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A series of aminopyridazin-3(2H)-one derivatives has been designed and synthesized. Their anti-
proliferative activities were evaluated against three human cancer cell lines (SH-SY5Y human neuro-
blastoma, K562 human myelogenous leukemia and AGS gastric cancer cell lines) using the MTT assay.
The preliminary activity test displayed that compound 8a exhibited comparable activities against all test
cells with the positive control fluorouracil. Meanwhile compounds 8b, 8e and 9c-e displayed selective
antiproliferative activities for SH-SY5Y cells. Furthermore, compounds 8a-b with low-micromole GI50
value for SH-SY5Y cells induced apoptosis with cell cycle arrest at G0/G1 phase in SH-SY5Y cells in a
dose-dependent manner.

© 2017 Elsevier Masson SAS. All rights reserved.
Cancer is one of the common malignant diseases that presents
an increasingly serious threat to the health of everyone in theworld
[1]. Therefore, the continued efforts for new small-molecule anti-
cancer agents remain critically important. It has been reported that
phosphodiesterase 4 (PDE4), which specifically catalyzes the hy-
drolysis of cAMP, is ubiquitous in the body and has been proposed
to play a role in growth and tumor promotion [2,3]. For example,
the phosphodiesterase 3/4 inhibitor 1 (zardaverine) exhibits potent
and selective antitumor activity against hepatocellular carcinoma
(HCC) [2].

In addition, the pyridazinone framework has emerged as a
promising and attractive scaffold in the development of potent
antitumor agents [4e10]. For example, the c-Met inhibitors pyr-
idazin-3(2H)-one derivatives (2 [10] and 3 [6], Fig. 1) have been
reported to show remarkable antitumor cytotoxicity; compound 4
shows remarkable activity against SR (leukemia) and NCI-H522
(non-small cell lung cancer) with a GI50 value of less than 0.1 mM
zz@smu.edu.cn (Z.-Z. Zhou).

served.
[8]; and aminophthalazinone 5 displays wonderful antiproliferative
activities via apoptosis of proliferating cells [9]. Furthermore, some
pyridazinone derivatives displayed excellent antitumor activity
toward neuroblastoma, such as c-Met kinase inhibitor 6
(EMD1214063) [11]. 1H-indeno [1,2-d]pyridazin-1-one 7 exhibits
potent cancer cell growth inhibition activity against human neu-
roblastoma IMR-32 cell line with nanomole GI50 value [12].

To get new pyridazin-3(2H)-one derivatives as small-molecule
anticancer agents with PDE4 inhibitory activities, we designed
aminopyridazin-3(2H)-ones (compounds 8 and 9) by a simple
strategy, inducing a longer amide side-chain (Fig. 2). Longer amide
side-chain, such as 2-(2-methoxyphenoxy)ethylamino group,
frequently occur at many antitumor compounds with excellent
anticancer activities. For example, N-hydroxycinnamamides 10 [13]
and 6,6-diphenyl-1,4-dioxanes 11 [14] (Fig. 2) bearing 2-(2-
methoxyphenoxy)ethylamino group show good antitumor activ-
ities; the tubulin inhibitor 12 [15] exhibits antiproliferative activ-
ities with nanomolar GI50 values; and chalcone 13 [16]
demonstrates NF-kB inhibitory activity with a micromolar GI50
and potent cytotoxicity against lung cancer cells. Herein, we
describe the synthesis of (2-(2-methoxyphenoxy)ethyl)amino-
pyridazin-3(2H)-one derivatives bearing substituted benzyl groups
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Fig. 1. Pyridazinone derivatives with antitumor activities.

Fig. 2. Design of aminopyridazin-3(2H)-one derivatives as potential antitumor agents.
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as potential antitumor agents (Scheme 1). The preliminary evalu-
ation of antiproliferative activity against three human cancer cell
lines (K562, SH-SY5Y, and AGS), PDE4 inhibitory activities (the core
catalytic domains of human PDE4), cell cycle analysis and apoptosis
assay of the synthesized compounds were also performed. (See
Fig. 3).

The route adopted for the preparation of (2-(2-
methoxyphenoxy) ethyl)aminopyridazin-3(2H)-one derivatives is
depicted in Scheme 1. As shown in Scheme 1, 3-alkoxy-4-
difluoromethoxybenzyl alcohols 16 were obtained by the reduc-
tion of 3-alkoxy-4-difluoromethoxybenzaldehydes 15, which were
prepared from 3,4-dihydroxybenzaldehyde using our prior syn-
thetic methodology [17]. Compounds 16 were brominated using
PBr3 as a brominating reagent, whereas compounds 14 were
brominated using NBS as a brominating reagent. All the bromides
were used in all subsequent reactions without further purification,
owing to their instability. Compounds 8a-f and 9a-f were synthe-
sized by the nucleophilic substitution of the bromides with the
corresponding pyridazin-3(2H)-ones. Pyridazin-3(2H)-ones 18a
(R ¼ H) and 18b (R ¼ Cl) were synthesized from 3,6-
dichloropyridazine and 4,5-dichloropyridazin-3(2H)-one, respec-
tively [18].

The antiproliferative activities of 8a-f and 9a-f were assessed
against three human cancer cell lines, including human neuro-
blastoma (SH-SY5Y), human myelogenous leukemia (K562), and
gastric cancer (AGS), using the MTT method [19]. Fluorouracil (5-
FU), which is one of the most effective anticancer agents, was
included in the experiments as a reference cytotoxic compound for
the three cell lines. The results were expressed as growth inhibitory
concentration (GI50) values, which represent the compound con-
centrations required to produce 50% growth inhibition of cell
growth after 48 h of incubation compared with untreated controls
(Table 1).

As shown in Table 1, compounds 8a-f and 9a-f displayed
different antiproliferative activities against different cancer cell
lines, with the GI50 values ranging from 6.3 to >100 mM. For com-
pounds 8a-f bearing a 2-(2-methoxyphenoxy)ethylamino moiety
at the 6 position of the pyridazin-3(2H)-one ring, their anti-
proliferative activities toward different cancer cell lines vary
significantly. Compounds 8c and 8f were inactive in all test cells.
Compound 8d exhibited no activity toward SH-SY5Y and AGS cells,
but exhibits moderate inhibitory activity against K562. Further-
more, compounds 8a, 8b, and 8e showed moderate to good anti-
proliferative activity against the tested cancer cell lines and were
more active toward SH-SY5Y cells. Of these, compound 8b exhibi-
ted the best antiproliferative activity against SH-SY5Y cells with a
GI50 value of 6.3 mM, which was higher than that of 5-FU
(GI50 ¼ 11.9 mM). Compounds 8a and 8e exhibited slightly
decreased inhibitory activity against SH-SY5Y cells with the GI50
values of 9.3 and 10.5 mM, respectively, which were comparable to
that of 5-FU.

By contrast, most of the compounds 9a-f, which bear a 2-(2-
methoxyphenoxy)ethylamino moiety at the 5 position of the pyr-
idazin-3(2H)-one ring showed remarkably decreased inhibitory
activity against the test cells. Compounds 9a and 9f were inactive
against all the test cells, while compound 9b exhibited weak
inhibitory activity against K562. However, compounds 9c-e showed
selective inhibitory activities for SH-SY5Y with moderate GI50
value.

These results indicated that most of these compounds exhibited
weak (or even zero) to moderate activity against the tested cell
lines. However, compounds 8a, 8b, and 8eweremore active against
SH-SY5Y cells, exhibiting good inhibitory activity. Moreover, com-
pound 8bwith low-micromolar GI50 value displayed selectivity for
SH-SY5Y cells over other two test cell lines. These findings provide
useful information regarding the structural requirements for better
potency and will help in designing more potent small molecules
that selectively target SH-SY5Y cells.

Several studies have indicated that inhibition of PDE4 reduces
proliferation, inhibits brain tumor cell growth [20,21], and causes
selective apoptosis of malignant cells without affecting normal
healthy cells [22]. Thus, the inhibitory activities (Table 1) of com-
pounds 8a-f and 9a-f were evaluated against PDE4 according to
reported protocols [17,23] using rolipram as a positive control (see
Fig. S1 in supporting information). All compounds were tested at
nine concentrations (10�8e10�4 M) and their IC50 values were
determined by the nonlinear regression analysis of their inhibition
curves. As shown in Table 1, most compounds exhibited moderate
PDE4 inhibition activity. Among these compounds, compounds 8a-



Scheme 1. Synthetic route for aminopyridazin-3(2H)-one derivatives 8a-f and 9a-f.

Fig. 3. Anticancer agents bearing the 2-(2-methoxyphenoxy)ethylamino moiety.

Table 1
Antiproliferative activities (GI50, mM)a and PDE4 inhibitory activities (IC50, mM)a of the am

Compd. R1 R2 K562

8a cyclopentyloxy CHF2 9.1 ± 1.1
8b cyclopropylmethoxy CHF2 60.9 ± 1.2
8c methoxy CH3 >100
8d cyclopentyloxy CH3 28.0 ± 1.3
8e cyclopropylmethoxy CH3 16.6 ± 1.2
8f Br CH3 >100
9a cyclopentyloxy CHF2 >100
9b cyclopropylmethoxy CHF2 67.6 ± 1.1
9c methoxy CH3 >100
9d cyclopentyloxy CH3 >100
9e cyclopropylmethoxy CH3 >100
9f 3-chlorophenyl CH3 >100
5-FU 18.5 ± 1.1

a Data are expressed as means ± SDs (standard deviations) from three independent e

B.-C. Ge et al. / European Journal of Medicinal Chemistry 141 (2017) 440e445442
bwith the best antitumor activities against SH-SY5Y cells displayed
best PDE4 inhibition activities.

To study the effect of the synthesized compounds on cell cycle
progression, the flow-activated cell sorting analysis was performed.
The most promising compounds 8a and 8bwere tested in SH-SY5Y
cells. After treating the SH-SY5Y cells with compounds 8a and 8b at
5, 10, and 20 mM for 48 h, the cells were fixed and stained with
propidium iodide (PI) for flow cytometry analysis. As shown in
Fig. 4, the cells treated with compounds 8a and 8bwere arrested at
the G0/G1 phase, exhibiting an increase in the percentage of cells at
the G0/G1 phase with a concurrent reduction in the percentage of
cells at the S phases. The percentages of cells at the G0/G1 phase
increased to 63.55% and 62.61% by 8a and 8b, respectively, at high
concentration (20 mM) from 47.67% for the control group. It has
inopyridazin-3(2H)-one derivatives.

SY5Y AGS PDE4 inhibitory activities

9.3 ± 1.2 23.6 ± 1.1 12.2 ± 0.3
6.3 ± 1.1 24.4 ± 1.0 15.3 ± 0.7
>100 >100 66.9 ± 2.2
>100 >100 >100
10.5 ± 1.2 45.8 ± 1.1 >100
>100 >100 44.0 ± 1.9
>100 >100 39.1 ± 2.3
>100 >100 >100
33.1 ± 1.1 >100 73.0 ± 2.8
23.3 ± 1.2 >100 21.5 ± 1.7
37.9 ± 1.1 >100 45.2 ± 2.4
>100 >100 >100
11.9 ± 1.1 24.6 ± 1.0

xperiments.



Fig. 4. Cell cycle distribution of SH-SY5Y cell lines after treatment with compounds 8a and 8b at different concentration. It determined by flow cytometry analysis after 48 h co-
culture using DNA intercalating dye, propidium iodide (PI). DMSO was used as a control. Data are expressed as means ± SDs (standard deviations) from at least two independent
experiments.
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been reported that the phosphodiesterase 3/4 inhibitor zardaverine
with potent antitumor activity induced G0/G1 phase cell cycle ar-
rest of HCC cells [2]. Therefore, compounds 8a and 8b with mod-
erate PDE4 inhibitory activities (12.2 and 15.3 mM respectively)may
be have similar mechanism to zardaverine.

Further evaluation of the apoptotic effect of compounds 8a and
8bwas performed using an Annexin V-FITC/PI (AV/PI) dual staining
assay to examine the occurrence of phosphatidylserine external-
ization and to investigate whether it is due to physiological
apoptosis or nonspecific necrosis. SH-SY5Y cells were treated with
compounds 8a and 8b at 10 and 20 mM for 48 h to examine the
apoptotic effect. As shown in Fig. 5, compounds 8a and 8b induced
Fig. 5. Annexin V-FITC/propidium iodide analysis on apoptosis of SH-SY5Y after 48 h co-cu
apoptotic; UR, late apoptotic; and UL, necrotic. DMSO was used as a control. The values ar
#P < 0.05 versus 10 mM groups.
apoptosis of SH-SY5Y cells after 48 h co-culturing, and the per-
centages of late apoptosis by compounds 8a and 8b exhibited
concentration dependence, increasing to 27.36% and 14.78%,
respectively, from 4.89% for the control group. In addition, the
percentage of apoptosis by 8a is higher than that of 8b.

In conclusion, a series of 2-aminopyridazin-3(2H)-ones bearing
a 2-methoxyphenoxyethyl moiety (8a-f and 9a-f) was synthesized
and fully characterized. MTT assays results showed that most of the
compounds were either poorly active or inactive against K562 and
AGS cells. However, compound 8a exhibited comparable activities
against all test cells with the positive control fluorouracil, while
compounds 8b, 8e and 9c-e displayed selective antiproliferative
lture with compounds 8a and 8b. The four quadrants identified as: LL, live; LR, early
e mean of three independent experiments. *P < 0.05, **P < 0.01 versus control group.
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activities for SH-SY5Y cells. Among these compounds 8a, 8b, and 8e
displayed more sensitive toward SH-SY5Y cells with low-
micromole GI50 value (9.3, 6.3, and 10.5 mM, respectively), which
were higher than that of the 5-FU control (GI50 ¼ 11.9 mM).
Furthermore, compounds 8a and 8b induced cell cycle arrest at the
G0/G1 phase and apoptosis in human SH-SY5Y cells in a dose-
dependent manner. Owing to the best selectivity antiproliferative
activity of compound 8b toward SH-SY5Y cells, compound 8b could
be identified as a lead compound that merits further optimization
and development as an anticancer candidate against SH-SY5Y cells.
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