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A copper-catalyzed approach for the synthesis of 2-aryl-quin-
azolinones through a domino reaction involving C–C bond
cleavage is described. This protocol involves intramolecular
C–C bond cleavage to construct 2-aryl-quinazolinones,

Introduction

The quinazolinone skeleton is an important pharmaco-
phore, and it has been assigned as a privileged structure in
drug development, because of the diverse range of pharma-
cological activities and biological properties displayed by
compounds consisting of this structural motif.[1] In view of
the importance of quinazolinones and their derivatives,
many classical synthesis methods have been reported.[2] The
main synthetic routes to quinazolinone compounds utilize
2-aminobenzoic acid or its derivatives, 2-aminobenzamide,
2-aminobenzonitrile, isatoic anhydride, 2-methoxycarb-
onylphenyl isocyanate, N-arylnitrilium salts, and 4H-3,1-
benzoxazinones as suitable precursors. Recently, Fu et al.
used substituted 2-halobenzamides and (aryl)methanam-
ines as starting materials for CuBr-catalyzed cascade
Ullmann-type coupling and aerobic oxidative C–H amid-
ation reactions in air to give 2-substituted quinazolinones
in good yields (Scheme 1).[3] In our research, by using α-
substituted arylmethanamines as starting materials, we ob-
tained 2-aryl-quinazolinones as the major products, which
were surprisingly related to C–C bond cleavage. To the best
of our knowledge, no examples of the construction of N-
heterocycles through domino reactions involving C–C bond
cleavage have been previously reported.

Selective C–C bond cleavage by transition-metal com-
plexes has recently emerged as an active research topic in
organic chemistry, along with C–H bond cleavage.[4] In
comparison, C–C bond cleavage is more challenging owing
to the inertness of this bond. As is known, C–C bond cleav-
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which may offer an alternative method to prepare medically
important quinazolinone derivatives and a new strategy for
C–C bond cleavage. Besides C–C bond cleavage, this domino
reaction includes N-arylation and benzylic C–H amidation.

Scheme 1. Methods for the synthesis of 2-aryl-substituted quin-
azolinone derivatives.

age can be achieved by noble metals, but only a limited
number of strategies have been reported with the use of
cheap metals such as Cu and Fe.[5] Herein, we describe a
copper-catalyzed approach for the synthesis of 2-aryl-quin-
azolinones through a domino reaction involving C–C bond
cleavage.

Results and Discussion

Our initial studies focused on identifying the optimal
conditions (Table 1). 2-Iodobenzamide (1a) and α-methyl-
benzylamine (2a) were smoothly converted into 2-phenyl-
quinazolin-4(3H)-one (3a) in 72% yield with CuBr (10 mol-
%) as the catalyst, K2CO3 (3 equiv.) as the base, and di-
methyl sulfoxide (DMSO) as the solvent under an air atmo-
sphere at 120 °C over 24 h (Table 1, entry 1). Performing
the reaction under an argon atmosphere led only to a small
amount of 3a in 24 h (Table 1, entry 2), but the yield could
be increased to 38% in 72 h (Table 1, entry 3), which sug-
gested the absence of air could decelerate the transforma-
tion. Thus, we began to screen other catalysts in air
(Table 1, entries 4–6), and we found that CuBr provided the
highest yield. The base had a significant effect on the yield;
bases such as Cs2CO3 (Table 1, entry 7) and Na2CO3

(Table 1, entry 8) were tested, and neither of them gave a
better result. Using other solvents such as DMF (Table 1,
entry 9) and dimethylacetamide (DMA; Table 1, entry 10)
instead of DMSO gave the products in lower yields. The
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effect of temperatures was also investigated, and 120 °C was
the best choice (Table 1, compare entries 1, 11, 12).

Table 1. Optimization of the conditions for the copper-catalyzed
domino reaction of 2-iodobenzamide with α-methylbenzylamine to
form 2-phenylquinazolin-4(3H)-one in air.[a]

Entry Cat. Base Solvent t T Yield[b]

[h] [°C] [%]

1 CuBr K2CO3 DMSO 24 120 72
2 CuBr K2CO3 DMSO 24 120 13[c]

3 CuBr K2CO3 DMSO 72 120 38[c]

4 CuBr2 K2CO3 DMSO 24 120 48
5 CuCl2 K2CO3 DMSO 24 120 70
6 CuI K2CO3 DMSO 24 120 23
7 CuBr Cs2CO3 DMSO 24 120 16
8 CuBr Na2CO3 DMSO 24 120 trace
9 CuBr K2CO3 DMF 24 120 58
10 CuBr K2CO3 DMA 24 120 63
11 CuBr K2CO3 DMSO 24 140 61
12 CuBr K2CO3 DMSO 24 100 52

[a] Reaction conditions: 1a (0.5 mmol), 2a (1.0 mmol), catalyst
(0.05 mmol), base (1.5 mmol), and solvent (5 mL) under an air at-
mosphere. [b] Yield of isolated product. [c] Under an argon atmo-
sphere.

Under the established conditions [CuBr (10 mol-%) as
the catalyst, K2CO3 (3 equiv.) as the base (relative to the
amount of 1a)], the domino reactions between substituted
2-halobenzamides 1 and α-substituted arylmethanamines 2
were performed. As shown in Table 2, most of the sub-
strates examined provided the corresponding products in
21–73% yield. For substituted 2-halobenzamides, the aryl
iodide showed higher reactivity than the corresponding
bromide and chloride (Table 2, entries 1, 10, 11), and 2-
bromo-5-methoxybenzamide gave a better result than 2-
chloro-4-nitrobenzamide (Table 2, entries 12–15, 16). For
the starting α-substituted arylmethanamines, if the R2

group was a methyl (Table 2, entry 1), allyl (Table 2, en-
try 2), benzyl (Table 2, entry 3), or phenyl group (Table 2,
entry 4) and the Ar group was a phenyl group, product 3a
was obtained in all cases in 62–73% yield. The reaction also
tolerated Ar groups with varied electronic properties, in-
cluding electron-neutral (e.g., phenyl: Table 2, entries 1 and
12), electron-rich (e.g., p-methylphenyl: Table 2, entries 5
and 13; p-methoxyphenyl: Table 2, entries 6 and 14), and
electron-poor (e.g., p-chlorophenyl: Table 2, entries 7 and
15), in addition to a pyridine ring (Table 2, entry 8) and a
naphthalene ring (Table 2, entry 9), all of which gave corre-
sponding products 3a–k in 49–73 % yield.

To explore the reaction mechanism, we chose α-methyl-
benzylamine (2a) as the model substrate and launched the
control experiments shown in Scheme 2. If 2-iodobenz-
amide (1a) was treated with 2a under an argon atmosphere
(1 atm, with extrusion of air) for 4 h, Ullmann-coupling
product 4a was obtained in 69 % yield (see Scheme 2, a). N-
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Arylation product 4a was placed under the above-optimized
conditions and further converted into final product 2-phen-
ylquinazolin-4(3H)-one (3a) in 87% yield (see Scheme 2, b).
We purposely prepared 5 according to the reported
method,[6] and it was transformed into final product 3a ef-
ficiently under the established conditions (see Scheme 2, c).
Without the involvement of CuBr, the transformation from
5 into 3a was also realized, but it took 3 days, and the yield
of the isolated product was 81%, which revealed the impor-
tant role of CuBr as the catalyst (see the Supporting Infor-
mation).

Scheme 2. CuBr-catalyzed (a) Ullmann-type coupling of 1a with 2a
under an argon atmosphere, (b) domino reaction of 4a in air, and
(c) transformation from 5 into 3a in air.

On the basis of the above results, we proposed a possible
mechanism, as shown in Scheme 3. Ullmann-type coupling
product I is first prepared starting from a substituted 2-
halobenzamide and an α-substituted arylmethanamine, and
the results showed an ortho-substituent effect of the amide
group in I during N-arylation.[7] Then, N-arylation product
I is transformed into imine II, which was verified indirectly
from the isolation of the ketone as a byproduct (see the
Supporting Information). Then, intramolecular nucleo-

Scheme 3. Possible mechanism for the CuBr-catalyzed domino syn-
thesis of 2-aryl-substituted quinazolinones in air.
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Table 2. Substrate scope for the CuBr-catalyzed domino synthesis of 2-aryl-substituted quinazolinones.[a]

[a] Reaction conditions: 1 (0.5 mmol), 2 (1.0 mmol), CuBr (0.05 mmol), K2CO3 (1.5 mmol), and DMSO (5 mL) under an air atmosphere.
[b] Yield of isolated product.

philic addition of the amide to the C=N bond provides
benzylic C–H amidation product III.[8] In the end, target 2-
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aryl-quinazolinone 3 is formed through carbon–carbon
bond cleavage. A thorough mechanistic study of the C–C



Job/Unit: O40108 /KAP1 Date: 24-03-14 17:57:23 Pages: 5

L.-X. Wang, J.-F. Xiang, Y.-L. TangSHORT COMMUNICATION
bond cleavage reaction is needed to unravel the mechanistic
intricacies of this process.

Conclusions

In summary, we demonstrated a copper-catalyzed ap-
proach for the construction of 2-aryl-quinazolinones
through a domino reaction involving C–C bond cleavage by
using air as the accelerant. Besides C–C bond cleavage, the
domino reactions also included N-arylation and benzylic
C–H amidation. This reaction not only provides an efficient
method for constructing medically important quinazoli-
nones but also offers a new strategy for C–C bond cleavage.

Experimental Section
General Information: Reactions were monitored by analytical thin-
layer chromatography (TLC) by using ultraviolet light. Purification
of the products was accomplished by flash chromatography on sil-
ica gel (100–200 mesh), and the purified compounds showed a sin-
gle spot by analytical TLC. Chemical shifts are in ppm versus tet-
ramethylsilane with either tetramethylsilane or the residual solvent
resonance used as the internal standard. Melting points are uncor-
rected.

General Procedure for Synthesis of Quinazolinone Derivatives 3a–k:
A mixture of substituted 2-halobenzamide 1 (0.5 mmol), α-substi-
tuted benzylamine 2 (1.0 mmol), K2CO3 (1.5 mmol, 207 mg), and
CuBr (0.05 mmol, 7.1 mg) in DMSO (5 mL) was allowed to stir at
120 °C for 24 h. Upon completion of the reaction, the resulting
solution was cooled to room temperature and filtered, and the sol-
vent of the filtrate was removed under reduced pressure. The resi-
due was purified by column chromatography on silica gel (petro-
leum ether/ethyl acetate) to provide desired product 3.

Supporting Information (see footnote on the first page of this arti-
cle): Detailed description of the experimental procedures and ana-
lytical data for all compounds.
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