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Abstract: Thiazolidine b-enamino derivatives possessing a 5-sub-
stituted acetate substituent were chemoselectively reduced to corre-
sponding alcohols, or new condensed 2-alkylidenethiazolidines.
The method is based on the resistance of an enaminone fragment to
reduction by metal hydrides.
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(Z)-4-Oxothiazolidines 1 (Scheme 1) bearing a trisubsti-
tuted exocyclic double bond at C(b) constitute a class of
typical exocyclic b-enaminocarbonyl compounds. They
are generally recognized as useful precursors in organic
synthesis.1 In particular, we have shown that the regiospe-
cific bromination of the enaminone-type heterocycles 1
leads to a-bromo-a,b-unsaturated compounds 2,2 which
are valuable a-acylvinyl anion equivalents.3

Scheme 1

More recently, we described a novel and highly efficient
4-oxothiazolidine-1,2-dithiole rearrangement induced by
Lawesson’s reagent (Scheme 1).4

The specific interest in exploring the reduction reactions
of (Z)-4-oxothiazolidines 1 and other functionalized b-

enamines is based on the presence of the prochiral exocy-
clic double bond5 and an ester functionality.6 Lhommet et
al.7 described recently the synthesis of chiral pyrrolidine
b-amino esters by diastereoselective catalytic hydrogena-
tion of chiral pyrrolidine tetrasubstituted b-enamino es-
ters. Sodium triacetoxyborohydride in HOAc has been
employed for the chemoselective reduction of homochiral
b-enamino esters to biologically active b-amino esters.8

Reductions of acyclic and cyclic b-enamino ketones to
synthetically important g-aminoalcohols have also been
reported with various levels of diastereoselectivity.9

Palmieri et al.10 described the regioselective reduction of
cyclic and acyclic N-acylenamino ketones to the b-hy-
droxyenamides using NaBH4 in MeOH.

We present here results on the chemoselective reduction
of 4-oxothiazolidines 1 by metal hydrides. Initial reduc-
tions of enamino ketone 1a and N-methyl analogue 1f,
aimed at assessing the reactivity of enaminone moiety,
were carried out in EtOH by adding increasing amounts of
NaBH4 (1–5 mol equiv) at 0 ºC to room temperature. In
contrast to the literature results (vide ante) in the case of
1a, only starting material was recovered, even after 24 h.
However, reduction of 1a under more vigorous conditions
(a tenfold molar excess of NaBH4, EtOH, reflux, 2 h) pro-
ceeded cleanly, affording 5-(2-hydroxyethyl)thiazolidine
5a in 64% yield (Table 1, entry 1). Surprisingly, N-methyl
substituted lactam 1f was converted, via a reduction-ring
closure sequence at room temperature, employing 2 mol
equivalents of NaBH4, to a not easily accessible new fused
heterocycle, i.e. (Z)-(N-methyltetrahydrofuro[2,3-d]thiaz-
ol-2-ylidene)-1-phenylethanone (6f) (Table 1, entry 6). In
general, we found that the regioselective reduction of oth-
er thiazolidines 1b–e with excess NaBH4 proceeded
smoothly in refluxing EtOH giving rise to alcohols 5b–e
in moderate yields (49–64%).11 The key step responsible
for an inhibition of the enaminone moiety in 1 toward
chemical and catalytic reduction as well (Table 1, entry
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Table 1 Synthesis of (Z)-5-(2-Hydroxyethyl)-2-alkylidene-4-oxothiazolidines 5 and Condensed Thiazolidines 6 

Entry Substrate Reducing reagent (mol 
equiv)–solvent

Product Yield (%)a Mp (°C)

1

(Z)-1a

NaBH4 (10)–EtOHb

(Z)-5a

64 158–159

2

(Z)-1b

NaBH4 (10)–EtOHb

(Z)-5b

49 223–224

3

(Z)-1c

NaBH4 (10)–EtOHb

(Z)-5c

49 156–158

4

(Z)-1d

NaBH4 (10)–EtOHb

(Z)-5d

64 110–111

5

1e (Z/E mixture)

NaBH4 (10)–EtOHb

5e (Z/E mixture)

54 119–120

6

(Z)-1f

NaBH4 (2)–EtOHc

(Z)-6f

21 121–122

7 (Z)-1a LiBH4 (10)–THFc

6a (Z/E mixture)

19 Dec.
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10), is the formation of the highly stabilized anion 4
(Scheme 2).1d,6b,12,13

This is evidenced by the vigorous evolution of hydrogen
upon addition of the thiazolidine 1 to the reducing agent
during the initial stage of the reaction (10–15 min, r.t.). In
the next step NaBH4 selectively reduces the side-chain ac-
etate group,14 whereas the strongly deactivated W func-
tion and C=C bond of the conjugated enaminone moiety
remain unaffected.

The formation of the bicyclic product 6f is ascribed to the
presence of the methyl group at the nitrogen atom in the
starting thiazolidine 1f (Scheme 3). Based on the litera-
ture precedent15 that NaBH4 in pyridine can reduce prima-
ry and tertiary amides to the corresponding nitriles and
amines, respectively, we postulated the iminium ion 8 as
a key intermediate. Obviously, the electrophilicity of the

ester carbonyl is enhanced in the iminium ion 8, allowing
the reducing agent to become increasingly reactive even at
room temperature.

The reduction step affords alcohol 9, that subsequently
cyclizes to new bicyclic tetrahydrofurothiazolidine 6f,
albeit in a small yield (21%). The detection of the hetero-
cyclic derivatives 10 and 11, which have been also isolat-
ed and characterized, supports the proposed mechanism.16

Thus, an abstraction of the C(5)-hydrogen from the inter-
mediate 8 by an excess base affords 10 (18%), and addi-
tion of EtOH to the same transient species leads to the
traces of compound 11. As shown in entry 7 of Table 1,
the enaminone 1a undergoes the same reduction-cycliza-
tion transformation in the presence of the stronger reduc-
ing reagent, such as LiBH4 in THF. To the best of our
knowledge, the formation of condensed thiazolidines 617

8 (Z)-1d NaBH4 (10)–MeOHb

(Z)-12d

83 134–135

9 1e (Z/E mixture) NaBH4 (10)–MeOHb

12e (Z/E mixture)

76 146–148

10 (Z)-1a H2 (3 atm)–PtO2 NR

a Isolated yields following column chromatography on silica gel.
b Reflux.
c Room temperature.

Table 1 Synthesis of (Z)-5-(2-Hydroxyethyl)-2-alkylidene-4-oxothiazolidines 5 and Condensed Thiazolidines 6  (continued)

Entry Substrate Reducing reagent (mol 
equiv)–solvent

Product Yield (%)a Mp (°C)
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achieved through cyclization involving the 4- and 5-posi-
tions of thiazolidines 1 was not observed before.

The selected 13C NMR shift differences between the ole-
finic carbon atoms, i.e. DdC(b)C(a) values in compounds 1
and 6 are worth noting (Table 2), since they indicate an in-
crease of charge separation of C=C bond within the con-
densed thiazolidines 6, relative to the corresponding
precursors 1.18

Larger DdC(b)C(a) values (78–82 ppm) in the bicyclic deriv-
atives 6 (Table 2, entries 2,3 and 5) versus DdC(b)C(a) val-
ues (66–67 ppm) in thiazolidinones 1 (Table 2, entries 1
and 4) correlate with an increase of the push-pull effect in
the former.19 This is consistent with the reduction-cycliza-
tion process 1 →→ 6 (Scheme 3) occurring in the elec-
tron-donor portion of reactants 1 (an amide moiety),
which creates a more effective donor (i.e. an amine), so
fused thiazolidines 6 have larger DdC(b)C(a) values.

We wish to point out that the choice of solvent for the re-
duction of thiazolidinones 1a–e was found to be crucial.
By replacing EtOH with MeOH no reduced products
could be detected in the reaction mixture. Instead, as re-
sults reported in entries 8 and 9 of Table 1 indicate, the
change of solvent promotes nearly complete transesterifi-
cation of the acetate group at C(5). From the work of S.
Brown and H. Rapoport14a it is known that methyl esters
of heterocyclic, aromatic or acyclic acids can be reduced
by NaBH4 in MeOH. However, if they are resistant to re-
duction, then, the transesterification especially in MeOH
occurs due to the fast generation of the methoxy-substitut-
ed complex NaB(OMe)4.

14c

In conclusion, we have shown that in the case of 5-substi-
tuted push-pull thiazolidinones NaBH4 in EtOH is a suit-
able reagent for the regioslective reduction of the ester
functionality. Of particular interest is the synthesis of the
condensed 2-alkylidenethiazolidine derivatives by an in-
tramolecular annulation from the selected thiazolidinone
precursors.
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