Tetrahedron 65 (2009) 1988-1994

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Lewis acid-promoted reactions of ethenetricarboxylates with γ -CF₃-substituted propargyl alcohols

Shoko Yamazaki^{a,*}, Yuko Yamamoto^a, Yuji Mikata^b

^a Department of Chemistry, Nara University of Education, Takabatake-cho, Nara 630-8528, Japan ^b KYOUSEI Science Center, Nara Women's University, Nara 630-8506, Japan

ARTICLE INFO

Article history: Received 12 September 2008 Received in revised form 25 December 2008 Accepted 6 January 2009 Available online 14 January 2009

ABSTRACT

The Lewis acid-promoted reaction of an ethenetricarboxylate derivative (**1**) with CF₃-substituted propargyl alcohols has been examined. Reaction of γ -CF₃ propargyl alcohols in the presence of zinc bromide gave five-membered CF₃-containing tetrahydrofurans in 66–85% yield. The CF₃ group activates alkyne as an electron-withdrawing group. On the other hand, reaction of γ -trifluoromethyl- α -aryl propargyl alcohols **2** with **1** in the presence of 1 equiv of SnCl₄ gave cyclobutane derivatives **6** in 29–49% yield. Formation of cyclobutane **6a** arises from the [2+2] cycloaddition between ethenetricarboxylate **1** and chloroallene **8**, which is produced by the reaction of propargyl alcohol **2a** and SnCl₄.

© 2009 Elsevier Ltd. All rights reserved.

Tetrahedror

1. Introduction

Fluorine-containing molecules are interesting because of their biological activities.¹ Introduction of fluorine atoms into biologically important skeletons such as heterocycles and carbocycles is expected to lead to various activities. Recently, the synthesis of methylenetetrahydrofurans by one-pot formal [3+2] cycloadditions involving propargylic alcohols with electrophilic alkenes has been developed.² The synthetic methods provide powerful tools to prepare highly functionalized tetrahydrofuran rings. The reactions can be effectively promoted by base, base/ transition metals, and Lewis acids, depending on the substrates.

Efficient preparation of CF₃-substituted propargylic alcohols has been reported recently.³ The CF₃ substituent is known as an efficient electron-withdrawing group due to the inductive effect of fluorine atoms.⁴ We have reported zinc and indium-promoted formal [3+2] cycloadditions of ethenetricarboxylates with propargyl alcohol to afford tetrahydrofurans.^{2f} The highly electrophilic reactivity of ethenetricarboxylates led to an efficient one-pot reaction. We have also reported a Lewis acid-catalyzed cyclization of ethenetricarboxylate derivative **1** with γ -ester and silicon substituted propargyl alcohols to give methylenetetrahydrofurans stereoselectively.^{2g}

In this study, during examination of the applicability of Lewis acid-catalyzed cyclization of the ethenetricarboxylate

* Corresponding author. E-mail address: yamazaks@nara-edu.ac.jp (S. Yamazaki). derivative 1 with γ -CF₃-substituted propargylic alcohols, it was found that reaction of γ -CF₃ propargyl alcohols with 1 in the presence of SnCl₄ gave cyclobutane derivatives, via a chloroallene intermediate.

2. Results and discussion

The reaction of triethyl ethenetricarboxylate (**1**) and γ -CF₃substituted propargyl alcohols **2a**–**e**^{3,5} in the presence of ZnBr₂ (0.2 equiv) was examined at first. Reaction of **1** and **2a**–**e** in the presence of ZnBr₂ (0.2 equiv) at 110 °C in toluene overnight gave **3a**–**e** in 66–85% yield, as diastereomer mixtures in a 1:1 to 1:1.3 ratio, respectively (Eq.1). The result is in accord with the reported reaction of propargyl alcohols.^{2f,g} For the geometry of the alkene moiety, *Z*-CF₃-substituted methylenetetrahydrofurans were obtained selectively.⁶ Although the low 2,5-substituent diastereoselectivity is a general problem of tetrahydrofuran formation using α -substituted propargyl alcohols,² the diastereomers of certain derivatives (**3c**–**e**) could be separated by column chromatography. The reaction of **1** and 1-(3,3,3-trifluoroprop-1-ynyl)cyclohexanol **4** with ZnBr₂ (0.2 equiv) gave **5** in 32% yield (Eq. 2). The lower yield may arise from steric hindrance in the initial addition step.

The reaction of diethyl benzylidenemalonate with 2a in the presence of $ZnBr_2$ was also examined. The reaction gave the starting material, diethyl benzylidenemalonate and a complex mixture and the possible cycloadducts could not be isolated. Thus, the high reactivity of 1 compared to benzylidenemalonate was shown by this efficient cyclization reaction.

^{0040-4020/\$ -} see front matter \odot 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2009.01.024

Various Lewis acids such as AlCl₃, InBr₃, FeCl₃, and TiCl₄-Et₃N⁷ were examined, however, they gave complex mixtures. SnCl₄ was expected to have different reactivity, and reaction of 1 with estersubstituted propargyl alcohol gave the *E*-isomer tetrahydrofuran, which is a different stereoisomer from that obtained with the other Lewis acids, zinc, aluminum, and indium halides.^{2g} Interestingly, reaction of 4,4,4-trifluoro-1-phenylbut-2-yn-1-ol (2a) with 1 in the presence of 1 equiv of SnCl₄ gave a product **6a** containing chlorine in 29–33% yield (Eq. 3).8 The cyclobutane structure of **6a** was determined by X-ray analysis (Fig. 1).⁹ The reaction of **2b**,**f**,**g** and **1** with SnCl₄ gave **6b,f,g** in 39–49% yield.¹⁰ The reaction of 4-Cl and 4-F substituted substrates 2h,i with 1 gave cyclobutanes 6h,i in low yields, along with complex mixtures. The reaction of **2c,d** (R'=Br and OMe) and **2j** and **1** gave complex mixtures.¹¹ The reaction of an aliphatic derivative 2e and 1 gave a complex mixture along with recovered 2e and the reaction of 4 and 1 did not proceed under similar reaction conditions.

Formation of **6a** is speculated to arise from the [2+2] cycloaddition between **1** and chloroallene **8**.¹² Chloroallene **8** is postulated to be produced by the reaction of **2a** and SnCl₄.^{7,13} The reaction of **2a** in the presence of SnCl₄ without **1** was thus performed. The reaction gave propargyl chloride **7**, chloroallene **8**, and ether derivative **9** in 10–14%, 10–16%, and 30–48% (dr 1:1) yields, respectively (Eq. 4). Chloroallene **8** was found to be unstable and decomposed in a concentrated state. Propargyl chloride **7** and chloroallene **8** are formed by nucleophilic substitution reactions of propargylic substrate **2a** with SnCl₄. Ether derivative **9** may be formed by nucleophilic substitution reaction between **2a** and SnCl₄-activated propargyl alcohol **2a**. The α -phenyl group of **2a** may facilitate these substitution reactions.

Figure 1. ORTEP drawing of the cyclobutane **6a** (thermal ellipsoids are drawn at 50% probability).

The reaction of the unstable allene **8** with **1** without SnCl₄ did not proceed. The reaction with SnCl₄ gave cyclobutane **6a** in 36% yield (Eq. 5). Although the yields are not very good probably because of the instability of the intermediate allene **8** under the reaction conditions, a novel reaction involving the formation of chloroallene and subsequent [2+2] cycloaddition by SnCl₄ was found.

The regioselectivity of the [2+2] cycloaddition may be explained by larger HOMO of C2 (HOMO coefficients: C2, -0.41; C1, -0.27; C3, +0.04) in 3-chloro-4,4,4-trifluoro-1-phenylbuta-1,2-diene **8** in the reaction with highly electrophilic olefin **1** coordinated with SnCl₄ (Scheme 1).¹⁴ The possible zwitter-ion intermediates **A** may be also stabilized by the Ph group. One stereoisomer of the cyclobutane was isolated and its structure confirmed by X-ray analysis (Fig. 1). Since the obtained yields were low, the preference for the obtained stereochemistry in **6a** is not clear.

In summary, a new reaction of γ -CF₃ α -aryl propargyl alcohols **2** with **1** in the presence of SnCl₄ to give cyclobutane derivatives **6** was found. Reaction of γ -CF₃ propargyl alcohols in the presence of zinc bromide also gave five-membered CF₃-containing tetra-hydrofurans. CF₃ moieties in both products would attract much attention, because of the difficulty in preparation of CF₃-containing skeletons. Further improvement of the selectivity and elucidation of the effects of the CF₃ group in these reactions are under investigation.

3. Experimental section

3.1. General methods

Melting points are uncorrected. IR spectra were recorded in the FT-mode. ¹H NMR spectra were recorded at 400 MHz. ¹³C NMR spectra were recorded at 100.6 MHz. ¹⁹F NMR spectra were recorded at 376 MHz. ¹H chemical shifts are reported in parts per million relative to Me₄Si. ¹³C chemical shifts are reported in parts per million relative to CDCl₃ (77.1 ppm). ¹⁹F chemical shifts are reported in parts per determined by DEPT and HSQC. Mass spectra were recorded at an ionizing voltage of 70 eV by EI or FAB. All reactions were carried out under a nitrogen atmosphere.

 γ -CF₃-substituted propargyl alcohols **2a,c,e,j** and **4** were prepared according to Refs. 3 and 5 and **2b,f-i** were prepared according to the reported procedure.³

3.1.1. Compound 2b

 R_{f} =0.6 (hexane-ether=1:1); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 2.37 (s, 3H), 2.53 (br s, 1H), 5.49 (qd, *J*=2.7, 2.7 Hz, 1H), 7.22 (d, *J*=8.1 Hz, 2H), 7.37 (d-like, *J*=8.1 Hz, 2H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 21.26 (CH₃), 63.94 (CH, q, *J*_{FC}=1.5 Hz), 73.31 (C, q, *J*_{FC}=53 Hz), 86.77 (C, q, *J*_{FC}=7 Hz), 114.16 (C, q, *J*_{FC}=258 Hz), 126.67 (CH), 129.76 (CH), 135.20 (C), 139.38 (C); ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) –50.98 (d, *J*_{FH}=3.1 Hz); IR (neat) 3348, 2928, 2277, 1276, 1143 cm⁻¹; MS (EI) *m/z* 214 (M⁺, 70), 199 (100%); HRMS M⁺ 214.0602 (calcd for C₁₁H₉F₃O 214.0605).

3.1.2. Compound 2f

*R*_{*j*}=0.7 (hexane-ether=2:1); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.24 (t, *J*=7.6 Hz, 3H), 2.66 (q, *J*=7.6 Hz, 2H), 2.76 (br s, 1H), 5.46 (br s, 1H), 7.23 (d-like, *J*=8.2 Hz, 2H), 7.38 (d-like, *J*=8.2 Hz, 2H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 15.53 (CH₃), 28.66 (CH₂), 63.90 (CH, q, *J*_{FC}=1.5 Hz), 73.28 (C, q, *J*_{FC}=53 Hz), 86.74 (C, q, *J*_{FC}=7 Hz), 114.16 (C, q, *J*_{FC}=258 Hz), 126.78 (CH), 128.59 (CH), 135.35 (C), 145.71 (C); ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) –50.96 (d, *J*_{FH}=3.1 Hz); IR (neat) 3324, 2970, 2277, 1277, 1146 cm⁻¹; MS (EI) *m/z* 228 (M⁺); HRMS M⁺ 228.0765 (calcd for C₁₂H₁₁F₃O 228.0762). Anal. Calcd for C₁₂H₁₁F₃O: C, 63.16; H, 4.86. Found: C, 63.53; H, 4.84.

3.1.3. Compound 2g

*R*_f=0.4 (hexane–ether=4:1); brown oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.25 (d, *J*=7.0 Hz, 6H), 2.90 (br s, 1H), 2.92 (septet, *J*=7.0 Hz, 1H), 5.41 (br q, *J*=2.7 Hz, 1H), 7.26 (d, *J*=8.1 Hz, 2H), 7.38 (d-like, *J*=8.1 Hz, 2H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 23.92 (CH₃), 33.98 (CH), 63.85 (CH), 73.28 (C, q, *J*_{FC}=53 Hz), 86.68 (C, q, *J*_{FC}=7 Hz), 114.16 (C, q, *J*_{FC}=258 Hz), 126.82 (CH), 127.17 (CH), 135.38 (C), 150.33 (C); ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) –50.95 (d, *J*_{FH}=3.1 Hz); IR (neat) 3303, 2965, 2277, 1277, 1146 cm⁻¹; MS (EI) *m/z* 242 (M⁺, 27), 227 (56), 199 (100%); HRMS M⁺ 242.0914 (calcd for C₁₃H₁₃F₃O 242.0918). Anal. Calcd for C₁₃H₁₃F₃O: C, 64.46; H, 5.41. Found: C, 64.18; H, 5.40.

3.1.4. Compound 2h

 R_{f} =0.3 (hexane-ether=4:1); brown crystals, mp 46–47 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 2.83 (br s, 1H), 5.52 (br s, 1H), 7.38 (d-like, *J*=8.6 Hz, 2H), 7.42 (d-like, *J*=8.6 Hz, 2H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 63.32 (CH), 73.71 (C, q, *J*_{FC}=53 Hz), 86.01 (C, q, *J*_{FC}=6 Hz), 114.03 (C, q, *J*_{FC}=258 Hz), 128.02 (CH), 129.25 (CH), 135.28 (C), 136.39 (C); ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) –51.13 (d, *J*_{FH}=2.7 Hz); IR (neat) 3336, 2279, 1598, 1490, 1276, 1146 cm⁻¹; MS (EI) *m*/*z* 234, 236 (M⁺); HRMS M⁺ 234.0052 (calcd for C₁₀H₆³⁵ClF₃O 234.0059), 236.0030 (calcd for C₁₀H₆³⁷ClF₃O 236.0030).

3.1.5. Compound 2i

 $R_{f=}0.7$ (hexane-ether=2:1); brown oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 2.70 (br d, *J*=4.9 Hz, 1H), 5.55 (br s, 1H), 7.10 (dd-like, *J*=8.7, 8.6 Hz, 2H), 7.48 (dd-like, *J*=8.6, 5.2 Hz, 2H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 63.35 (CH), 73.64 (C, q, *J*_{FC}=53 Hz), 86.30 (C, q, *J*_{FC}=7 Hz), 114.08 (C, q, *J*_{FC}=258 Hz), 116.05 (CH, d, *J*_{FC}=24 Hz), 128.63 (CH, d, *J*_{FC}=8 Hz), 133.91 (C, d, *J*_{FC}=3 Hz), 163.19 (C, *J*_{FC}=249 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) –112.59 (m, 1×F), -51.10 (d, *J*_{FH}=3.1 Hz, 3×F); IR (neat) 3324, 2279, 1608, 1511, 1279, 1146 cm⁻¹; MS (EI) *m*/*z* 218 (M⁺, 38), 217 (71), 201 (91), 151 (100%); HRMS M⁺ 218.0354 (calcd for C₁₀H₆F₄O 218.0355).

3.2. Typical experimental procedure (Eq. 1)

To a solution of **1** (122 mg, 0.5 mmol) in toluene (0.9 mL) was added 1-(4-bromophenyl)-4,4,4-trifluorobut-2-yn-1-ol (**2c**) (140 mg, 0.5 mmol) and ZnBr₂ (22 mg, 0.1 mmol). The mixture was heated at 110 °C and stirred for 16 h. The reaction mixture was cooled to room temperature and quenched by water (1.5 mL) and then saturated aqueous NaHCO₃. The mixture was extracted with dichloromethane and the organic phase was washed with water, dried (Na₂SO₄), and evaporated in vacuo. The residue was purified by column chromatography over silica gel with hexane–ether as eluent to give *trans*-**3c** (108 mg, 41%) and *cis*-**3c** (115 mg, 44%).

3.2.1. trans-3c

*R*_{*f*}=0.4 (hexane–ether=2:1); colorless crystals, mp 104.5– 105.5 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.288 (t, *J*=7.1 Hz, 3H), 1.289 (t, *J*=7.1 Hz, 3H), 1.37 (t, *J*=7.1 Hz, 3H), 4.15–4.40 (m, 6H), 5.20 (s, 1H), 6.06 (qd, *J*=2.6, 2.6 Hz, 1H), 6.29 (qd, *J*=8.6, 2.4 Hz, 1H), 7.17 (d-like, *J*=8.5 Hz, 2H), 7.47 (d-like, *J*=8.5 Hz, 2H). Selected NOEs are between δ 7.17 (*o*-*H* of C₆H₄-*p*-Br) and 5.20 (CHCO₂Et), 6.06 (OCHC₆H₄-*p*-Br). ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.83 (CH₃), 13.98 (CH₃), 14.05 (CH₃), 61.84 (CH₂), 63.09 (CH₂), 63.50 (CH₂), 67.81 (C), 79.98 (CH), 82.00 (CH), 118.74 (CH, q, *J*_{*F*C}=36 Hz), 122.15 (C, q, *J*_{*F*C}=272 Hz), 123.21 (C), 129.97 (CH), 131.74 (CH), 136.38 (C), 147.66 (C, q, *J*_{*F*C}=5 Hz), 165.31 (C), 165.97 (C), 168.14 (C). Selected HMBC correlations are between δ 5.20 (*CHCO*₂Et) and δ 147.66 (*C*=CHCF₃) and between δ 6.06 (OCHC₆H₄-*p*-Br) and 79.98 (CHCO₂Et). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) –60.13 (dd, *J*_{*F*H}=9.2, 3.1 Hz); IR (KBr) 2983, 1758, 1734, 1254, 1219, 1095 cm⁻¹; MS (EI) *m/z* 524 (M⁺, 9.9), $522~(M^+, 9.2),~451~(100),~449~(99\%);~HRMS~M^+~522.0505~(calcd for C_{21}H_{22}^{-79}BrF_3O_7~522.0501),~524.0484~(calcd for C_{21}H_{22}^{-81}BrF_3O_7~524.0481).$ Anal. Calcd for C_{21}H_{22}BrF_3O_7: C, 48.20; H, 4.24. Found: C, 48.18; H, 4.26.

3.2.2. cis-**3c**

 $R_{f}=0.3$ (hexane-ether=2:1); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.21 (t, *J*=7.1 Hz, 3H), 1.28 (t, *J*=7.1 Hz, 3H), 1.34 (t, J=7.1 Hz, 3H), 4.09-4.42 (m, 6H), 5.07 (s, 1H), 5.74 (qd, J=2.7, 2.7 Hz, 1H), 6.07 (qd, J=8.7, 2.7 Hz, 1H), 7.24 (d-like, [=8.5 Hz, 2H), 7.46 (d-like, [=8.5 Hz, 2H). Selected NOEs are between δ 5.74 (OCHC₆H₄-*p*-Br) and 5.07 (CHCO₂Et), 7.24 (o-H of C_6H_4 -*p*-Br). ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.79 (CH₃), 13.90 (CH₃), 13.95 (CH₃), 61.65 (CH₂), 63.07 (CH₂), 63.31 (CH₂), 68.38 (C), 80.58 (CH), 82.13 (CH), 118.14 (CH, q, J_{FC}=37 Hz), 121.92 (C, q, J_{FC}=272 Hz), 123.24 (C), 130.55 (CH), 131.49 (CH), 135.87 (C), 149.71 (C, q, J_{FC}=5 Hz), 165.26 (C), 166.39 (C), 167.04 (C). Selected HMBC correlations are between δ 5.07 (CHCO₂Et) and δ 149.71 (C=CHCF₃) and between δ 6.07 (C=CHCF₃) and 68.38 (C(CO₂Et)₂). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) –59.70 (dd, J_{FH} =7.6, 3.1 Hz); IR (neat) 2984, 1740, 1490, 1259, 1215, 1120 cm⁻¹; MS (EI) *m*/*z* 524 (M⁺, 9.9), 522 (M⁺, 9.9), 451 (99), 449 (100%); HRMS M⁺ 522.0494 (calcd for $C_{21}H_{22}^{-79}BrF_3O_7$ 522.0501), 524.0479 (calcd for $C_{21}H_{22}^{81}BrF_{3}O_{7}$ 524.0481). Anal. Calcd for $C_{21}H_{22}BrF_{3}O_{7}$: C, 48.20; H, 4.24. Found: C, 48.03; H, 4.31.

3.2.3. Compound 3a

 $R_{f}=0.4$ (hexane-AcOEt=3:1); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) 1:1 diastereomer mixture, δ (ppm) 1.19–1.37 (m, 9H), 4.07-4.40 (m, 6H), 5.07 (s, 1×0.5H), 5.22 (d, J=0.5 Hz, 1×0.5H), 5.78 (dq, *J*=2.8, 2.8 Hz, 1×0.5H), 6.05 (dq, *J*=8.8, 2.7 Hz, 1×0.5H), 6.11 (dq, *J*=2.6, 2.6 Hz, 1×0.5H), 6.28 (dq, *J*=8.8, 2.4 Hz, 1×0.5H), 7.27-7.34 (m, 5H). Selected NOEs are between δ 5.07 (*cis* CHCO₂Et) and 5.78 (*cis* OCHPh) and between δ 5.22 (trans CHCO₂Et) and 7.27-7.34 (trans o-H of Ph). ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.83 (CH₃), 13.95 (CH₃), 13.97 (CH₃), 14.00 (CH₃), 14.06 (CH₃), 61.60 (CH₂), 61.76 (CH₂), 63.00 (CH₂), 63.25 (CH₂), 63.37 (CH₂), 67.91 (C), 68.57 (C), 79.81 (CH), 80.57 (CH), 82.66 (CH), 82.96 (CH), 117.95 (CH, q, J_{FC}=37 Hz), 118.47 (CH, q, J_{FC}=37 Hz), 122.03 (C, q, J_{FC}=272 Hz), 122.23 (C, q, J_{FC}=272 Hz), 128.21 (CH), 128.30 (CH), 128.55 (CH), 128.87 (CH), 128.93 (CH), 129.00 (CH), 136.79 (C), 137.25 (C), 148.09 (C, q, J_{FC}=5 Hz), 150.24 (C, q, J_{FC}=5 Hz), 165.31 (C), 165.54 (C), 166.01 (C), 166.66 (C), 167.23 (C), 168.23 (C). Selected HMBC correlations are between δ 5.07 (*cis* CHCO₂Et) and 150.24 (cis C=CHCF₃) and δ 5.22 (trans CHCO₂Et) and 148.09 (trans C=CHCF₃). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -59.79 (dd, J_{FH}=7.5, 3.0 Hz), -60.28 (dd, J_{FH}=9.2, 3.2 Hz); IR (neat) 2986, 1774–1732, 1457, 1368, 1246, 1121 cm⁻¹; MS (EI) *m/z* 444 (M⁺, 8), 371 (100%); HRMS M⁺ 444.1393 (calcd for C₂₁H₂₃F₃O₇ 444.1396).

3.2.4. Compound 3b

*R*_{*j*}=0.6 (hexane–ether=4:1); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) 1:1 diastereomer mixture, δ (ppm) 1.20 (t, *J*=7.1 Hz, 3×0.5H), 1.279 (t, *J*=7.1 Hz, 3×0.5H), 1.286 (t, *J*=7.1 Hz, 3×0.5H), 1.294 (t, *J*=7.1 Hz, 3×0.5H), 1.33 (t, *J*=7.1 Hz, 3×0.5H), 1.34 (t, *J*=7.1 Hz, 3×0.5H), 2.32 (s, 3×0.5H), 2.33 (s, 3×0.5H), 4.07–4.40 (m, 6H), 5.05 (s, 1×0.5H), 5.20 (d, *J*=0.7 Hz, 1×0.5H), 5.75 (dq, *J*=2.8, 2.8 Hz, 1×0.5H), 6.03 (dq, *J*=8.8, 2.7 Hz, 1×0.5H), 6.09 (dq, *J*=2.6, 2.6 Hz, 1×0.5H), 6.26 (dq, *J*=8.7, 2.4 Hz, 1×0.5H), 7.10–7.22 (m, 4H). Selected NOEs are between δ 5.05 (*cis* CHCO₂Et) and 5.75 (*cis* OCHAr) and between δ 5.20 (*trans* CHCO₂Et) and 7.10–7.22 (*trans o*-H of Ar). ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.73 (CH₃), 13.84 (CH₃), 13.89 (CH₃), 13.96 (CH₃), 21.13 (CH₃), 21.16 (CH₃), 61.48 (CH₂), 61.63 (CH₂), 62.90 (CH₂), 63.14 (CH₂), 63.25 (CH₂), 67.87 (C), 68.56 (C), 79.62 (CH), 80.42 (CH), 82.41 (CH), 82.75 (CH), 117.56

1991

(CH, q, J_{FC} =37 Hz), 118.18 (CH, q, J_{FC} =37 Hz), 122.01 (C, q, J_{FC} =272 Hz), 122.22 (C, q, J_{FC} =272 Hz), 128.03 (CH), 128.69 (CH), 128.90 (CH), 129.16 (CH), 133.85 (C), 134.30 (C), 138.71 (C), 138.74 (C), 148.24 (C, q, J_{FC} =5 Hz), 150.45 (C, q, J_{FC} =5 Hz), 165.25 (C), 165.52 (C), 165.95 (C), 166.63 (C), 167.20 (C), 168.20 (C). Selected HMBC correlations are between δ 5.05 (*cis* CHCO₂Et) and 150.45 (*cis* C=CHCF₃) and δ 5.20 (*trans* CHCO₂Et) and 148.24 (*trans* C=CHCF₃). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) –59.75 (dd, J_{FH} =9.0, 2.3 Hz), –60.32 (dd, J_{FH} =8.4, 2.8 Hz); IR (neat) 2985, 1742, 1254, 1213, 1129, 1024 cm⁻¹; MS (EI) *m*/*z* 458 (M⁺); HRMS M⁺ 458.1554 (calcd for C₂₂H₂₅F₃O₇ 458.1552). Anal. Calcd for C₂₂H₂₅F₃O₇: C, 57.64; H, 5.50.

3.2.5. trans-**3d**

 $R_{f}=0.4$ (hexane-ether=1:1); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.28 (t, *J*=7.1 Hz, 3H), 1.29 (t, *J*=7.1 Hz, 3H), 1.34 (t, J=7.1 Hz, 3H), 3.79 (s, 3H), 4.15-4.29 (m, 4H), 4.31-4.42 (m, 2H), 5.21 (d, J=0.7 Hz, 1H), 6.08 (qd, J=2.7, 2.7 Hz, 1H), 6.25 (qd, J=8.6, 2.4 Hz, 1H), 6.86 (d-like, J=8.8 Hz, 2H), 7.21 (d-like, J=8.8 Hz, 2H). Selected NOEs are between δ 7.21 (o-H of C₆H₄-*p*-OMe) and 5.21 (CHCO₂Et), 6.08 (OCHC₆H₄-*p*-OMe). ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.82 (CH₃), 13.98 (CH₃), 14.05 (CH₃), 55.28 (CH₃), 61.71 (CH₂), 62.97 (CH₂), 63.34 (CH₂), 67.91 (C), 79.65 (CH), 82.29 (CH), 113.86 (CH), 118.27 (CH, q, J_{FC}=36 Hz), 122.25 (C, q, J_{FC}=271 Hz), 129.51 (C), 129.59 (CH), 148.47 (C, q, J_{FC}=5 Hz), 159.98 (C), 165.56 (C), 166.09 (C), 168.30 (C). Selected HMBC correlations are between δ 5.21 (CHCO₂Et) and δ 148.47 (C=CHCF₃) and between δ 6.08 (OCHC₆H₄-p-OMe) and 79.65 (CHCO₂Et). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -60.22 (dd, *J*_{FH}=9.2, 3.1 Hz); IR (neat) 2985, 1742, 1612, 1516, 1249, 1213, 1129, 1033 cm⁻¹; MS (EI) m/z 474 (M⁺, 5.0), 401 (84), 135 (100%); HRMS (FAB) (M+Na)⁺ 479.1392 (calcd for C₂₂H₂₅F₃O₈Na 497.1399). Anal. Calcd for C₂₂H₂₅F₃O₈: C, 55.70; H, 5.31. Found: C, 55.35; H, 5.09.

3.2.6. cis-**3d** (including a small amount of impurity)

 $R_{f}=0.3$ (hexane-ether=1:1); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.22 (t, J=7.1 Hz, 3H), 1.30 (t, J=7.1 Hz, 3H), 1.34 (t, J=7.1 Hz, 3H), 3.79 (s, 3H), 4.09-4.41 (m, 6H), 5.04 (s, 1H), 5.73 (qd, J=2.7, 2.7 Hz, 1H), 6.03 (qd, J=8.8, 2.7 Hz, 1H), 6.83 (d-like, J=8.6 Hz, 2H), 7.26 (d, J=8.6 Hz, 2H). Selected NOEs are between δ 5.04 (OCHC₆H₄-p-OMe) and 5.73 (CHCO₂Et), 7.26 (o-H of C₆H₄-p-OMe). ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.84 (CH₃), 13.95 (CH₃), 13.98 (CH₃), 55.27 (CH₃), 61.57 (CH₂), 62.97 (CH₂), 63.20 (CH₂), 68.58 (C), 80.38 (CH), 82.61 (CH), 113.62 (CH), 117.74 (CH, q, J_{FC}=37 Hz), 122.05 (C, q, J_{FC}=272 Hz), 129.06 (C), 130.27 (CH), 150.69 (C, q, J_{FC} =5 Hz), 160.08 (C), 165.39 (C), 166.67 (C), 167.28 (C). Selected HMBC correlations are between δ 5.04 (CHCO₂Et) and δ 150.69 (C=CHCF₃) and between δ 6.03 (C=CHCF₃) and 68.58 $(C(CO_2Et)_2)$.¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) –59.68 (dd, I_{FH} =9.2, 3.1 Hz); IR (neat) 2985, 1739, 1613, 1517, 1252, 1114, 1031 cm⁻¹; MS (EI) m/z 474 (M⁺, 30), 401 (98), 327 (50), 281 (59), 213 (75), 135 (100%); HRMS (FAB) $(M+Na)^+$ 497.1397 (calcd for $C_{22}H_{25}F_3O_8Na$ 497.1399).

3.2.7. trans-**3e**

*R*_{*j*}=0.3 (hexane-ether=4:1); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.26 (t, *J*=7.1 Hz, 3H), 1.275 (t, *J*=7.1 Hz, 3H), 1.281 (t, *J*=7.1 Hz, 3H), 1.83–2.07 (m, 2H), 2.63–2.82 (m, 2H), 4.13–4.31 (m, 6H), 5.15–5.20 (m, 1H), 5.30 (d, *J*=0.7 Hz, 1H), 6.13 (qd, *J*=8.9, 2.4 Hz, 1H), 7.17–7.21 (m, 3H), 7.27–7.30 (m, 2H). Selected NOEs are between δ 1.83–2.07 (OCHCH₂CH₂) and 5.15–5.20 (OCHCH₂CH₂), 5.30 (OCHCO₂Et). ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.81 (CH₃), 13.91 (CH₃), 14.02 (CH₃), 31.81 (CH₂), 36.22 (CH₂, q, *J*=1.5 Hz), 61.71 (CH₂), 62.84 (CH₂), 63.28 (CH₂), 67.34 (C), 80.20 (CH), 116.31 (CH, q, *J*_{FC}=36 Hz), 122.74 (C, q, *J*_{FC}=271 Hz),

126.07 (CH), 128.46 (CH), 128.56 (CH), 141.06 (C), 149.48 (C, q, J_{FC} =5 Hz), 165.33 (C), 166.00 (C), 168.68 (C). Selected HMBC correlations are between δ 5.30 (CHCO₂Et) and δ 149.48 (C=CHCF₃) and between δ 6.13 (C=CHCF₃) and 67.34 (C(CO₂Et)₂). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) –59.79 (dd, J_{FH} =9.2, 3.1 Hz); IR (neat) 2985, 1744, 1369, 1254, 1213, 1123 cm⁻¹; MS (EI) *m*/*z* 472 (M⁺, 30), 399 (100), 279 (68%); HRMS M⁺ 472.1705 (calcd for C₂₃H₂₇F₃O₇ 472.1709). Anal. Calcd for C₂₃H₂₇F₃O₇: C, 58.47; H, 5.76. Found: C, 58.34; H, 5.73.

3.2.8. cis-3e

 $R_{f}=0.2$ (hexane-ether=4:1); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.26 (t, *J*=7.1 Hz, 3H), 1.29 (t, *J*=7.1 Hz, 3H), 1.31 (t, J=7.1 Hz, 3H), 1.99–2.15 (m, 2H), 2.68–2.87 (m, 2H), 4.19–4.36 (m, 6H), 4.86-4.91 (m, 1H), 4.96 (s, 1H), 5.84 (qd, J=8.8, 2.6 Hz, 1H), 7.16-7.21 (m, 3H), 7.26-7.30 (m, 2H). Selected NOEs are between δ 4.86–4.91 (OCHCH₂CH₂) and 4.96 (OCHCO₂Et), 1.99–2.15 (OCHCH₂CH₂). ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.83 (CH₃), 13.97 (CH₃), 14.05 (CH₃), 31.69 (CH₂), 35.96 (CH₂, q, J=1.5 Hz), 61.56 (CH₂), 62.91 (CH₂), 63.10 (CH₂), 68.30 (C), 79.86 (CH), 80.73 (CH), 115.50 (CH, q, J_{FC}=36 Hz), 122.54 (C, q, J_{FC}=271 Hz), 126.03 (CH), 128.43 (CH), 128.64 (CH), 141.05 (C), 151.95 (C, q, J_{FC}=5 Hz), 165.42 (C), 166.55 (C), 167.70 (C). Selected HMBC correlations are between δ 4.96 (CHCO₂Et) and δ 151.95 (C=CHCF₃), 79.86 (OCHCH₂CH₂). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) –59.52 (dd, J_{FH}=9.2, 3.1 Hz); IR (neat) 2984, 1741, 1368, 1261, 1214, 1124 cm⁻¹; MS (EI) *m*/*z* 472 (M⁺, 30), 399 (100) 327 (42%); HRMS M⁺ 472.1707 (calcd for C₂₃H₂₇F₃O₇ 472.1709).

3.2.9. Compound 5

 $R_{f}=0.6$ (hexane-ether=1:2); colorless oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.25 (t, *I*=7.1 Hz, 3H), 1.28 (t, *I*=7.1 Hz, 3H), 1.31 (t, J=7.1 Hz, 3H), 1.24-1.33 (m, 1H), 1.54-1.95 (m, 9H), 4.14-4.37 (m, 6H), 5.06 (s, 1H), 5.87 (q, J=9.7 Hz, 1H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.82 (CH₃), 13.97 (CH₃), 14.07 (CH₃), 21.87 (CH₂), 22.11 (CH₂), 24.76 (CH₂), 32.56 (CH₂, q, J_{FC}=3 Hz), 34.22 (CH₂, q, J_{FC}=3 Hz), 61.41 (CH₂), 62.75 (CH₂), 62.94 (CH₂), 69.11 (C), 78.20 (CH), 85.95 (C), 115.60 (CH, q, J_{FC}=37 Hz), 122.46 (C, q, J_{FC}=271 Hz), 155.12 (C, q, J_{FC}=6 Hz), 165.99 (C), 166.84 (C), 168.27 (C). Selected HMBC correlations are between δ 5.06 (CHCO_2Et) and δ 155.12 (C=CHCF₃), 85.95 (OC(CH₂)₅). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -55.64 (d, J_{FH}=9.2 Hz); IR (neat) 2937, 1742, 1256, 1119 cm⁻¹ ; MS (EI) *m*/*z* 436 (M⁺, 15), 363 (100%); HRMS M⁺ 436.1715 (calcd for C₂₀H₂₇F₃O₇ 436.1709). Anal. Calcd for C₂₀H₂₇F₃O₇: C, 55.04; H, 6.24; F, 13.06. Found: C, 55.22; H, 6.39; F, 12.73.

3.3. Reaction of 1 and 2a in the presence of SnCl₄ (Eq. 3)

To a solution of **1** (122 mg, 0.5 mmol) in CH_2Cl_2 (0.9 mL) was added 4,4,4-trifluoro-1-phenylbut-2-yn-1-ol (**2a**) (100 mg, 0.5 mmol) and $SnCl_4$ (130 mg, 0.06 mL, 0.5 mmol). The mixture was stirred at room temperature for 19 h. The reaction mixture was quenched by water and then saturated aqueous NaHCO₃. The mixture was extracted with dichloromethane and the organic phase was dried (Na₂SO₄), and evaporated in vacuo. The residue was purified by column chromatography over silica gel with hexane-ether as eluent to give **6a** (77 mg, 33%) as an isolable product.

3.3.1. Compound 6a

 R_{f} =0.5 (hexane-ether=1:1); pale yellow crystals, mp 76–78 °C (hexane); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 0.733 (t, *J*=7.1 Hz, 3H), 1.25 (t, *J*=7.1 Hz, 3H), 1.31 (t, *J*=7.1 Hz, 3H), 3.49–3.57 (m, 1H), 3.68–3.76 (m, 1H), 4.13–4.33 (m, 4H), 4.83 (dq, *J*=3.8, 2.2 Hz, 1H), 5.43 (dq, *J*=3.4, 2.7 Hz, 1H), 7.17–7.20 (m, 2H), 7.23–7.31 (m, 3H). Selected NOEs are between δ 7.17–7.20 (o-H of Ph) and 4.83 (CHCO₂Et), 5.43 (CHPh). ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.39

(CH₃), 13.95 (CH₃), 14.11 (CH₃), 50.80 (CH), 54.04 (CH), 58.71 (C), 61.90 (CH₂), 62.32 (CH₂), 62.42 (CH₂), 118.12 (C, q, J_{FC} =41 Hz), 119.84 (C, q, J_{FC} =273 Hz), 128.11 (CH), 128.13 (CH), 128.38 (CH), 135.44 (C, q, J_{FC} =2 Hz), 142.31 (C, q, J_{FC} =3 Hz), 166.48 (C), 167.39 (C), 167.42 (C). Selected HMBC correlations are between δ 4.82 (CHCO₂Et), 5.43 (CHPh) and δ 142.31 (C=CCICF₃) and between δ 4.82 (CHCO₂Et), 5.43 (CHPh) and δ 58.71 (C(CO₂Et)₂). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) –65.82 (dd, J_{FH} =2.3, 2.3 Hz); IR (KBr) 2992, 1733, 1274, 1188, 1136 cm⁻¹; MS (EI) *m*/*z* 464 (M⁺, 9), 462 (M⁺, 26), 416 (49), 388 (43), 343 (43), 315 (100%); HRMS M⁺ 462.1053 (calcd for C₂₁H₂₂³⁷CIF₃O₆ 462.1057), 464.1032 (calcd for C₂₁H₂₂³⁷CIF₃O₆ 464.1028). Anal. Calcd for C₂₁H₂₂CIF₃O₆: C, 54.49; H, 4.79; Cl, 7.66; F, 12.31. Found: C, 54.55; H, 4.86; Cl, 7.59; F, 12.02.

3.3.2. Compound **6b**

 R_{f} =0.3 (hexane-ether=4:1); yellow crystals, mp 73-74 °C (hexane–AcOEt); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 0.756 (t, J=7.1 Hz, 3H), 1.25 (t, J=7.1 Hz, 3H), 1.31 (t, J=7.1 Hz, 3H), 2.30 (s, 3H), 3.52-3.61 (m, 1H), 3.70-3.78 (m, 1H), 4.12-4.32 (m, 4H), 4.82 (dq, J=3.8, 2.2 Hz, 1H), 5.38 (dq, J=3.5, 2.7 Hz, 1H), 7.05-7.10 (m, 4H). Selected NOEs are between δ 7.07–7.10 (Ar) and 4.82 (CHCO₂Et), 5.38 (CHC₆H₄-4-Me). ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.39 (CH₃), 13.98 (CH₃), 14.12 (CH₃), 21.17 (CH₃), 50.77 (CH), 53.82 (CH), 58.76 (C), 61.88 (CH₂), 62.28 (CH₂), 62.38 (CH₂), 117.96 (C, q, J_{FC}=41 Hz), 119.88 (C, q, J_{FC}=273 Hz), 128.02 (CH), 129.03 (CH), 132.42 (C, q, J_{FC}=1.5 Hz), 137.83 (C), 142.66 (C, q, J_{FC}=2 Hz), 166.57 (C), 167.44 (C), 167.50 (C). Selected HMBC correlations are between δ 4.82 (CHCO₂Et), 5.38 (CHC₆H₄-4-Me) and δ 142.66 (C=CClCF₃) and between δ 4.82 (CHCO₂Et), 5.38 (CHC₆H₄-4-Me) and δ 58.76 (*C*(CO₂Et)₂). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -65.78 (dd, J_{FH}=2.3, 2.3 Hz); IR (KBr) 2989, 1757, 1735, 1273, 1192, 1132, 1023 cm⁻¹; MS (EI) *m*/*z* 478 (M⁺, 11), 476 (M⁺, 28), 432 (66), 430 (86), 402 (95), 329 (100%); HRMS M⁺ 476.1213 (calcd for $C_{22}H_{24}^{35}ClF_{3}O_{6}$ 476.1214), 478.1210 (calcd for $C_{22}H_{24}^{37}ClF_{3}O_{6}$ 478.1184). Anal. Calcd for C₂₂H₂₄ClF₃O₆: C, 55.41; H, 5.07. Found: C, 55.39; H, 5.05.

3.3.3. Compound 6f

 R_{f} =0.3 (hexane-ether=4:1); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 0.712 (t, *J*=7.1 Hz, 3H), 1.79 (t, *J*=7.6 Hz, 3H), 1.25 (t, J=7.1 Hz, 3H), 1.31 (t, J=7.1 Hz, 3H), 2.60 (q, J=7.6 Hz, 2H), 3.52-3.61 (m, 1H), 3.67-3.75 (m, 1H), 4.12-4.32 (m, 4H), 4.82 (dq, J=3.8, 2.2 Hz, 1H), 5.40 (dq, J=3.6, 2.7 Hz, 1H), 7.08–7.12 (m, 4H). Selected NOEs are between δ 7.08–7.12 (Ar) and 4.82 (CHCO₂Et), 5.40 (CHC₆H₄-4-Et). ^{13}C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.32 (CH₃), 13.92 (CH₃), 14.07 (CH₃), 15.63 (CH₃), 28.57 (CH₂), 50.72 (CH), 53.82 (CH), 58.72 (C), 61.84 (CH₂), 62.25 (CH₂), 62.34 (CH₂), 117.91 (C, q, J_{FC}=40 Hz), 119.85 (C, q, J_{FC}=273 Hz), 127.81 (CH), 128.03 (CH), 132.61 (C, q, J_{FC}=1.5 Hz), 142.66 (C, q, J_{FC}=2 Hz), 144.23 (C), 166.53 (C), 167.41 (C), 167.45 (C). Selected HMBC correlations are between δ 4.82 (CHCO₂Et), 5.40 (CHC₆H₄-4-Et) and δ 142.66 (C=CCICF₃) and between δ 4.82 (CHCO₂Et), 5.40 (CHC_6H_4-4-Et) and δ 58.72 ($C(CO_2Et)_2$). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -65.77 (dd, J_{FH} =2.5, 2.5 Hz). ¹⁹F/¹H HOESY correlations are between δ –65.77 (CF₃) and δ 5.40 (CHC₆H₄-4-Et) and 7.08– 7.12 (Ar-H). IR (neat) 2982, 1739, 1514, 1369, 1264, 1191, 1145 cm⁻¹; MS (EI) m/z 492 (M⁺, 3.4), 490 (M⁺, 6.6), 444 (27), 416 (42), 371 (49), 343 (100%); HRMS M⁺ 490.1366 (calcd for C₂₃H₂₆³⁵ClF₃O₆ 490.1370), 492.1351 (calcd for C₂₃H₂₆³⁷ClF₃O₆ 492.1341). Anal. Calcd for C₂₃H₂₆ClF₃O₆: C, 56.27; H, 5.34. Found: C, 56.32; H, 5.14.

3.3.4. Compound 6g

 R_{f} =0.2 (hexane-ether=4:1); pale yellow crystals, mp 56–58 °C (hexane); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 0.680 (t, *J*=7.1 Hz, 3H), 1.196 (d, *J*=7.0 Hz, 3H), 1.199 (d, *J*=6.8 Hz, 3H), 1.24 (t, *J*=7.1 Hz, 2H), 1.24 (t, *J*=7.1 Hz, 3H), 1.24 (t, *J*=7.1 Hz), 1.24 (t, J=7.1 Hz), 1.24 (t, J=7.1 Hz), 1.24 (t, J=7.1 Hz), 1.24

3H), 1.31 (t, *I*=7.1 Hz, 3H), 2.86 (septet, *I*=6.9 Hz, 1H), 3.51-3.59 (m, 1H), 3.64–3.73 (m, 1H), 4.12–4.32 (m, 4H), 4.82 (dq, J=3.7, 2.2 Hz, 1H), 5.39 (dq, J=3.5, 2.7 Hz, 1H), 7.08-7.14 (m, 4H). Selected NOEs are between δ 7.08–7.14 (Ar) and 4.82 (CHCO₂Et), 5.39 (CHC₆H₄-4-^{*i*}Pr). ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.36 (CH₃), 13.97 (CH₃), 14.12 (CH₃), 23.96 (CH₃), 33.85 (CH), 50.75 (CH), 53.87 (CH), 58.77 (C), 61.87 (CH₂), 62.28 (CH₂), 62.37 (CH₂), 117.98 (C, q, J_{FC}=41 Hz), 119.88 (C, q, J_{FC}=273 Hz), 126.37 (CH), 128.04 (CH), 132.73 (C), 142.62 (C, q, J_{FC}=3 Hz), 148.83 (C), 166.58 (C), 167.47 (C), 167.49 (C). Selected HMBC correlations are between δ 4.82 (CHCO₂Et), 5.39 (CHC₆H₄-4-^{*i*}Pr) and δ 142.62 (C=CCICF₃) and between δ 4.82 (CHCO₂Et), 5.39 (CHC₆H₄-4-^{*i*}Pr) and δ 58.77 $(C(CO_2Et)_2)$.¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) –65.76 (dd, J_{FH} =2.4, 2.4 Hz). 19 F/ 1 H HOESY correlations are between δ –65.76 (CF₃) and δ 5.39 (CHC₆H₄-4-^{*i*}Pr) and 7.08–7.14 (Ar–H). IR (KBr) 2964, 1735, 1300, 1261, 1187, 1146 cm⁻¹; MS (EI) m/z 506 (M⁺, 20), 504 (M⁺, 41), 458 (87), 430 (98), 385 (91), 357 (100%); HRMS M⁺ 504.1526 (calcd for C₂₄H₂₈³⁵ClF₃O₆ 504.1527), 506.1505 (calcd for C₂₄H₂₈³⁷ClF₃O₆ 506.1497). Anal. Calcd for C24H28ClF3O6: C, 57.09; H, 5.59. Found: C, 57.14; H, 5.45.

3.3.5. Compound **6h** (including a small amount of impurity)

 $R_{f}=0.5$ (hexane-ether=1:1); brown oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 0.799 (t, *J*=7.1 Hz, 3H), 1.25 (t, *J*=7.1 Hz, 3H), 1.31 (t, J=7.1 Hz, 3H), 3.57-3.65 (m, 1H), 3.74-3.82 (m, 1H), 4.13-4.32 (m, 4H), 4.80 (dq, J=3.8, 2.2 Hz, 1H), 5.40 (dq, J=3.1, 2.8 Hz, 1H), 7.14 (d-like, J=8.5 Hz, 2H), 7.28 (d-like, J=8.5 Hz, 2H). Selected NOEs are between δ 7.14 (Ar) and 4.80 (CHCO₂Et), 5.40 (CHC₆H₄-4-Cl). ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.48 (CH₃), 13.98 (CH₃), 14.13 (CH₃), 50.78 (CH), 53.33 (CH), 58.62 (C), 62.03 (CH₂), 62.52 (CH₂), 62.55 (CH₂), 118.53 (C, q, J_{FC}=41 Hz), 119.78 (C, q, J_{FC}=273 Hz), 128.62 (CH), 129.53 (CH), 133.96 (C), 134.10 (C), 141.74 (C, q, J=2 Hz), 166.37 (C), 167.29 (2×C). Selected HMBC correlations are between δ 4.80 (CHCO₂Et), 5.40 (CHC₆H₄-4-Cl) and δ 141.74 (C=CClCF₃) and between δ 4.80 (CHCO₂Et), 5.40 (CHC₆H₄-4-Cl) and δ 58.62 $(C(CO_2Et)_2)$. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) –65.71 (dd, J_{FH}=2.4, 2.4 Hz). ¹⁹F/¹H HOESY correlations are between δ –65.71 (CF₃) and δ 5.40 (CHC₆H₄-4-Cl) and 7.14 (Ar–H). IR (neat) 2985, 1736, 1493, 1369, 1268, 1192, 1146 cm⁻¹; MS (EI) *m/z* 498 (M⁺, 4), 496 (M⁺, 6), 450 (33), 422 (51), 351 (68), 349 (100%); HRMS M⁺ 496.0660 (calcd C₂₁H₂₁³⁵Cl₂F₃O₆ 496.0667), 498.0629 (calcd for for C₂₁H₂₁³⁵Cl³⁷ClF₃O₆ 498.0638).

3.3.6. Compound 6i

 $R_{f}=0.2$ (hexane-ether=3:1); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 0.798 (t, *J*=7.1 Hz, 3H), 1.25 (t, *J*=7.1 Hz, 3H), 1.31 (t, J=7.1 Hz, 3H), 3.56-3.64 (m, 1H), 3.74-3.82 (m, 1H), 4.13-4.33 (m, 4H), 4.80 (dq, J=3.8, 2.2 Hz, 1H), 5.41 (dq, J=3.1, 2.6 Hz, 1H), 6.99 (t-like, J=8.8 Hz, 2H), 7.18 (dd-like, J=8.3, 5.2 Hz, 2H). Selected NOEs are between δ 7.18 (Ar) and 4.80 (CHCO₂Et), 5.41 (CHC₆H₄-4-F). ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.51 (CH₃), 13.97 (CH₃), 14.12 (CH₃), 50.74 (CH), 53.27 (CH), 58.68 (C, q, J=1.5 Hz), 61.99 (CH₂), 62.44 (CH₂), 62.50 (CH₂), 115.35 (CH, d, J=21 Hz), 118.43 (C, q, J_{FC}=41 Hz), 119.79 (C, q, J_{FC}=273 Hz), 129.91 (CH, d, J=8 Hz), 131.32 (C, d, J=1.5 Hz), 142.17 (C, q, J=3 Hz), 162.50 (C, d, J=247 Hz), 166.46 (C), 167.35 (2×C). Selected HMBC correlations are between δ 4.80 (CHCO₂Et), 5.41 (CHC₆H₄-4-F) and δ 142.17 (C=CClCF₃) and between δ 4.80 (CHCO₂Et), 5.41 (CHC₆H₄-4-F) and δ 58.68 (C(CO₂Et)₂). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) –114.12 (tt, $J_{\rm FH}$ =8.5, 5.2 Hz, 3×F), -65.72 (dd, $J_{\rm FH}$ =2.3, 2.3 Hz, 1×F). ¹⁹F/¹H HOESY correlations are between δ –65.72 (CF₃) and δ 5.41 (CHC₆H₄-4-F) and 7.18 (Ar) and between δ –114.12 (CF₃) and δ 6.99 (Ar–*H*). IR (neat) 2985, 1737, 1607, 1511, 1270, 1192, 1146 cm⁻¹; MS (EI) m/z 482 (M⁺, 3), 480 (M⁺, 6), 434 (34), 406 (45), 361 (35), 333 (100%); HRMS M^+ 480.0961 (calcd for $C_{21}H_{21}^{35}ClF_4O_6$ 480.0963), 482.0973 (calcd for C₂₁H₂₁³⁷ClF₄O₆ 482.0933).

3.4. Reaction of 2a in the presence of SnCl₄ (Eq. 4)

To a solution of 4,4,4-trifluoro-1-phenylbut-2-yn-1-ol (**2a**) (300 mg, 1.5 mmol) in CH_2Cl_2 (2.8 mL) was added $SnCl_4$ (391 mg, 0.18 mL, 1.5 mmol). The mixture was stirred at room temperature for 17 h. The reaction mixture was quenched by water and then saturated aqueous NaHCO₃. The mixture was extracted with dichloromethane and the organic phase was dried (Na₂SO₄), and evaporated in vacuo. The residue was purified by column chromatography over silica gel with hexane–ether as eluent to give **7** (44 mg, 14%), **8** (49 mg, 15%), and **9** (120 mg, 42%).

3.4.1. Compound 7

 R_{f} =0.4 (hexane-ether=2:1); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 5.66 (q, *J*=3.0 Hz, 1H), 7.40–7.46 (m, 3H), 7.50–7.53 (m, 2H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 47.15 (CH), 77.51 (C, q, *J*_{FC}=53 Hz), 83.62 (C, q, *J*_{FC}=6 Hz), 114.01 (C, q, *J*_{FC}=258 Hz), 127.62 (CH), 129.31 (CH), 129.91 (CH), 135.91 (C); ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) –51.28 (d, *J*_{FH}=3.1 Hz); IR (neat) 2265, 1457, 1284, 1264 cm⁻¹; MS (EI) *m/z* 220 (M⁺, 9), 218 (M⁺, 27), 183 (100%); HRMS M⁺ 218.0102 (calcd for C₁₀H₆³⁵ClF₃ 218.0110), 220.0056 (calcd for C₁₀H₆³⁷ClF₃ 220.0082).

3.4.2. Compound 8

 R_{f} =0.3 (hexane-ether=2:1); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.93 (q, *J*=2.7 Hz, 1H), 7.34–7.43 (m, 5H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 97.98 (C, q, *J*_{FC}=45 Hz), 108.54 (CH), 120.25 (C, q, *J*_{FC}=273 Hz), 128.62 (CH), 129.26 (CH), 129.83 (C), 130.06 (CH), 201.73 (C, q, *J*_{FC}=2.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) –66.68 (d, *J*_{FH}=3.1 Hz); IR (neat) 1963, 1460, 1400, 1270, 1131 cm⁻¹; MS (EI) *m/z* 220 (M⁺, 13), 218 (M⁺, 53), 183 (100%); HRMS M⁺ 218.0108 (calcd for C₁₀H₆³⁵ClF₃ 218.0110), 220.0085 (calcd for C₁₀H₆³⁷ClF₃ 220.0082).

3.4.3. Compound 9

*R*_{*j*}=0.2 (hexane–ether=2:1); colorless crystals, mp 52–55 °C (hexane); ¹H NMR (400 MHz, CDCl₃) obtained as 1:1 diastereomer mixture, δ (ppm) 5.31 (q, *J*=2.9 Hz, 1×0.5H), 5.54 (q, *J*=2.7 Hz, 1×0.5H), 7.39–7.49 (m, 5H). Recrystallization from hexane changed the diastereomer ratio from 1:1 to 1.5:1. ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 69.10 (CH), 69.42 (CH), 75.01 (C, q, *J*_{FC}=53 Hz), 75.31 (C, q, *J*_{FC}=53 Hz), 83.97 (C, q, *J*_{FC}=6 Hz), 84.07 (C, q, *J*_{FC}=6 Hz), 113.97 (C, q, *J*_{FC}=258 Hz), 127.69 (CH), 127.83 (CH), 129.09 (CH), 129.23 (CH), 129.73 (CH), 129.92 (CH), 134.94 (C), 135.04 (C); ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) −51.02 (d, *J*_{FH}=3.1 Hz), −51.11 (d, *J*_{FH}=3.1 Hz); IR (KBr) 2265, 1282, 1144 cm⁻¹; MS (EI) *m/z* 382 (M⁺, 2), 304 (5), 183 (100%); HRMS M⁺ 382.0793 (calcd for C₂₀H₁₂F₆O 382.0792). Anal. Calcd for C₂₀H₁₂F₆O: C, 62.83; H, 3.16. Found: C, 62.71; H, 3.24.

Acknowledgements

This work was supported by the Ministry of Education, Culture, Sports, Science, and Technology of the Japanese Government. We thank Mr. T. Matsuda and Mr. Y. Fukushima (Nara University of Education) for experimental help. We thank Nara Institute of Science and Technology (NAIST) and Prof. K. Kakiuchi (NAIST) for mass spectra. We also thank to Prof. S. Umetani (Kyoto University) for elemental analyses.

Supplementary data

Crystallographic data and ¹H and ¹³C NMR data. Supplementary data associated with this article can be found in the online version, at doi:10.1016/j.tet.2009.01.024.

References and notes

- 1. (a) Welch, J. T. Tetrahedron 1987, 43, 3123; (b) Welch, J. T.; Eswarakrishnan, S. (a) Wetti, J. I. Fertunical 1997, 1997, 1997, 1997, 1997, 1997, 1991; (c) Organofluorine Compounds in Medicinal and Biochemical Applications; Filler, R., Kobayashi, Y., Yagupolskii, L. M., Eds.; Elsevier: Amsterdam, 1993; (d) Resnati, G.; Soloshnok, V. A. Fluoroorganic chemistry: synthetic challenges and biomedical rewards (Tetrahedron Symposium-in-Print Number 58). Tetrahedron 1996, 52, 1; (e) Fluorine-containing Amino Acids, Synthesis and Properties; Kukhar, V. P., Soloshonok, V. A., Eds.; J. Wiley and Sons: New York, NY, 1995; (f) Asymmetric Fluoroorganic Chemistry, Synthesis, Application and Future Directions; Ramachandran, P. V., Ed.; American Chemical Society: Washington, DC, 2000.
- 2. (a) Yamazaki, S. Chem.-Eur. J. 2008, 14, 6024; (b) Marat, X.; Monteiro, N.; Balme, G. Synlett 1997, 845; (c) Cavicchioli, M.; Marat, X.; Monteiro, N.; Hartmann, B.; Balme, G. Tetrahedron Lett. 2002, 43, 2609; (d) Nakamura, M.; Liang, C.; Nakamura, E. Org. Lett. 2004, 6, 2015; (e) Yakura, T.; Yamada, S.; Shiima, M.; Iwamoto, M.; Ikeda, M. Chem. Pharm. Bull. 1998, 46, 744; (f) Morikawa, S.; Yamazaki, S.; Furusaki, Y.; Amano, N.; Zenke, K.; Kakiuchi, K. J. Org. Chem. 2006, 71, 3540; (g) Morikawa, S.; Yamazaki, S.; Tsukada, M.; Izuhara, S.; Morimoto, T.; Kakiuchi, K. J. Org. Chem. 2007, 72, 6459.
- 3. (a) Yamazaki, T.; Mizutani, K.; Kitazume, T. J. Org. Chem. 1995, 60, 6046; (b) Yamazaki, T.; Yamamoto, T.; Ichihara, R. J. Org. Chem. 2006, 71, 6251.
- 4. Hammet constants of the CF₃ group are σ_m =0.46 and σ_p =0.53 Exner, O. In *Correlation Analysis in Organic Chemistry*; Chapman, N. B., Shorter, J., Eds.; Plenum: New York, NY, 1978; Chapter 10.
- Qing, F.-L.; Gao, W.-Z.; Ying, J. J. Org. Chem. 2000, 65, 2003.
- 6. The (Z)-structure of 3a-e was determined by the absence of NOE peaks between = CHCF3 and OCHR (in Eq. 1) in the NOESY spectra.

- 7. Recently, conversion of propargyl alcohols to chloroallenes using TiCl₄/R₃N has been reported Karunakar, G. V.; Periasamy, M. J. Org. Chem. 2006, 71, 7463.
- 8 The reaction of **1** and **2a** in the presence of 0.2 equiv of SnCl₄ gave starting materials 1 and 2a along with a small amount of unidentified impurities.
- Crystallographic data for **6a** have been deposited with the Cambridge Crystallographic Data Centre (no. CCDC 698776). Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, (fax: +44 (0)1223 336033 or e-mail: deposit@ccdc.cam.ac.uk). The stereochemistry of **6b**, **6f-i** was assigned by NOESY and ${}^{19}F/^{1}H$ HOESY (for
- 10
- 6f-i) spectra, along with similarity to 6a in the NMR spectra.
 11. The alkyl groups (R'=Me, Et, ¹Pr) in 2b,f,g may stabilize the cationic intermediate A (in Scheme 1) for the [2+2] cycloaddition as electron-donating groups. On the other hand, SnCl₄ possibly coordinates to OMe and Br groups (2d, 2c) and causes side reactions. However, at this stage it is difficult to discuss on the electronic effects of substituents. Study on the detailed reaction mechanism is under investigation.
- 12. [2+2] Cycloadditions of allene derivatives with Michael acceptors in the presence of Lewis acids have been reported. (a) Narasaka, K.; Hayashi, Y.; Shimadzu, H.; Niihata, S. J. Am. Chem. Soc. 1992, 114, 8869; (b) Engler, T. A.; Agrios, K.; Reddy, J. P.; Iyengar, R. Tetrahedron Lett. 1996, 37, 327.
- 13 Chloroallenes have been also prepared from propargyl alcohols by treatment with concentrated hydrochloric acid in the presence of cuprous and ammonium chlorides, or calcium chloride. (a) Hennion, G. F.; Sheehan, J. J.; Maloney, D. E. J. Am. Chem. Soc. 1950, 72, 3542; (b) Tseng, C. K.; Migliorese, K. G.; Miller, S. I. Tetrahedron 1974, 30, 377; (c) Crandall, J. K.; Conover, W. W.; Komin, J. B.; Machleder, W. H. J. Org. Chem. 1974, 39, 1723.
- 14. These calculations were performed at the RHF/STO-3G//B3LYP/6-31G* with Gaussian 03.