

Hydroalkoxylation Catalyzed by a Gold(I) Complex Encapsulated in a Supramolecular Host

Z. Jane Wang, Casey J. Brown, Robert G. Bergman,* Kenneth N. Raymond,* and F. Dean Toste*

Chemical Sciences Division, Lawrence Berkeley National Laboratory, and Department of Chemistry, University of California, Berkeley, California 94720, United States

Supporting Information

ABSTRACT: Gold(I)—phosphine complexes are readily encapsulated by a tetrahedral supramolecular host (Ga₄L₆). We have investigated the catalytic activity of the resulting complexes for the intramolecular hydroalkoxylation of allenes. The catalytic activity of Me₃PAuBr was increased 8-fold by encapsulation, as determined by initial rate kinetics, and we observed up to 67 catalytic turnovers by Me₃PAu⁺ encapsulated in Ga₄L₆.

Supramolecular host-guest chemistry has emerged as a promising method for carrying out a variety of organic and organometallic transformations.¹⁻³ In particular, transitionmetal complexes contained in a supramolecular capsule may exhibit improved stability,⁴ substrate discrimination,⁵ and novel selectivity of reaction.⁶ However, the goal of using such systems as true synthetic analogues of enzymes requires not just the observation of changes in the selectivity of encapsulated systems, but also the development of reactions that, like enzyme reactions, exhibit enhanced reaction rates of the encapsulated substrates. Such acceleration has been demonstrated for several organic reactions, but to our knowledge, not for reactions involving encapsulated metal catalysts. Here we report the first nanovesselaccelerated metal-catalyzed reaction that involves the synthetically important process of heterocycle formation.⁷

Raymond and co-workers have used a tetrahedral Ga₄L₆ [L = N, N'-bis(2,3-dihydroxybenzoyl)-1,5-diaminonaphthalene] cluster, **1**, to encapsulate a variety of organometallic guests (Figure 1).⁸ In particular, they have observed that monocationic organometallic complexes exhibit a high affinity for binding to the interior of the cluster.^{8b} As gold(I) complexes are cationic in nature and have been used in a wide range of organic reactions,⁹ we hypothesized that **1** would be an ideal host for a catalytically active gold(I) guest.

We began our investigation by examining the affinity of gold (I)—phosphine complexes (PR₃AuX, where X is a halide) for 1. Though the halide can be strongly coordinating in solution, we believed that the preference of 1 for cations would shift the equilibrium between R₃PAuX and R₃PAu⁺ + X⁻ in favor of the fully ionized form. Indeed, when Me₃PAuCl or Et₃PAuCl (1.0 equiv) was combined with the "empty" 1 (1.2 equiv) in D₂O or MeOD, encapsulation of the gold phosphine cation was observed by ¹H NMR spectroscopy (Figure S2 in the Supporting Information). A representative spectrum of Me₃PAuCl with 1 in D₂O is shown in Figure 2a. Characteristic of encapsulation, the phosphine alkyl peaks were shifted upfield from 1.64 to -1.98 ppm. We attribute the two overlapping doublets at -2.02

Figure 1. (right) Schematic view of 1 where each edge of the tetrahedron represents a bisbidentate ligand and each vertex represents a gallium center. (left) Stick model of 1, looking down the C_3 axis.

Figure 2. Encapsulation of Me_3PAu^+ by 1 in (a) D_2O and (b) MeOD. Acetone is residual from the recystallization of 1.

and -1.98 ppm to naked PMe₃Au⁺ and the aquo complex Me₃PAu⁺(OH₂), respectively. When MeOD was used as the solvent, peaks corresponding to both the encapsulated and freely exchanging gold complex were observed (at -1.41 and 1.65 ppm, respectively; Figure 2b), indicating that the binding constant of Me₃PAu⁺ to 1 is smaller in methanol than it is in water. Interestingly, the reaction of Me₃PAuBr or Me₃PAuNTf₂ with 1 provided two complexes identical to those generated from Me₃PAuCl, suggesting that the counterion is fully dissociated from the encapsulated gold complex (Figure S1). This was also

```
Received: March 6, 2011
Published: April 25, 2011
```

Scheme 1. Hydroalkoxylation Catalyzed by Me₃PAuX

supported by electrospray ionization mass spectrometry data for the encapsulated gold cation (Figure S4).

The hydroalkoxylation of allenes by gold(I) in organic solvents has been well-examined,¹⁰ and we hypothesized that this transformation would be an ideal model system for our encapsulated catalyst. This reaction system was particularly attractive to us because allenyl alcohol substrate **2** is sparingly soluble in water and is not sterically demanding. Although both Me₃PAuX and Et₃PAuX showed incorporation into the supramolecular host under aqueous conditions, we chose to use Me₃PAu⁺ \subset **1** (where \subset denotes encapsulation) in our catalytic investigations because the smaller phosphine ligand would leave more space for substrate coordination inside the host.

We began by examining the bulk-solution reactivity of **2** with Me_3PAuX (X = Cl, Br, NTf₂) (Scheme 1). While Me_3PAuCl and $Me_3PAuNTf_2$ catalyzed the reaction to appreciable conversion, Me_3PAuBr affected the cyclization in only 11% yield after 18 h, presumably because of the relative strength of the gold—bromide bond. The low background reactivity allowed us to test whether the catalytic activity of Me_3PAuBr could be enhanced by encapsulation.

When 2 (40.0 equiv) was added to an aqueous solution of $[Me_3PAu^+ \subset Ga_4L_6]^{11-}$, we observed 48% conversion of the allene to the desired product after 18 h at room temperature (Scheme 2a).¹¹ No reaction was observed with 2 in the presence of Ga₄L₆ alone (Scheme 2b). To ensure that the enhanced rate of reaction observed was not due to changes in solvent polarity or counteranion effects^{10a} upon addition of the anionic assembly, another control experiment with a "blocked" cluster (PEt₄⁺ \subset 1) and free Me₃PAuBr was performed (Scheme 2c). The phosphonium ion has a very high binding constant for Ga₄L₆ and, not surprisingly, no exchange between PEt₄⁺ and Me₃PAu⁺ was observed when Et₄P⁺ \subset 1 and Me₃PAuBr were combined. When 2 was added to the solution containing Et₄P⁺ \subset 1 and

Figure 3. (a) Monitoring of the hydroalkoxylation reaction of 2 catalyzed by $Me_3PAu^+ \subset I$. (b) Monitoring of the reaction of 2 catalyzed by Me_3PAuBr in the presence of the blocked assembly. Green, blue, and gold traces represent the decay of starting material, formation of 3, and formation of 4, respectively.

 Me_3PAuBr , only 11% conversion to the cyclized product was observed after 18 h. This experiment demonstrated that the enhanced rate cannot be attributed to Me_3PAu^+ bound to the exterior of the cluster. Thus, encapsulation in the cluster must have been responsible for the rate enhancement observed.

To measure the relative rate acceleration, the hydroalkoxylation reaction was monitored by NMR spectroscopy in 2:3 MeOD/D₂O solvent. The mixed solvent system was used because the substrate is soluble up to 16.5 mg/mL in this combination and no externally bound or exchanging Me_3PAu^+ is observed. When the homogeneous reaction mixture was protected from air oxidation, the $Me_3PAu^+ \subset 1$ complex maintained catalytic activity over 6 days and completely consumed the starting allene (Figure 3a). Complete conversion to a 4.8:1 ratio of 3 to 4 was observed, where 4 is a side product from allene isomerization.

Monitoring the background reaction with the blocked assembly and Me₃PAuBr (Figure 3b) showed that encapsulation of the gold catalyst produced an (8.0 ± 0.9) -fold acceleration of the catalysis,¹² based on the measured initial rates (see the Supporting Information). In addition, the lifetime of the catalyst in water was enhanced by encapsulation, as we think catalyst decomposition is responsible for the tapering of the rate of the background reaction after 2 days.¹³ To probe the turnover number of the Me₃PAu⁺ \subset 1 catalyst, we added 250 equiv of 2 to a solution of the catalyst in 2:3 MeOD/D₂O. After 6 days of vigorous stirring of the biphasic mixture, 3 was isolated in 27% yield, corresponding to 67 turnovers. Although more sterically demanding substrates can also be employed in the reaction, the rate enhancement observed for these substrates is smaller than that with 2.¹⁴

In conclusion, we have shown that gold—phosphine complexes are readily encapsulated in 1 in both methanol and water. Notably, the encapsulation of Me₃PAu⁺ (generated from Me₃PAuBr in water) led to an enhancement in the catalytic activity in the hydroalkoxylation of allenes. This reaction constitutes the first example of acceleration of a gold-catalyzed process in which the reactivity and lifetime of the catalyst were enhanced by supramolecular encapsulation. Moreover, encapsulation of the gold catalyst allowed us to perform reactions that previously required organic solvents in water.⁹ Studies directed toward taking further advantage of this strategy are ongoing.

ASSOCIATED CONTENT

Supporting Information. Experimental procedures and additional spectroscopic and kinetic data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

rbergman@berkeley.edu; raymond@socrates.berkeley.edu; fdtoste@ berkeley.edu

ACKNOWLEDGMENT

Research leading to this project was partially supported by the Director, Office of Science, Office of Basic Energy Sciences, and the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at LBNL (DE-AC02-05CH11231). We thank Dr. Anthony Iavarone at QB3/Chemistry Mass Spectrometry at UC Berkeley for help with mass spectrometry. Z.J.W. thanks the Hertz Foundation for a graduate fellowship.

REFERENCES

(a) Pluth, M. D.; Bergman, R. G.; Raymond, K. N. Acc. Chem. Res.
 2009, 42, 1650. (b) Yoshizawa, M.; Tamura, M.; Fujita, M. Science 2007, 312, 251. (c) Kang, J.; Rebek, J., Jr. Nature 1997, 385, 50. (d) Marty, Z. C.; Watson, L. J.; Twyman, M.; Nakash, J. K. M.; Sanders Chem. Commun 1998, 2265. (e) Chen, J.; Rebek, J., Jr. Org. Lett. 2002, 4, 327.

(2) (a) Fiedler, D.; Bergman, R. G.; Raymond, K. N. Angew. Chem., Int. Ed. 2004, 43, 6748. (b) Hastings, C. J.; Fiedler, D.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc. 2008, 130, 10977. (c) Hastings, C. J.; Pluth, M. D.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc. 2010, 132, 6938. (d) Fiedler, D.; van Halbeek, H.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc. 2006, 128, 10240. (e) Nishioka, Y.; Yamaguchi, T.; Yoshizawa, M.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 7000.

(3) (a) Leung, D. H.; Fiedler, D.; Bergman, R. G.; Raymond, K. N. *Angew. Chem., Int. Ed.* **2004**, *43*, 963. (b) Pluth, M. D.; Bergman, R. G.; Raymond, K. N. *Science* **2007**, *316*, 85.

(4) (a) Fiedler, D.; Bergman, R. G.; Raymond, K. N. Angew. Chem., Int. Ed. **2006**, 45, 745. (b) Fielder, D.; Pagliero, D.; Brumaghim, J. L.; Bergman, R. G.; Raymond, K. N. Inorg. Chem. **2004**, 43, 846.

(5) Fiedler, D.; Leung, D. H.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc. 2004, 126, 3674.

(6) (a) Brown, C. J.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc. 2009, 131, 17530. (b) During the preparation of this manuscript,

Reek and coworkers reported the encapsulation of an NHC—Au catalyst in a self-assembled host in organic solvent. However, the catalytic activity of the gold catalyst was reduced upon encapsulation. See: Cavarzan, A.; Scarso, A.; Sgarbossa, P.; Strukul, G.; Reek, J. N. H. *J. Am. Chem. Soc.* **2010**, *133*, 2848. (c) Kuil, M.; Soltner, T.; van Leeuwen, P. W. N. M.; Reek, J. N. H. *J. Am. Chem. Soc.* **2006**, *128*, 11344.

(7) Slagt, V. F.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Reek, J. N. H. J. Am. Chem. Soc. 2004, 126, 1526.

(8) (a) Leung, D. H.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc. 2007, 129, 2746. (b) Leung, D. H.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc. 2006, 128, 9781. (c) Fiedler, D.; Leung, D. H.; Bergman, R. G.; Raymond, K. N. Acc. Chem. Res. 2005, 38, 351. Also see refs 2a,2d, 3a, 4 and 5.

(9) For reviews of gold-catalyzed cyclization reactions of allenes, see: (a) Krause, N.; Winter, N. *Chem. Rev.* **2011**, *111*, 1994. (b) Shen, H. C. *Tetrahedron* **2008**, *64*, 3885. For a review of gold-catalyzed reactions of alcohols, see: (c) Muzart, J. M. *Tetrahedron* **2008**, *64*, 5815. For recent general reviews of gold catalysis, see: (d) Shapiro, N. D.; Toste, F. D. *Synlett* **2010**, 675. (e) Hashmi, A. S. K. *Angew. Chem., Int. Ed.* **2010**, *49*, 5232. (f) Fürstner, A. *Chem. Soc. Rev.* **2009**, *38*, 3208.

(10) (a) Hamilton, G. L.; Kang, E. J.; Mba, M.; Toste, F. D. Science
2007, 317, 496. (b) Zhang, Z.; Widenhoefer, R. A. Angew. Chem., Int. Ed.
2007, 46, 283. (c) Zhang, Z.; Liu, C.; Kinder, R. E.; Han, X.; Qian, H.; Widenhoefer, R. A. J. Am. Chem. Soc. 2006, 128, 9066. (d) Nishina, N.; Yamamoto, Y. Tetrahedron Lett. 2008, 49, 4908. (e) Hadfield, M.; Lee, A. Org. Lett. 2010, 12, 484. (f) LaLonde, R. L.; Wang, Z. J.; Mba, M.; Lackner, A. D.; Toste, F. D. Angew. Chem., Int. Ed. 2010, 49, 598. For a study of the mechanism of gold-catalyzed additions to allenes, see: (g) Wang, Z. J.; Benitez, D.; Tkatchouk, E.; Goddard, W. A., III; Toste, F. D. J. Am. Chem. Soc. 2010, 132, 13064.

(11) In comparison, the same reaction catalyzed by $Et_3PAu^+ \subset 1$ proceeded to only 2% conversion after 18 h. We believe this to result from the increased steric demand of the cation, which leaves less space available inside the cluster for the substrate.

(12) The reported rate enhancement is in comparison to Me_3PAuBr and applies only to this catalyst. For instance, as Me_3PAuCl is already a relatively active catalyst, catalysis with the encapsulated species led to 52% conversion after 18 h, which is comparable to the rate of reaction for the unencapsulated catalyst.

(13) At low conversion (0-12%), $[\mathbf{2}]_0 \approx [\mathbf{2}]_b$ and thus, there should be a pseudolinear correlation between conversion and time.

(14) For example, cyclization of 5 proceeded to 28% conversion in the presence of $Me_3PAu^+ \subset 1$ but to only 14% conversion with Me_3PAuBr alone.

