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Abstract: In the presence of triethylsilyl trifluoromethanesulfonate
and triethylamine, aliphatic nitriles undergo addition reactions with
aldonitrones under non-basic, mild conditions, providing O-tri-
ethylsilyl ethers of β-N-hydroxyamino nitriles with high yield. The
reaction appears to proceed through formation of an N-silyl ketene
imine in situ followed by a Mannich-type reaction.
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The addition reaction of nucleophiles to nitrones is one of
the most powerful and reliable methods for the synthesis
of α-branched N,N-disubstituted hydroxylamine deriva-
tives.1 Among various nucleophiles, organometallic re-
agents such as Grignard and organolithium reagents are
frequently used in these types of reactions under basic
(anionic) conditions (Scheme 1).1,2 Similar to the
Mukaiyama aldol reaction and the Hosomi–Sakurai al-
lylation reactions, silyl enol ethers, silyl ketene acetals,
and allylsilanes are also used in this process under acidic
conditions (Scheme 1).1,2 On the other hand, the addition
reactions of nitrones with nitriles have rarely been ex-
plored under both basic and acidic conditions.3

Scheme 1  Typical examples of nucleophilic addition to nitrones

As a highly competent nitrile anion equivalent, N-silyl ke-
tene imines, which are prepared by trapping of the anion
with a bulky trialkylsilyl chloride, have been of much in-

terest for the last decade.4 Although a number of consid-
erable drawbacks remain in their handling and storage due
to the high tendency toward hydrolysis, N-silyl ketene im-
ines react with a range of carbonyl electrophiles as well as
N-acylhydrazones and N-arylaldimines,5 giving rise to the
corresponding α-substituted nitriles under mild condi-
tions.

In the course of our studies on the development of new
synthetic reactions using α-cyano carbanions,6 we recent-
ly reported the intramolecular conjugate addition of α,β-
unsaturated lactones having an alkanenitrile side chain
promoted by TMSOTf and triethylamine (Et3N) (Scheme
2, 1→2).7 The cyclization reaction is thought to proceed
through formation of the N-silyl ketene imine intermedi-
ate under the influence of TMSOTf and Et3N. Indeed, a
85:15 diastereomeric mixture of acyclic nitrile 3 was
found to undergo isomerization to afford a 60:40 mixture
of the diastereomers under similar conditions.8 These re-
sults suggested that the combined use of TMSOTf and
Et3N shows promise for generating an N-silyl ketene im-
ine from the corresponding nitrile without requiring a
strong base such as lithium diisopropylamide (LDA).9

Scheme 2  TMSOTf–Et3N promoted intramolecular conjugate addi-
tion and its mechanistic investigation

Based on these findings, we envisaged that the addition
reaction between nitrones and nitriles would proceed un-
der mild neutral conditions. Namely, treatment of a mix-
ture of nitrones 5 and nitriles 6 with trialkylsilyl triflate
and Et3N would directly yield O-trialkylsilyl β-hydroxy-
amino nitrile 7 through the formation of N-siloxyiminium
ion 810 and N-silyl ketene imine 9 in situ (Scheme 3). This
process would provide a simple and efficient synthetic
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method for the generation of β-aminonitrile derivatives
that are useful synthetic intermediates and important
structural motifs in biologically active compounds, in-
cluding β-amino acids and 1,3-diamines.11

Scheme 3  Proposal for addition reactions of nitriles to nitrones

To ascertain the feasibility of the expected addition reac-
tion, we initially attempted the reaction of N-benzyliden-
emethanamine N-oxide (10) with propionitrile (Scheme
4). To our delight, the desired O-TMS β-hydroxyamino
nitrile 11 was obtained in 75% yield as a 59:41 diastereo-
meric mixture when nitrone 10 (1 equiv) and propionitrile
(1 equiv) were treated with TMSOTf (2 equiv) and Et3N
(2 equiv). However, a considerable amount of amide 12,
arising from 10 through a rearrangement pathway,12,13

was formed in 22% yield. The reaction of 10 with 2-phen-
ylpropanenitrile (13) gave similar results, and addition
product 14a, having a quaternary carbon atom, was ob-
tained in 75% yield along with 12 (25% yield).

Scheme 4  Preliminary results

With a view to diminishing the competitive rearrange-
ment pathway, the reactions of nitrile 13 and nitrone 10
with various silylating agents were explored as shown in
Table 1. The use of TMSBr failed to promote the addition
reaction, and amide 12 was obtained as the major product
(entry 2). On the other hand, the reaction mediated by
TMSNTf2

14 afforded O-TMS β-hydroxyamino nitrile 14a
in excellent yield (93% by NMR spectroscopic analysis of
the crude mixture; entry 3). However, purification of the
crude product by silica gel column chromatography led to
hydrolysis of the silyloxy group, which prompted us to
employ the use of more bulky silylating reagents. Where-

as the use of tert-butyldimethylsilyl trifluoromethanesul-
fonate (TBSOTf) led to poor results (entry 4), triethylsilyl
trifluoromethanesulfonate (TESOTf) gave promising re-
sults, with the stable O-TES β-hydroxyamino nitrile 14c
formed in 80% yield along with 12% yield of amide 12
(entry 5). After optimization of the reaction conditions,
the best result was obtained at –30 °C, providing 14c in
94% yield (dr 55:45) after purification (entry 6).

Note that the reaction with 1.1 equivalents of TESOTf and
Et3N at –30 °C resulted in the formation of 14c only in
19% yield along with 49% of 12, indicating that the use of
two equivalents of both reagents, i.e., stoichiometric
amounts, is of critical importance for this reaction. Unfor-
tunately, although the reaction proceeded with excellent
yield, diastereoselectivity was not induced, likely due to
low level of stereodiscrimination in the addition step.

The synthetic advantage of our new method over the con-
ventional method under anionic conditions3 is demon-
strated in Scheme 5. Thus, the addition reaction of 4-
methoxyphenylacetonitrile (15b) to nitrone 10 under the
influence of TESOTf and Et3N gave base-sensitive β-hy-
droxyamino nitrile 16 in good yield after removal of the
TES group under acidic conditions (85% yield for two
steps). In contrast, the α-cyano carbanion generated from
15b by LDA underwent the addition reaction with nitrone
10 to afford 16 only in 48% yield, along with the β-elimi-
nation product 17 (10% yield) and recovery of the sub-
strates (10: 21%; 15b: 35%).
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Table 1  Evaluation of Silylating Agents for the Addition Reaction 
of Nitrile 13 to Nitrone 10a

Entry Silylating agent Temp. (°C) Yield (%)b

14 (dr)c 12

1 TMSOTf 0 → r.t. 14a 75 (56:44) 25

2 TMSBr 0 → 80 14a 0 75

3 TMSNTf2 0 → r.t. 14a 93 (59:41) 6

4 TBSOTf 0 14b 57 (51:49) 42

5 TESOTf 0 14c 80 (54:46) 12

6 TESOTf –30 14c 94d (55:45) 0

a Reaction conditions: nitrone 10 (0.2 mmol), nitrile 13 (0.2 mmol), 
Et3N (0.4 mmol), DCE (1 mL), silylating agent (0.4 mmol).
b Yield determined by 1H NMR analysis of the crude product mixture 
using pyrazine as internal standard.
c Diastereomeric ratios of 14 given in parentheses. The relative con-
figuration was not determined.
d Isolated yield after silica gel column chromatography on 0.4 mmol 
scale.
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Scheme 5  Comparison with a conventional method

We next applied the optimized reaction conditions using
TESOTf to the reactions of nitrone 10 with a series of ni-
triles (Table 2). Gratifyingly, simple alkanenitrile 15a, α-
aryl acetonitriles 15b−d, and α-heteroaryl acetonitriles
15e–g afforded the corresponding O-TES β-hydroxyami-
no nitriles 18 in good to excellent yields (entries 1–7), al-
though the diastereomeric ratios of 18 were rather low
(74:26 to 58:42). In the case of the reaction of 2-pyridyl-
acetonitrile (15e), TESOTf–Et3N reagent triggered the
elimination reaction of O-TES hydroxylamine from the
desired product 18e, giving (Z)-3-phenyl-2-(pyridin-2-
yl)acrylonitrile (19; Figure 1) in 38% yield along with 18e
(entry 5). α,α-Disubstituted nitriles, including isobutyro-
nitrile (15h) and diphenylacetonitrile (15i), gave addition
products having the newly formed quaternary carbon
atom in good yields (entries 8 and 9), although two equiv-
alents of nitrile 15h were required because of its low reac-
tivity (entry 8). Note that the neutral reaction conditions
using TESOTf–Et3N allows the use of nitriles with vari-
ous functional groups, and chloroacetonitirile (15j) and
N-(diphenylmethylene)aminoacetonitrile (15k) afforded
the desired products in excellent yields (entries 10 and
11).

Figure 1  Structure of 19

The scope of the reaction with respect to nitrones was then
examined by using nitrile 15b as a nucleophile (Table 3).
Addition of 15b to aromatic nitrones 20a–c proceeded
smoothly to furnish the corresponding O-TES β-hydroxy-
amino nitriles in good to excellent yields (entries 1–3).
Chemoselective addition to the nitrone moiety was
achieved in the reaction of 20c, keeping the ester group in-
tact (entry 3). The reaction of endocyclic nitrone 20d pro-
vided tetrahydroisoquinoline derivative 21d as a single

diastereomer (entry 4).15,16 Addition to α,β-unsaturated ni-
trone 20e occurred exclusively in a 1,2-fasion (entry 5).
Whereas the addition reaction was applicable to an α,α-di-
substituted aliphatic nitrone (entry 6), aliphatic nitrone
20g, bearing an acidic α-proton, failed to react with nitrile
15b, resulting in decomposition under the reaction condi-
tions (entry 7).17
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Table 2  Reactions of Nitrone 10 with Nitriles 15a

Entry Nitrile 15 18 Yield 
(%)b

drc

1 15a EtCN 18a 94 60:40

2 15b 18b 99 64:36

3 15c 18c 96 58:42

4 15d 18d 95 74:26

5 15e 18e 58d 69:31

6 15f 18f 95 59:41

7 15g 18g 100 68:32

8 15h i-PrCNe 18h 79f –

9 15i Ph2CHCNg 18i 84h –

10 15j ClCH2CN 18j 99 79:21

11 15k 18k 98 73:27

a Reaction conditions: nitrone 10 (0.4 mmol), nitrile 15 (0.4 mmol), 
TESOTf (0.8 mmol), Et3N (0.8 mmol), DCE (2 mL), –30 °C, 0.5 to 
1.5 h.
b Isolated yield after purification.
c Determined by 1H NMR analysis of the crude product; relative ste-
reochemistry not assigned.
d (Z)-3-Phenyl-2-(pyridin-2-yl)acrylonitrile (19; Figure 1) was ob-
tained in 38% yield.
e Nitrile (2 equiv.) was used.
f Yield based on 10. Amide 12 was obtained in 13% yield.
g Reaction conditions: –30 to 0 °C, 1.5 h.
h Amide 12 was obtained in 6% yield.
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Finally, transformations of the O-TES β-hydroxyamino
nitriles were briefly examined to evaluate the synthetic
utility and versatility of the addition products (Scheme 6).
Nitrile 18h was converted into the corresponding amine
22 by treatment with Zn/H2SO4, whereas the reaction of
18h with Zn/TFA in MeOH at 60 °C afforded amide 23.

In addition, nitrile 18h was converted into β-amino acid
25 through isoxazolidin-5-one formation followed by N–O
cleavage under hydrogenation. Furthermore, 1,3-diamine
derivative 26 was obtained by reduction of the cyano
group using LiAlH4. Conversely, upon treatment with
LDA at 0 °C, nitrile 18a underwent a 3-exo-tet ring-

Table 3  Reactions of Nitrones 20 with Nitrile 15ba

Entry Nitrone Product Yield (%)b drc

1

20a
21a

100 74:26

2

20b
21b

85 91:9

3

20c 21c

96 56:44

4

20d

21d

81 100:0

5

20e
21e

77 50:50

6

20f 21f

83 58:42

7

20g
21g

0 –

a Reaction conditions: nitrone 20 (1 equiv), nitrile 15b (1 equiv), TESOTf (2 equiv), Et3N (2 equiv), DCE (0.2 M), –30 to 0 °C, 0.5 to 3 h.
b Isolated yield after purification.
c Determined by 1H NMR analysis of the crude product; relative stereochemistry not assigned.
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closure reaction,18 giving rise to N-methylaziridine 27
with high diastereoselectivity.

In conclusion, we have developed a novel method for nu-
cleophilic addition reaction of nitriles to nitrones promot-
ed by TESOTf and Et3N under mild conditions.19 The
reaction appears to proceed through N-silyl ketene imine
formation in situ followed by a Mannich type addition re-
action. In contrast to the conventional addition reactions
using strong bases, the nonbasic, mild reaction conditions
of the present method tolerates various functional groups
and usually provides the β-aminonitrile derivatives in
high yields without causing β-elimination reactions or ret-
ro-addition reactions. The new method is expected to of-
fer an efficient route to base-sensitive β-aminonitrile
derivatives, which serve as useful intermediates in the
synthesis of biologically important compounds, including
β-amino acids and 1,3-diamines.

Scheme 6  Transformations of the addition products
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Wilson, M. A. Chem. Commun. 2006, 3513.

(19) General Procedure (Table 1, entry 6): To a mixture of 
nitrone 10 (0.4 mmol), nitrile 13 (0.4 mmol), and Et3N (0.8 

mmol) in DCE (2 mL), was added TESOTf (0.8 mmol) at 
–30 °C, and the reaction mixture was stirred at this 
temperature for 30 min. Sat. aq sodium bicarbonate (1 mL) 
was added to the mixture, and the product was extracted with 
EtOAc. The combined organic layers were dried over 
MgSO4 and concentrated under reduced pressure. 
Purification by flash column chromatography (SiO2; 
hexane–Et2O, 15:1) afforded O-TES β-hydroxyamino nitrile 
14c (0.377 mmol, 94%).
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