-assisted Lewis acid (LLA).28 

  In this context, we are currently interested in whether or 
not these chiral supramolecular U-shaped catalysts can control 
multiselectivities in DA reactions.  Thus, we focused on a reac-
tion of propargyl aldehyde 7 with cyclopentadiene 1.  To the 
best of our knowledge, there has been only one prior study 
with a chiral boron Lewis acid catalyst reported by Yamamoto 
et al.,24 although there are some examples of the use of alkynes 
other than 7.29,30  According to Yamamoto’s report,24 the de-
sired DA adduct 8 was obtained with 95% ee but in only 28% 
yield due to the overreaction of 8 with 1.  Indeed, our prelimi-
nary investigation of the DA reaction of 7 with 1 in the pres-
ence of BF3•Et2O (10 mol%) shows that the 2nd DA reaction 
was much faster than the 1st DA reaction and the 2nd DA ad-
ducts (i.e., sesquinorbornadienes31) 9–11 were exclusively ob-
tained (Figure 2a, also see the Supporting Information (SI), 
pages S10–S11).  To avoid undesired overreactions, a catalyst 
must control the substrate-selectivities of 7 and 8.   Moreover, 
as indicated by Yamamoto’s report,24 although the endo/exo-
selectivity is reflected convergently in the enantioselectivity, the 
exo-transition state might be favored because of the secondary 
repulsive HOMO–LUMO orbital interaction in the endo-
transition state (see the SI, pages S11–S13).32  Overall, we en-

visioned that our exo-induced chiral supramolecular U-shaped 
catalysts would control such the enantio-, endo/exo-, and sub-
strate-selectivities through a conformationally flexible chiral 
cavity with reasonable turnover, as if an artificial enzyme-like 
cavity with three-dimensional stereocontrols under non-
aqueous conditions (Figure 2b). 

 
RESULTS AND DISCUSSION 

At the beginning of the study, we examined the previous en-
do-induced catalyst (R)-5•2B(C6F5)325 and exo-induced catalyst 
(R)-6•2B(C6F5)325 in the reaction of 7 with 1 in dichloro-
methane with molecular sieves (MS) 4Å at –78 °C for 3 h (Ta-
ble 1, entries 1 and 2).  As a result, (R)-5•2B(C6F5)3 showed a 
poor result (entry 1).  In contrast, the desired 1st DA-adduct 8 
was actually obtained in 60% yield with 54% ee with the use 
of (R)-6•2B(C6F5)3, but the undesired 2nd DA-adducts 9–11 
and further reacted byproducts were also obtained (entry 2).  
The size of the possible chiral cavity of the U-shaped catalysts 
can be tuned by modification of the amide moieties and aryl-
boronic acid, since the distance between the two coordinated 
B(C6F5)3 in a syn-relationship can be controlled by the steric 
hindrance between two amide moieties and arylboronic acid 
moieties.  After the thorough optimization (see the SI, pages 
S8–9 and S14–S15), 8 was obtained in 95% yield with 90% ee, 
particularly when (R)-12a•2B(C6F5)3, which involves flat isoin-
doline-derived amides, was used (entry 3).  Remarkably, >1 
gram scale synthesis could be achieved with the reduced cata-
lytic amount (5 mol%) (entry 4).  Ultimately, the more reduced 
catalytic amount (2.5 mol%) was still effective, and 8 was ob-
tained in 90% yield with 90% ee (entry 5).  The fine-tuning of 
the aryl boronic acid part should also be important, and (R)-
12b•2B(C6F5)3 was much less effective than (R)-12a•2B(C6F5)3 
in terms of the yield (49%), although the ee value was essential-
ly the same (89% ee) (entry 6). 

  Unfortunately, conformationally flexible (R)-12a•2B(C6F5)3 
was not suitable for crystallization for X-ray analysis to give 
crucial structural evidence, although NMR and ESI-MS anal-
yses could provide some information (see the SI, pages 
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Table 1. Initial Catalyst Screening and Mechanistic Consid-
eration in the DA Reaction of Propargyl Aldehyde 7 with Cy-
clopentadiene 1 by Using Chiral Supramolecular U-Shaped 
Catalystsa 

 
 

Entry Catalyst (mol%) Yield and 
ee of 8 

Yield of 
9–11 

1 (R)-5•2B(C6F5)3 (10) 24%, –6% eeb 32% 
2 (R)-6•2B(C6F5)3 (10) 60%, 54% ee 12% 
3 (R)-12a•2B(C6F5)3 (10) 95%, 90% ee 3% 
4c (R)-12a•2B(C6F5)3 (5) 95%, 90% ee 4% 
5d (R)-12a•2B(C6F5)3 (2.5) 90%, 90% ee 3% 
6 (R)-12b•2B(C6F5)3 (10) 49%, 89% ee 21% 
7 (R)-14•2B(C6F5)3 (10) 80%, 81% ee 9% 
8 (R)-15•2B(C6F5)3 (10) 72%, 80% ee 8% 

a The reaction was carried out with 1 (2.5 mmol), 7 (0.5 mmol), 
and catalyst (10 mol%) in dichloromethane with MS 4Å at –78 °C 
for 3 h unless otherwise noted.  b ent-8 was obtained with 6% ee.  c 
12 mmol of 7 was used. 1.37 g of  8 was obtained.  d Reaction time 
was 5 h. 

 

 

Figure 3. Theoretical study by a molecular mechanics method 
for model compound (R)-15•H2O.  Two hydrogen atoms of H2O 
are omitted for clarity.  (a) Top view.  (b) Side view. 

 

 

Figure 4. Possible transition states of the chiral supramolecular 
U-shaped catalysts (R)-12a•2B(C6F5)3 without the macrocyclic 
structure (TS-13) and (R)-15•2B(C6F5)3 with the macrocyclic 
structure (TS-16). 

 
S22–S27).  To confirm the possible syn-B(C6F5)3/B(C6F5)3-
conformation of (R)-12a•2B(C6F5)3, we designed alkyl-chain-
linked catalyst (R)-15•2B(C6F5)3, which cannot geometrically 
give an anti-B(C6F5)3/B(C6F5)3-conformation.  The possible syn-
B(C6F5)3/B(C6F5)3-conformation of catalysts (or their transition 
states) can be strongly assumed based on a preliminary theo-
retical study by a molecular mechanics method for the boron 
BINOLate aqua complex (R)-15•H2O as a model unit (Figure 
3, also see the SI, pages S35–S39).  Although (R)-15•H2O does 
not have two coordinated B(C6F5)3 molecules, (R)-15•H2O 
alone clearly showed the syn-C=O/C=O-conformation.  As 
expected, the reaction proceeded smoothly even with the use 
of (R)-15•2B(C6F5)3, and 8 was obtained in 72% yield with 
80% ee (Table 1, entry 8).  This result was comparable to the 
result with the use of non-alkyl-chain-linked (R)-14•2B(C6F5)3 
in a control experiment (80% yield and 81% ee of 8) (entry 7).  
Therefore, the postulated TS-16, and thus TS-13, should be 
acceptable based on the possible syn-B(C6F5)3/B(C6F5)3-
conformation (Figure 4). 
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  Next, we transformed 8 into synthetically useful optically 
active compounds (Figure 5).  Pinnick oxidation of 8 and sub-
sequent methylation gave a,b-unsaturated ester 17 in 92% 
yield in two steps (Figure 5a).  Ester 17 was much more stable 
than aldehyde 833 and would be suitable for 1,2- and 1,4-
addition reactions with some nucleophiles.  Indeed, 1,2-
addition of methyllithium provided compound 18 in 69% 
yield, which is Corey’s chiral diene ligand34 for asymmetric 
transition-metal catalysis (Figure 5b).  On the other hand, the 
addition of benzyl alcohol under conventional basic conditions 
gave 1,4-adduct 19a in 93% yield with high diastereoselectivi-
ty (dr = 98:2).35  Further transformation of 19a with LiAlH4 
was conducted to afford 20 in 94% yield, which is a key in-
termediate of (+)-sarkomycin.36  Other C-, N-, O-, P-, and S-
nucleophiles could also be used, and the corresponding novel 
1,4-adducts 19b–g were selectively obtained via exo-facial ad-
dition (Figure 5c).  The transformations to optically active 
functionalized norbornenes 19a–g are valuable, since they 
have not been synthesized directly in DA reactions using less 
reactive electron-rich b-substituted acroleins or acrylates.37 
 

 

Figure 5. Transformation of DA adduct 8. (a) Oxidative trans-
formation of unstable 8 to stable ester 17. (b) Transformation to 
Corey’s diene ligand 18 and key intermediate 20 for (+)-
sarkomycin. (c) Diastereoselective 1,4-addition to 17 with various 
C-, N-, O-, P-, and S-nucleophiles. 

 
  Next, we considered the substrate- and regioselective DA 

reaction of 7 with 2-alkyl-substituted cyclopentadienes 22 
(Figure 6a).  Although 22 cannot be isolated from a ca. 1:1 
mixture of 1-/2-alkyl-substituted cyclopentadienes 21/22 due 
to isomerization,38 we envisioned that chiral U-shaped catalysts 
might be effective to discriminate 22 from 21.  In principle, 
this reaction might give eight-isomeric 1st DA adducts (±)-23–  

 

Figure 6. Substrate- and regioselective DA reaction with 1-/2-
alkyl-substituted cyclopentadienes 21/22. (a) The DA reaction of 
7 with 21/22 by using (R)-12a•2B(C6F5)3. (b) Possible exo-
approaches of 21 (disfavored TS-27) and 22 (favored TS-28) to 
the activated 7. A regioselection rule is indicated by the purple 
circles due to the theoretical orbital coefficients (see Supplemen-
tary Information). (c) Concise synthesis of Hayashi’s chiral diene 
ligand 30 ((R,R)-Bn-nbd*). 

 
26 and numerous (theoretically, up to 64) corresponding 2nd 
DA adducts.  (±)-23 and (±)-26 were obtained almost equally 
under thermal conditions without catalysts consistent with the 
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orbital symmetry/coefficient theory,9–11 whereas control exper-
iments with BF3•Et2O, B(C6F5)3, and EtAlCl2 as typical Lewis 
acid catalysts provided a complex mixture and (±)-23–26 
could not be detected due to the undesired cationic polymeri-
zation of dienes (see the SI, pages S52–S58).  In sharp contrast, 
(R)-12a•2B(C6F5)3 gave the desired DA adducts 26 in high 
yield with high substrate-, enantio-, endo/exo-, and regioselec-
tivities (Figure 6a).  Both primary and secondary alkyl-
substituted 21a–d/22a–d, as well as 21e–i/22e–i with a 
functionalized group, such as ester, allyl, haloallyl, alkoxy, and 
acetal moieties, could be used.  These successful results can be 
understood in terms of either selective stabilization of the 
(1R,4R)-exo-transition state TS-28 or destabilization of other 
transition states such as TS-27 in the chiral U-shaped cavity of 
(R)-12a•2B(C6F5)3 (Figure 6b).  Since C2-symmetric norborna-
dienes are very important chiral ligands for asymmetric Rh(I)- 
and Ir(I)-catalysis,39 a concise synthesis of Hayashi’s repre-
sentative diene ligand 3040 was demonstrated (Figure 6c).  
Optically active DA product 26d (including 6% of 25d) react-
ed with PhMgCl and then acetyl chloride to give 29 in 90% 
yield.  Although compound 29 still involved 25d-derived by 
products, subsequent deacetoxylation by Pd(0)-catalyzed re-
duction with formic acid and the purification could gave 30 in 
75% yield with 97% ee.  Overall, our method also could readi-
ly provide 30 from 7 and 21d/22d without the use of  

 

 

Figure 7. p-Facial selective DA reaction of with 5-alkyl-
substituted cyclopentadiene 31. (a) The DA reaction of 7 with 31 
by using (R)-12a•2B(C6F5)3. (b) Isomerization of 31 to 31’ under 
the thermal conditions. (c) Possible p-facial selective exo-approach 
of 31. 

corrosive and explosive trichlorosilane, which is part of the 
original and improved synthesis of 30 in 4–9 steps from nor-
bornadiene (see the SI, pages S67–S69).40,41 

Moreover, the p-facial selective DA reaction42 of 5-alkyl-
substituted cyclopentadiene 31 was also examined (Figure 7a, 
also see the SI, pages S71–S72).  Unlike previous 21/22, 31 
could be available without isomerization at low temperature 
(less than 0 °C), and we could carefully use pure 31.  From 
sterically less-hindered 7, unlike acrolein 2b, the other p-
facial-adduct (±)-33 was obtained along with the expected (±)-
32 under EtAlCl2 or thermal reaction conditions.  At that time, 
compound (±)-34 was also obtained due to isomerization to 
thermodynamically stable 31’ (Figure 7b).  In contrast, 32 was 
exclusively obtained in 94% yield with 94% ee with the use of 
(R)-12a•2B(C6F5)3.  The remarkable p-facial selectivity as well 
as enantio-, endo/exo-, and substrate-selectivities might be rea-
sonably considered by the possible transition state model with 
the chiral U-shaped catalyst as shown in Figure 7c. 

We next tried to apply the catalysis to 1- or 2-alkyl-
substituted cyclohexadienes 36 and 37 (Figure 8, also see the 
SI, pages S82–S87).  Unlike 1-/2-alkyl-substituted cyclopenta-
dienes 21/22, 36 and 37 can be separated from each other.  
As control experiments using 7 and 2-alkyl-substituted cyclo-
hexadienes 36, (±)-38 with adequate orbital coefficients rather 
than (±)-39 with inadequate orbital coefficients were exclusive-
ly obtained under thermal conditions without any catalysts 
(Figure 8a).  In contrast, the use of achiral Lewis acid catalysts, 
such as BF3•Et2O, B(C6F5)3, and EtAlCl2, could promote the 
reaction of 7 with 36 but gave a complex mixture.  In such a 
situation, (R)-12a•2B(C6F5)3 was still effective, and 38 were 
obtained with high enantio-, endo/exo-, regio-, and substrate-
selectivities.  Next, 1-alkyl-substituted cyclohexadienes 37 were 
also examined.  As control experiments, (±)-40 with adequate 
orbital coefficients were exclusively obtained under thermal 
conditions without any catalysts (Figure 8b).  As other control 
experiments, the use of EtAlCl2 gave both 1st DA-adducts (±)-
40 (major) and (±)-41 (minor), whereas the use of BF3•Et2O or 
B(C6F5)3 gave a complex mixture.  In sharp contrast, 41 with 
inadequate orbital coefficients was selectively obtained with 
enantio-, endo/exo-, regio-, and substrate-selectivities, particu-
larly with the use of another finely optimized U-shaped catalyst 
(R)-12b•2B(C6F5)3.  In both reactions of 36 and 37, steric con-
straints of these substrates in the chiral U-shaped cavity might 
be reasonably considered for the possible transition states as 
shown in Figures 8c and 8d. 

Furthermore, we examined the site- and regioselective DA 
reaction of triene 42, which has two DA reaction sites due to 
the additional 3-vinyl moiety (Figure 9a, also see the SI, pages 
S97–S101).   As control experiments, the reaction of 7 with 42 
with the use of promising EtAlCl2 gave a complex mixture, 
whereas (±)-43 and (±)-45 with both adequate orbital coeffi-
cients were obtained in respective yields of 50% under thermal 
conditions without catalysts.  In sharp contrast, with the use of 
(R)-12b•2B(C6F5)3, novel tetrahydronaphthalene 45 was mul-
tiselectively obtained in 94% yield with 97% ee without the 
generation of 43, 44, 46, nor other byproducts.  Moreover, we 
examined tetraene 47 with 2,3-divinyl moieties (Figure 9b, 
also see the SI, pages S107–S111), which showed similar re-
sults under the control reaction conditions.  Remarkably, in 
the presence of (R)-12b•2B(C6F5)3, 49 was obtained in 97% 
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Figure 8. Regioselective DA reaction with 2- or 1-alkyl-substituted cyclohexadienes 36 and 37. (a) The DA reaction of 7 with 2-alkyl-
substituted cyclohexadienes 36 by using (R)-12a•2B(C6F5)3. (b) The DA reaction of 7 with 1-alkyl-substituted cyclohexadienes 37 by using 
(R)-12b•2B(C6F5)3. (c) Possible exo-approach of 36. (d) Possible exo-approach of 37 regardless the less-favored orbital coefficients (see the 
Supporting Information). 

 
yield with 95% ee.  Since the observed preference for 45 or 49 
over other compounds cannot be explained by the substrate-
dependant orbital theory alone, the possible chiral cavity of the 
U-shaped catalyst might preferentially induce these remarkable 
enantio-, endo/exo-, regio-, site-, and substrate-selectivities (Fig-
ure 9c). 
  Finally, we considered preliminary theoretical calculations 
involving the possible geometry of the supramolecular catalyst 
(R)-12a•2B(C6F5)3 as a working model.  A chiral U-shaped cavi-
ty is assumed due to the six bulky and dynamic C6F5 moieties, 
and the two C=O•••B(C6F5)3 moieties could have a syn-
conformation.  As expected above, the geometry of syn-(R)-

12a•2B(C6F5)3•7 was much more stable than anti-(R)-
12a•2B(C6F5)3•7 by using a semi-empirical method AM1 (see 
the SI, page S117).  In these intermediates, the formyl moiety 
of 7 was doubly coordinated with the B-O(Naph) moiety at the 
C(=O)H and C(=O)H parts.  Based on these results, we further 
optimized the intermediates before and after the transition 
states, such as syn-(R)-12a•2B(C6F5)3•7 and syn-(R)-
12a•2B(C6F5)3•8, with the DFT method (B3LYP/6-31G*), and 
the results are summarized in Figure 10 (also see the SI, page 
S117–S119).  The average of the five shortest distances be-
tween F atoms of the two different B(C6F5)3 moieties is 6.498 Å 
in syn-(R)-12a•2B(C6F5)3•7 and 7.117 Å in syn-(R)-
12a•2B(C6F5)3•8.  Accordingly, the virtual bore size of the  
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Figure 9. Site- and regioselective DA reaction with cyclohexadiene-derived triene and tetraene. (a) The DA reaction of 7 with triene 42 
by using (R)-12b•2B(C6F5)3. (b) The DA reaction of 7 with tetraene 47 by using (R)-12b•2B(C6F5)3. (c) Possible exo-approach of 42 or 47 
due to the cavity’s steric controls. 

 

 

Figure 10. DFT calculations of possible key intermediates.  (a) syn-(R)-12a•2B(C6F5)3•7.  (b) syn-(R)-12a•2B(C6F5)3•8.  Hydrogen atoms of 
the catalyst are omitted for clarity. 

 
cavity of syn-(R)-12a•2B(C6F5)3•8 (ca. 5.5–6.0 Å) is larger than 
that of syn-(R)-12a•2B(C6F5)3•7 (ca. 5.0–5.5 Å).  Moreover, the 
angle of B–B–B (158.9°) in syn-(R)-12a•2B(C6F5)3•8 is slightly 
larger than the angle (157.9°) in syn-(R)-12a•2B(C6F5)3•7.  The 
observed differences of the bore size in these calculated inter-

mediates might possibly include expansion and contraction of 
the cavity, which might be featured by our conformationally 
flexible supramolecular U-shaped catalysts.43  As a result, the 
desired compounds can properly hold in the chiral cavity with 
the ‘induced-fit function’.  Actually, as shown above, our con-
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formationally flexible chiral U-shaped cavity could avoid the 
undesired overreactions in the DA reactions of propargyl al-
dehyde 7.  In this regard, for example, the diameters of cylin-
der including each compound, such as 7 (2.0 Å), 8 (5.1 Å), 9 
(6.9 Å), 10 (6.8 Å), and 11 (6.9 Å), might include a correlation 
to the cavity size of the catalyst (See the SI, page S121).  In 
particular, since the 2nd DA-adducts 9–11 would be too large 
and mismatched to the present cavity, the related transition 
states toward these compounds would be disfavored.  Although 
these preliminary theoretical study may somewhat help con-
sidering the reaction mechanism for extraordinary multiselec-
tivity using the present supramolecular U-shaped catalysts,44 
further investigations must be necessary to full understanding 
particularly the possible transition states.  A continuous study 
for the comprehensive mechanistic investigations is underway. 
 
CONCLUSION 

Despite remarkable developments in the field of asymmetric 
catalysis, there are still many difficulties that are beyond the 
reach of current synthetic technology in organic chemis-
try.  We have developed here a new synthetic method based 
on the supramolecular technology with conformationally flexi-
ble chiral supramolecular U-shaped catalysts particularly for the 
enantio-, endo/exo-, p-facial, regio-, site-, and substrate-selective 
Diels–Alder reactions of propargyl aldehyde with various cy-
clic dienes, triene, and tetraene.  We hope that the results pre-
sented here might partially contribute the development of arti-
ficial enzyme-like supramolecular catalysts for multiselective 
reactions, which will be able to target organic compounds that 
have thus far eluded synthesis. 

 
EXPERIMENTAL SECTION 
Representative procedure of the DA reaction (0.50 
mmol scale of 7): A pale brown solution of the chiral (R)-
Ar2-BINOL ligand (33.8 mg, 0.050 mmol) and 3,5-
bis(cyclopentyl)phenylboronic acid (14.5 mg, 0.050 mmol) in 
dichloromethane (1 mL), THF (0.15 mL), and water (9 µL, 
0.50 mmol) was stirred at room temperature for 12 h in a Py-
rex Schlenk tube under a nitrogen atmosphere.  The volatiles 
were removed under reduced pressure, and powdered MS 4Å 
(250 mg, used as received commercially) was added.  The dry-
ing agent MS 4Å was required to complete dehydrative prepa-
ration of (R)-12a and to prevent the release of B(C6F5)3•H2O 
due to competitive coordination with water.  The resulting 
pale yellow solid was heated to 100 °C (bath temperature) 
under <5 Torr for 2 h.  After the sample was cooled to room 
temperature under a nitrogen atmosphere, 
tris(pentafluorophenyl)borane (51.2 mg, 0.10 mmol) and fresh-
ly-distilled dichloromethane (2 mL) were added under an ar-
gon atmosphere in a glove box.  The pale brown mixture was 
stirred at room temperature for 1 h.  The mixture was then 
cooled to –78 °C, and 7 (d = 0.915, 89% purity, 33.2 µL, 0.50 
mmol) was added.  Subsequently, freshly-distilled cyclopenta-
diene 1 (203 µL, 2.5 mmol) was added at –78 °C over 15 min.  
The resultant mixture was then stirred at –78 °C for 3 h.  Tri-
ethylamine (0.5 mL) was poured into the reaction mixture at –
78 °C to quench the reaction.  The product mixture was puri-
fied by silica gel column chromatography (Kanto Chemical 
Co., Inc. 37560; eluent: pentane:Et2O = 100:1 to 8:1).  Sol-
vents were carefully removed under 200 Torr at 15 °C by a 
rotary evaporator to give 8 (57.0 mg, 95% yield). The enanti-

oselectivity of 8 was determined by HPLC analysis (90% ee, 
Daicel CHIRALPAK AS-H, n-hexane:i-PrOH = 9:1, 1.0 
mL/min, tR = 8.3 min ((1R,4S)-8, major), 12.3 min ((1S,4R)-8, 
minor).  Compounds 9, 10, and 11 were also obtained as a 
mixture by the same silica gel column chromatography.  The 
ratio of 9:10:11 was determined by 1H NMR analysis [9: 9.72 
ppm, 10: 10.02 ppm, 11: 9.42 ppm]. 

 
1 g scale DA reaction of 7 with 1 (Table 1, entry 4):  A 
pale brown solution of the chiral (R)-Ar2-BINOL ligand (405 
mg, 0.60 mmol) and (3,5-bis(cyclopentyloxy)phenyl)boronic 
acid (174 mg, 0.60 mmol) in dichloromethane (12 mL), THF 
(1.8 mL), and water (108 µL, 6 mmol) was stirred at room 
temperature for 12 h in a Pyrex Schlenk tube under a nitrogen 
atmosphere.  The volatiles were removed under reduced pres-
sure, and powdered MS 4Å (2.50 g, used as received commer-
cially) was added.  The resulting pale yellow solid was heated 
to 100 °C (bath temperature) under <5 Torr for 2 h.  After the 
sample was cooled to room temperature under a nitrogen at-
mosphere, tris(pentafluorophenyl)borane (614 mg, 1.2 mmol) 
and freshly-distilled dichloromethane (48 mL) were added 
under an argon atmosphere in a glove box.  The pale brown 
mixture was stirred at room temperature for 1 h.  The mixture 
was then cooled to –78 °C, and propargyl aldehyde 7 (d = 
0.915, 85% purity) (835 µL, 12.0 mmol) was added.  Subse-
quently, freshly-distilled cyclopentadiene 1 (5.04 mL, 60 
mmol) was added at –78 °C over 30 min.  The resultant mix-
ture was stirred at –78 °C for 3 h.  Triethylamine (2.0 mL) was 
poured into the reaction mixture at –78 °C to quench the re-
action.  Solvent (dichloromethane) was removed under 150 
Torr at 25 °C by a rotary evaporator.  The product mixture 
was purified by silica gel column chromatography (Kanto 
Chemical Co., Inc. 37560; eluent: pentane:Et2O = 100:1 to 
8:1).  Solvents were removed under 200 Torr at 15 °C by a 
rotary evaporator to give 8 (1.37 g, 95% yield).  The enanti-
oselectivity of 8 was determined by HPLC analysis (90% ee) in 
the same procedure described above. 
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