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Summary of main observation and conclusion The direct amination of unactivated primary C–H bonds is extremely challenging due to their inert nature. 
Here we report an intramolecular primary C–H amination of sulfamate esters using an iron catalyst derived from iron(II) triflate and bipyridine. An array of 
oxathiazinanes were synthesized in moderate to good yields, which were further converted into biologically important azetidines by a one-pot procedure. 
This research demonstrates the potential of applying simple nitrogen ligands in iron-catalyzed C–H functionalization and offers an accessible alternative to 
state-of-the-art iron-nitrene chemistry. 

 

Background and Originality Content 
Nitrogen-containing heterocycles are omnipresent in many 

synthetic intermediates, natural products, and pharmaceuticals.[1] 
In last several decades, considerable endeavors have been 
committed to develop efficient methods toward their synthesis.[2] 
As one of the most straightforward and economical methods, 
direct C–H amination of ubiquitous hydrocarbons by means of 
transition metal mediated nitrene insertion has drawn numerous 
attentions of the community.[3,4] Significant advances have been 
achieved albeit primarily employing source-limited metals (i.e., 
rhodium, iridium, and ruthenium).[3g–3n] Recently, remarkable 
examples of non-precious metal-catalyzed nitrene insertion 
reactions[4] have been emerged as a powerful C–N bond formation 
method by the contributions of Che,[5] White,[6] Zhang,[7] Betley,[8] 
and other.[4,9] 

To date, the nitrene insertion reactions of aliphatic C(sp3)–H 
bonds are mainly limited to activated substrates such as allylic and 
benzylic C–H bonds.[3,4] Amination of unactivated aliphatic C–H 
bonds is of substantial challenge owing to their thermodynamic 
stability, in particular for primary C–H bonds with a bond-
dissociation energy (BDE) of 100.5 kcal/mol.[10] Only a handful of 
examples capable of primary C–H amination have been known. 
Driver and co-workers realized an intramolecular reaction of aryl 
azides catalyzed by a thermally robust Rh(II) complex for the 
synthesis of indolines (Scheme 1A).[3i] In 2010, the Zhang group 
reported an excellent cobalt-catalyzed amination of the primary C–
H bond of phosphoryl azides (Scheme 1B).[7a] In 2013, the Betley 
group employed an iron(II)-dipyrrinato catalyst [(AdDPClAr)FeCl(OEt2)] 
to achieve the amination of a variety of C–H bonds, but exhibited 
poor reactivity toward primary C–H bonds (Scheme 1C).[8b] 

Remarkably, a bis-NHC-stabilized iron(III) porphyrin catalyst, 
[Fe(TDCPP)(IMe)2]I, was developed by Che et al. enabling the 
amination of inert aliphatic C–H bonds in good yields.[5c] In 2017, 
amination of aryl azides was disclosed by the Plietker group using 
a nucleophilic iron catalyst Bu4N[Fe(CO)3(NO)] (Scheme 1D).[11]  
Scheme 1 Transition-metal-catalyzed nitrene insertion of primary C–H 
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bonds  

 

Additionally, a notable manganese-catalyzed amination of 
sulfamate esters under mild conditions was accomplished by the 
White group in 2015, and a wide range of substrates were tolerated 
in excellent reactivity and selectivity (Scheme 1E).[6b] 
    Utilizing abundant iron salts and readily available nitrogen 
ligands to generate the active iron catalysts in situ has advantages 
in practical synthesis due to their easy accessibility.[12] Seminal 
reports using the “iron salt + ligand” protocol were independently 
disclosed by the Che[12a] and Chan[12b] groups. In 2019, our group 
developed an iron/aminopyridine-catalyzed amination of aliphatic 
secondary and tertiary C–H bonds.[13] Encouraged by these results, 
we sought to further expand this simple iron system to realize more 
challenging primary C–H amination (Scheme 1F). Herein, we report 
the successful development of an intramolecular primary C–H 
bond amination of sulfamate esters using an iron catalyst derived 
from Fe(OTf)2 and bipyridine. Furthermore, a variety of azetidines, 
a conformationally rigid scaffold widely existed in potential drug 
candidates and other bio-important compounds,[14] are accessed 
from the amination products. 

Results and Discussion 
We commenced our studies with 2-methyl-2-phenylpropyl 

sulfamate ester 1a as a model substrate to optimize reaction 

conditions (see Tables S1–S6 in the SI for details). The 
representative results were outlined in Table 1. Among the 
examined ligands (entries 1–7, and Table S1), tridentate ligands 
(L1–L3) generally showed inferior reactivity to bidentate ligands 
(L4–L7). Aminopyridine-type ligands, previously used in iron-
catalyzed amination of sulfamate esters and sulfonamides,[12] 
resulted in poor reactivity. We were delighted to find that the use 
of bipyridine L4 offered 60% NMR yield of the desired 
oxathiazinane 2a (entry 4). Examination of 1,10-phenanthroline-
type ligands (L5–L7) revealed that dichloro-substituted L7 is more 
efficient (entry 7). Although slightly lower yield was obtained with 
L4 in comparison with L7 (60% vs 63%, entries 4 vs 7), we decided 
to use L4 as the ligand for further optimization due to its readily 
availability and low cost. A number of oxidants were tested, and 
PhI(OCOCF3)2 was found superior. Further examination of iron 
sources, solvents, and temperature (entries 11–15) revealed that 
the use of Fe(OTf)2 at 100 °C in acetonitrile improved the isolation 
yield to 81%, which was identified as the optimal reaction 
conditions (entry 15). Control experiment without the use of ligand 
resulted in no product formation (entry 16).  

Table 1 Condition optimizations 

 

entrya iron salt ligand (x mol%) oxidant 2a (%)b 

1 Fe(ClO4)2 L1 (20) PhI(OCOCF3)2 20 

2 Fe(ClO4)2 L2 (20) PhI(OCOCF3)2 11 

3 Fe(ClO4)2 L3 (20) PhI(OCOCF3)2 28 

4 Fe(ClO4)2 L4 (30) PhI(OCOCF3)2 60 (55)c 

5 Fe(ClO4)2 L5 (30) PhI(OCOCF3)2 52 

6 Fe(ClO4)2 L6 (30) PhI(OCOCF3)2 44 

7 Fe(ClO4)2 L7 (30) PhI(OCOCF3)2 63 

8 Fe(ClO4)2 L4 (30) PhI(OAc)2 22 

9 Fe(ClO4)2 L4 (30) PhI(DMM) 33 

10 Fe(ClO4)2 L4 (30) PhI(OPiv)2 21 

11 FeCl2 L4 (30) PhI(OCOCF3)2 33c 

12 Fe(acac)2 L4 (30) PhI(OCOCF3)2 48c 

13 Fe(OAc)2 L4 (30) PhI(OCOCF3)2 70c 

14 Fe(OTf)2 L4 (30) PhI(OCOCF3)2 73c 

15d Fe(OTf)2 L4 (30) PhI(OCOCF3)2 81c 

16e Fe(OTf)2 – PhI(OCOCF3)2 N.D. 
aReaction conditions: 1a (0.2 mmol), iron salt (0.02mmol, 10 mol%), oxidant 
(0.4 mmol), and 4 Å MS (50 mg) in MeCN (2 mL) at 80 °C for 3 h. bNMR yield 
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using 1,3,5-trimethoxybenzene as an internal standard. cIsolated yield. 
d100 °C. PhI(DMM), phenyliodonium dimethylmalonate.[15] eWithout ligand. 
N.D., not detected. 

Table 2 Substrate scopea 

 
a Reaction conditions: 1 (0.4 mmol), Fe(OTf)2 (0.04 mmol, 10 mol%), L4 (0.12 
mmol, 30 mol%), PhI(OCOCF3)2 (0.8 mmol), and 4 Å MS (100 mg) in MeCN 
(4 mL) at 100 °C for 3 h. b 0.2 mmol scale. 

Next, the substrate scope was explored (Table 2). Substrates 
(1b–1f) bearing electron-deficient groups, such as F, Cl, and Br, on 
the aryl ring generated the corresponding oxathiazinanes 2b–2f in 
65–82% yields. Substrate 1g containing an α-naphthyl group, 
provided the corresponding product 2g in 59% yield. para-Isobutyl- 
and para-methyl-substituted 2-aryl-2-methylpropyl sulfamates (2h, 
2i) were also investigated and resulted in moderate yields (44–
50%). Previously, synthesis of oxathiazinane 2j from the 
corresponding starting material 1j catalyzed by an iron 
phthalocyanine catalyst ([FePc]·SbF6) resulted in only 3% yield.[6b] 
An significant improvement (64% yield) was achieved by the use of 
a manganese tert-butylphthalocyanine catalyst 
([Mn(tBuPc)]·SbF6).[6b] By contrast, our chemistry afforded 2j in 82% 
yield under the standard reaction conditions. Additionally, an 
ester-containing substrate 1k was also tolerated delivering the 
oxathiazinane 2k in 53% yield. Secondary alcohol-derived 
sulfamate substrate 1l was compatible to form the corresponding 
product 2l in 44% yield. A sulfonamide substrate was also 
subjected to the standard reaction conditions, but failed to afford 
any desired product (Scheme S1 in the SI).   

Scheme 2 Investigation of site selectivity  

 
Systematic studies by White and Che disclosed that the 

reactivity trends of amination using both heme-like[6a] and 
nonheme[5b] iron catalysts are in accordance to the C−H bond 
dissociation energies. The selectivity of this method toward 
sulfamate esters with multiple C–H bond types were also studied 
(Scheme 2). The amination of substrate 1m, bearing both 
propargylic and primary C–H bonds, occurred at the propargylic site 
exclusively to provide 2m in moderate yield (Scheme 2A). 
Treatment of substrate 1n under the standard conditions delivered 
a 5:2 mixture of secondary C–H versus primary C–H amination 
products (Scheme 2B). Although sterically hindered, tertiary C–H 
amination is much more preferred over primary C–H amination, as 
showcasing by the reactions of substrates 1o and 1p (Scheme 2C). 
Moreover, with substrate 1q, six-membered ring oxathiazinae 2q is 
formed preferentially over the five-membered ring product 2q’ 
(Scheme 2D). Those trends of selectivity, intrinsically driven by the 
substrates themselves, are in line with previous observations.[5b,6a]  
    According to the literature precedent[5b,c,8b], a possible 
reaction pathway was proposed (Scheme 3). Treatment of 
substrate 1 with PhI(OCOCF3)2 generates compound II, which upon 
reacts with the iron catalyst I leading to the formation of an imido-
iron species III together with iodobenzene. Then direct C–H 
insertion or H-atom abstraction/radical recombination[5c,8b] of III 
yields the desired product 2 and regenerates the catalyst. 
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Scheme 3 Proposed reaction pathway  

 
As showcased in literature, oxathiazinanes are valuable 

intermediates for heterocycles,[16a] 1,3-amino ethers,[16b] and other 
bioactive targets.[16] To further demonstrate the utility of this iron-
catalyzed amination reaction, a one-pot procedure was used to 
convert oxathiazinanes synthesized above to azetidines, a 
structurally and biologically important class of N-heterocyclic 
compounds.[14] Protection of the amination products 2 with CbzCl 
afforded N-Cbz oxathiazinanes 3. Without chromatographic 
purification of the intermediates 3, NaI was added followed by NaH 
to generate azetidines 4 through sequential ring-opening/ring-
closing steps.[17] As shown in Table 3, the azetidines 4a–4m were 
synthesized in 50–79% yields by this one-pot procedure. 
Delightedly, 3,3-dimethylazetidine 4j was also generated in 51% 
yield. Notably, 3,3-dimethyl-azetidine is an important pattern in a 
number of biologically active molecules, such as an dopamine 
receptor antagonist zetidoline,[14c] a PDE4 inhibitor,[14d] and an 
acetylcholine receptor agonist[14e] as shown in Figure 1. 

Table 3 One-pot synthesis of azetidines from oxathiazinanesa 

 
aReaction conditions: 2 (0.1 mmol), CbzCl (0.2 mmol), NaH (0.2 mmol in THF 
(1 mL) at room temperature for 30 min; NaI (0.15 mmol) in DMF (1 mL) at 
60 °C for 1 h, then NaH (0.3 mmol) at 40 °C for 3 h. b0.2 mmol. 

 

Figure 1 Selected examples of biologically relevant azetidines. 

Conclusions 
In summary, we have developed an iron-catalyzed 

intramolecular primary C–H amination of sulfamate esters. A range 
of oxathiazinanes were produced in moderate to good yields using 
an iron catalyst derived from Fe(OTf)2 and bipyridine. The synthetic 
utility of the amination reaction to construct azetidines is 
demonstrated by a one-pot procedure. Given the readily 
availability and high reactivity of the catalyst toward aliphatic 
substrates, this method offers a practical alternative to heterocycle 
synthesis. 

Experimental 
General procedure for Fe-catalyzed C–H amination. 
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1 2

Fe(OTf)2
 
(10 mol%)    

L4 (30 mol%)
 
PhI(OCOCF3)2

 
(2.0 equiv)

4 Å MS, MeCN, 100 °C, 3 h

HN O
S

O O

R1 R3

R1
Me

OSO2NH2
R3

R2 R2

 

To a 10 mL vial equipped with a magnetic stirring bar were 
added Fe(OTf)2 (14.2 mg, 0.04 mmol, 10 mol%), L4 (18.7 mg, 0.12 
mmol, 30 mol%), and 2 mL of MeCN. After the mixture was stirred 
at 30 °C for 30 min, substrate 1 (0.4 mmol), PhI(OCOCF3)2 (344.0 
mg, 0.8 mmol, 2 equiv), 4 Å MS (100 mg), and another 2 mL of 
MeCN were added. Then the vial was sealed and the mixture was 
stirred at 100 °C for 3 h. The reaction was cooled to room 
temperature, filtered through a pad of celite, and washed with 
CH2Cl2 (3 × 5 mL). The filtrate was concentrated under reduce 
pressure, and the residue was purified by flash chromatography on 
silica gel (200 ~ 300 mesh) to give the desired products 2. 

Supporting Information  
The supporting information for this article is available on the 

WWW under https://doi.org/10.1002/cjoc.2018xxxxx. 
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