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Abstract: The first example of enantioselective ni-
tronate protonation following Michael addition of
a carbon nucleophile to an a,b,b-trisubstituted ni-
troalkene is reported. An N-sulfinylurea catalyst
was employed to catalyze the addition of a variety
of 3-substituted pyrazol-5-one nucleophiles to tri-
substituted nitroalkenes incorporating an oxetane
or azetidine ring at the b-position. The nitroalkane-
pyrazolone adducts were obtained with good yield
and enantioselectivity. Furthermore, the Michael
addition products can be reduced to the corre-
sponding enantioenriched amines with minimal loss
of enantiomeric purity.

Keywords: asymmetric catalysis; Michael addition;
nitroalkenes; organic catalysis; protonation

The nitroalkene is a versatile electrophile that has
been utilized in numerous catalytic enantioselective
conjugate addition reactions to access biologically rel-
evant compounds.[1] Previously, we reported the first
example of catalytic enantioselective additions of nu-
cleophiles to a,b,b-trisubstituted nitroalkenes, which
was accomplished by enantioselective protonation of
the nitronate intermediate generated upon thioacid
addition (Figure 1a).[2] Very recently, Jørgensen and
co-workers also employed trisubstituted nitroalkene
electrophiles to achieve intramolecular enantioselec-
tive nitronate additions that proceeded by trienamine
catalysis (Figure 1b).[3] Here we report that enantiose-
lective nitronate protonation following catalytic nu-
cleophile addition to trisubstituted nitroalkenes can
be extended to carbon nucleophiles with the addition
of pyrazolones, a class of nitrogen heterocycles found
in various biologically active molecules and dyes (Fig-
ure 1c).[4,5] For this transformation, an N-sulfinylurea
catalyst provided the highest enantioselectivity.[6]

A key challenge for additions to trisubstituted ni-
troalkenes followed by enantioselective protonation is
the inherent acidity of the new nitroalkane stereocen-
ter in the product,[7] which is susceptible to epimeriza-
tion by either the basic nucleophile or the tertiary
amine-substituted organocatalyst. Our group has
found that acidic nucleophiles buffer the reaction
mixture, preventing epimerization of the nitroalkane
stereocenter.[8,9]

The pyrazol-5-one is an acidic heterocycle because
it becomes aromatic upon deprotonation, and there-
fore should be appropriate for enantioselective nitro-
nate protonation. Numerous groups have investigated
the reactivity of pyrazolones.[10] One area of investiga-
tion has been hydrogen-bonding organocatalyzed pyr-
azolone additions, for which excellent enantioselectiv-
ities have been achieved using b-substituted nitroal-
kenes (Figure 2a).[11] However, only a single example
of pyrazolone nucleophile addition to an a-substitut-
ed nitroalkene has been reported (Figure 2b),[12] and
here the high observed diastereoselectivity could be
due to either diastereoselective protonation or epime-
rization of the nitroalkane product.

We began our investigation with reaction conditions
that we previously used for the addition of thioacetic
acid to trisubstituted nitroalkenes.[2] For our optimiza-
tion studies, we chose to use oxetane nitroalkene 2a
because the oxetane ring introduces ring strain to in-
crease the reactivity of these fully substituted nitroal-
kenes. Additionally, oxetanes are valued in medicinal
chemistry for their ability to modulate drug proper-
ties.[13] N-tert-Butylpyrazolone 1a was used because
the tert-butyl group improved the solubility of the pyr-
azolone nucleophile. N-H- and N-phenylpyrazolones
were also investigated, but were found to be only
sparingly soluble, leading to poor enantioselectivity.
At room temperature in cyclopentyl methyl ether
(CPME), a solvent that we have often found to be op-
timal for hydrogen-bonding organocatalysis,[6a–d] the
reaction proceeded with high conversion but low
enantioselectivity for 3,5-bistrifluoromethylphenyl-
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containing catalysts 4 and 5 (Table 1, entries 1 and
2).[14,15]

To improve the enantioselectivity of the transfor-
mation, we evaluated catalysts that combined a chiral
N-sulfinyl motif with the chiral N,N-dimethylcyclo-
hexane-1,2-diamine motif.[6b–d] Catalysts 6 and 7
showed a modest increase in enantioselectivity, with
the all (S)-diastereomer providing superior enantiose-
lectivity and conversion (entries 3 and 4). Increasing
the steric bulk of the pendant tertiary amine by using
piperidine catalysts 8 and 9 further improved the
enantioselectivity for both catalyst diastereomers and
also established that the diamine is the most signifi-
cant contributor to the control of stereochemistry (en-
tries 5 and 6).

Because bulkier amines improved the enantioselec-
tivity, we explored other sterically encumbered chiral
diamines (Figure 3). Combining the N-sulfinylurea
motif with 9-amino(9-deoxy)epiquinine furnished cat-
alyst 10, which retained the enantioselectivity of the
reaction, but at lower conversion (entry 7). However,
when using catalyst 11, the all (S)-diastereomer of 10,

Figure 1. Enantioselective transformations of a,b,b-trisubstituted nitroalkenes.

Figure 2. Reported catalytic enantioselective Michael addi-
tions of pyrazolones to nitroalkenes.
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for the Michael addition, 3aa was obtained in good
conversion and enantioselectivity (entry 8). Using di-
oxane, a solvent in which the pyrazolone nucleophile
was more soluble, and adding 3 è molecular sieves as
a desiccant further improved the enantioselectivity of
the reaction to a 91:9 er (entries 9 and 10). A number
of other solvents was also investigated, including di-
chloromethane, diethyl ether, THF, and toluene, but
all gave lower enantioselectivities (data not shown).
Increasing the catalyst loading to 10 mol% and ex-
tending the reaction time to two days provided 3aa in
93% conversion and 91:9 er (entry 11). Acid additives
were also investigated. The addition of 10 mol% of
acetic acid improved the reaction conversion, but
a lower enantioselectivity was observed (entry 12).
While the addition of 10 mol% of benzoic acid did
not adversely impact our model system (entry 13), it
was not beneficial when used with poorer performing
substrates.

With a set of optimized conditions, we explored the
scope of the transformation, focusing first on the pyr-
azolone nucleophile 1 (Table 2). N-tert-Butylpyrazo-
lones with methyl (1a), ethyl (1b), and isopropyl (1c)
R2 substituents all gave products with good enantiose-
lectivity (3aa, 3ba and 3ca); however, as illustrated by
3aa versus 3ca, increasing steric bulk at R2 resulted in
lower yields due to reduced conversion. Some varia-
bility in the enantioselectivity of the reaction to form
3aa was observed, with enantioselectivity ranging
from 93:7 to 90:10 er. Substitution at R2 was not limit-
ed to simple alkyl chains. When R2 was phenyl,
adduct 3da was obtained in good yield and 82:18 er.
A pendent methyl ether could also be incorporated to
provide 3ea in moderate yield and good enantioselec-
tivity. Different substituents at the R1 position of the
pyrazolone were also investigated. While pyrazolones
where R1 was H or phenyl were not tolerated due to
poor solubility under the reaction conditions, other R1

substituents were compatible. N-Cyclohexylpyrazo-
lone 1f reacted to give 3fa in good yield and 83:17 er.
An aromatic R1 group containing 2,6-disubstitution
was also compatible, N-2,6-dimethylphenylpyrazolone
1g reacted with nitroalkene 2a to give 3ga in moder-
ate yield and diminished enantioselectivity.

Variation of the R3 substituent on nitroalkene 2
was also tolerated; adduct 3bb from nitroalkene 2b
(R3 =Me) was isolated in acceptable yield and 90:10
er. Nitroalkene 2c (R3 =benzyl) also reacted with pyr-
azolones 1b and 1c to give 3bc and 3cc, respectively.
Additionally, a pendent ester could be incorporated
at R3 to provide product 3ad, although a decrease in
enantioselectivity was observed.

The transformation is not limited to oxetane nitro-
alkenes, but also proceeds in good yields and enantio-
selectivity for azetidine nitroalkenes (Table 3). Multi-
ple nitrogen protecting groups were tolerated on the
azetidine nitroalkenes. Pyrazolone 1a added to N-Boc

Table 1. Optimization of the reaction conditions.[a]

Entry Catalyst (X mol%) Solvent Conversion[b] er[c]

1 4 (5) CPME 87% 33:67
2 5 (5) CPME 83% 60:40
3 6 (5) CPME 29% 69:31
4 7 (5) CPME 62% 75:25
5 8 (5) CPME 40% 73:27
6 9 (5) CPME 33% 16:84
7 10 (5) CPME 22% 81:19
8 11 (5) CPME 60% 80:20
9[d] 11 (5) CPME 46% 86:14
10[d] 11 (5) dioxane 44% 91:9
11[d,e] 11 (10) dioxane 90% 91:9
12[d,e,f] 11 (10) dioxane 98% 85:15
13[d,e,g] 11 (10) dioxane 93% 91:9

[a] Reaction conditions: 1a (0.10 mmol), 2a (0.05 mmol) in
0.5 mL of solvent (0.1M).

[b] Determined by 1H NMR.
[c] Enantiomeric ratios were determined by HPLC analysis

of the crude reaction mixture on a chiral stationary
phase.

[d] Added 3 è MS (250 mg mmol¢1).
[e] 2 days.
[f] Added 10 mol% of acetic acid.
[g] Added 10 mol% of benzoic acid.

Figure 3. Bifunctional (thio)urea organocatalysts.
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(2e), N-Cbz (2f), and N-Ts (2g) azetidine nitroalkenes
with good enantioselectivity. Additionally, N-Boc and
N-Cbz products (3ae and 3af) were isolated in good
yields. Methylpyrazolone 1a also added to N-Boc-aze-
tidine nitroalkene 2h (R3 =Bn) to give 3ah in good
yield and enantioselectivity. Upon decreasing the
steric bulk of R2 from methyl to H, an expected in-
crease in yield was observed, although the enantiose-
lectivity of the reaction was also diminished (3he). Ni-
troalkenes lacking ring strain at the b-position were
also explored, but were found to be unreactive.

To demonstrate the ability to access chiral amines
from the addition products, we explored selective re-
duction of the nitro group in 3aa. Using Pd/C and hy-
drogen at atmospheric pressure, the nitroalkane was
selectively reduced in the presence of the pyrazol-5-ol
heterocycle. After purification using a trifluoroacetic

acid (TFA) buffered column, amine 4 was isolated as
the TFA salt in 61% yield with minimal reduction of
enantiopurity (Scheme 1). To determine the sense of

Table 2. Oxetane substrate scope.[a]

[a] Reaction conditions: 1 (2 equiv.), 2 (1 equiv.), 11 (10 mol%), 3 è MS (250 mgmmol¢1) in dioxane (0.1M). Yields are of
isolated product after chromatography. Enantiomeric ratios of isolated products were determined using HPLC analysis
on a chiral stationary phase.

Scheme 1. Reduction of enantioenriched 3a.
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induction, we performed Mosher amide analysis on 4
and have tentatively assigned the stereochemistry to
be (S).[16,17]

In conclusion, we have developed a catalytic enan-
tioselective addition of pyrazolones to trisubstituted
nitroalkenes using a bifunctional N-sulfinylurea orga-
nocatalyst. This transformation is the first example of
a Michael addition of a carbon nucleophile to a trisub-
stituted nitroalkene followed by enantioselective ni-
tronate protonation. Additional catalytic enantiose-
lective additions to trisubstituted nitroalkenes will be
the subject of future investigations.

Experimental Section

Representative Procedure

A flame-dried 4-mL vial equipped with stir bar and open
top screw cap with a pierceable PTFE/silicone rubber
septum was charged with pyrazolone 1 (0.50 mmol,
2 equiv.), catalyst 11 (0.025 mmol, 10 mol%), and 3 è molec-
ular sieves (62 mg). Under a positive pressure of N2, anhy-
drous dioxane (1.5 mL) was added to the vial followed by
a nitroalkene 2 in dioxane solution (1.0 mL, [nitroalkene=
0.25 M], 0.25 mmol, 1 equiv.). After stirring for 2 days at
room temperature, the reaction mixture was chilled in a 0 88C
ice bath for 1 min, and then the reaction was quenched with
0 88C 5% (v/v) trifluoroacetic acid in CPME. The crude mix-
ture was immediately eluted through a silica plug with ethyl
acetate and the resulting solution was concentrated under
vacuum. The crude product was purified by column chroma-
tography and the enantiomeric ratio was determined by
HPLC analysis on a chiral stationary phase.
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