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Polycyclic indolines and indolenines were synthesized via base-catalyzed intramolecular dearomatizing 3-alkenylation reactions of al-
kynyl indoles 1 at room temperature. The base enhanced the nucleophilicity of the carbon at the 3-position of the indole moiety, fa-
cilitating an exclusive 5-exo-dig cyclization reaction with the alkyne to form spiroindolenines 2. The imine functionality of 2 could un-
dergo in situ nucleophilic addition to form spiroindolines 3 when R was a carbamoyl group or reduction to form spiroindolines 4 when 
R was H. 
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Background and Originality Content 

Polycyclic indolines and indolenines, particularly those with 
tertiary or quaternary C2 and C3 centers, are common in alkaloid 
natural products and biologically active molecules (Figure 1). In 
addition, polycyclic indol(en)ines are synthetically valuable as uni-
versal intermediates and building blocks for various molecular 
architectures.[1] The most step-economical methods for rapid 
access to these rigid compounds involve dearomatization reac-
tions of readily available indoles, including dearomatizing allyla-
tion, arylation, and cycloaddition reactions.[2] Therefore, the de-
velopment of novel dearomatizing methods to synthesize in-
dol(en)ines is a subject of ongoing interest to both synthetic and 
medicinal chemists. 
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Figure 1  Indolenine and Indoline-containing Biologically Active Molecules  

Because C3 of the indole moiety is nucleophilic[3] and alkynes 
are of versatile reactivities,[4] indoles bearing tethered alkyne side 
chains have frequently been employed as substrates for the con-
struction of indol(en)ines via dearomatizing alkenylation reac-
tions.[5] For example, Van der Eycken et al. used diastereoselective 
intramolecular Au- or Ag-catalyzed dearomatizing domino cycliza-
tion reactions of indolyl propiolamides to construct tetracyclic 
spiroindolines (Scheme 1a),[6] and Unsworth and co-workers re-
ported an attractive protocol for Ag or Cu-catalyzed dearomatiza-
tion of indole ynones to generate spiroindolenines (Scheme 1b).[7] 

In addition to these transition-metal-catalyzed reactions, met-
al-free methods for dearomatizing alkenylation of alkynyl indoles 
have recently been reported. For example, Van der Eycken and 
co-workers reported a procedure involving intramolecular 
dearomatizing alkenylation of highly active indole ynones pro-
moted by trifluoroacetic acid (Scheme 1b).[8] These investigators 
subsequently developed PPh3-catalyzed intramolecular “umpolung 
Michael addition” reactions of active terminal indolyl propiola-
mides to form spiroindol(en)ines (Scheme 1c).[9a] More recently, 
visible-light-induced relaing radical methods for alkenylative  
spirocyclisation of indole-tethered ynone have also been docu-
mented.[9b-9d] Despite these dearomatizing alkenylation involving 
the activation of alkyne moiety, the development of new methods 
without requirement of precious metals，high temperature is still 
rare. Accordingly, it is highly desirable to develop new strategies 
involving enhancement of the nucleophilicity of C3 of the indole 
moiety by N-H deprotonation to undergo dearomatizing addition 
with the alkyne，which may avoid using of precious metals, allow 
the reaction to occur at low temperature. Moreover, the devel-
opment of base-catalyzed cascade reactions of the obtained highly 
unsaturated spiroindolenines to produce polycyclic indolines are 
of special step-economy significance. 

As part of our ongoing work on the synthesis of polyheterocy-
cles via dearomatization of heteroaromatic rings,[10] we herein 
reported a base-mediated regioselective alkenylative dearomati-
zation of N-((1H-indol-3-yl)methyl)propiolamides 1 to  form in-
dolenine 2 and its in situ addition reaction with a nucleophile or 
reduction to afford polycyclic indolines 3 and 4, respectively 
(Scheme 1d). To the best of our knowledge, the anti-Michael addi-
tion of propiolamides with C-nucleophile under transi-
tion-metal-free conditions has seldom been reported yet. [11] 

Scheme 1  Intramolecular Dearomatizing Alkenylation Reactions of Alkynyl 
Indoles  
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Results and Discussion 

At the outset, we treated 
N-((1H-indol-3-yl)methyl)-3-phenyl-N-propylpropiolamide (1a) 
with a series of bases in THF at room temperature (Table 1). The 
outcome of the reaction depended markedly on basicity of the 
base. Weak bases (DABCO, DBU, Et3N, Na2CO3, K2CO3, and Cs2CO3; 
entries 1-6) did not give the desired product, whereas strong ba-
ses (NaOMe, LiOtBu, NaOtBu, and KOtBu; entries 7–10) afforded 
the 5-exo-dig-type product spiroindolenine 2a. Surprisingly, the 
6-endo-dig-type product (convention Michael addition product) 
was not detected. The regioselectivity agrees well with the out-
comes reported by Manoharan,[12] demonstrating that anionic 
endo-dig cyclizations are intrinsically less favorable than the 
competing exo-dig closures. The optimal base proved to be Na-
OMe, which gave 2a in 84% yield (Table 1, entry 7). 

Table 1  Optimization of the reaction conditions.a 
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Entry Base Yield (%)b 

1 DABCO ND 

2 DBU ND 

3 Et3N ND 

4 Na2CO3 ND 

5 K2CO3 ND 

6 Cs2CO3 ND 
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7 NaOMe 84 

8 LiOtBu 70 

9 NaOtBu 63 

10 KOtBu 77 
aReaction conditions: 1a (0.2 mmol), base (20 mol %), THF (1 mL), room 
temperature, N2 atmosphere. bIsolated yields are provided. ND = not de-
tection. 

With the optimized reaction conditions in hand (Table 1, entry 
7), we investigated the scope of the reaction by evaluating sub-
strates 1 with various R1, R2 and R3 groups (Scheme 2). When R1 
was H and R2 was Ph, R3 could be n-Pr, Et, or i-Pr, the correspond-
ing products (2a–2c) were obtained in 70–84% yields. When R1 
was H, R3 was n-Pr, and R2 was a phenyl ring bearing a Me group 
or a Cl atom, the corresponding products (2d–2g) were obtained 
in moderate yields (60–75%). We were pleased to find that sub-
strates in which the Ph group of R2 had a 4-CF3 group or a 
3-F-4-Me substitution pattern gave excellent yields of the prod-
ucts 2h and 2i (92% and 91%), respectively. In addition, reactions 
of substrates bearing a Br or Cl atom or a Me group on the indole 
moiety proceeded well, giving corresponding products 2j–2l in 
moderate to excellent yields (63–95%). Unfortunately, when R2 
was non-arylated group of Me, the desired 2m did not formed. 
The failure may be owe to the instability of the corresponding 
alkenyl carbanion. This protocol complements with the method 
catalyzed by silver-nanoparticle, which are suitable for those sub-
strates with non-arylated alkynes.[5d] Simple alkyne 1n led to a 
complex reaction mixture without the formation of 2n. Substrate 
1o, which has one-carbon extended, did not given the 
six-membered ring product 2o. The exact reason for the failure of 
1o is not clear presently. We inferred that a higher energy barrier 
might be needed for it. 

Scheme 2  Substrate Scope for Spiroindolenine Formation.a 
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a Reaction conditions: 1 (0.2 mmol), NaOMe (20 mol %), THF (1 mL), room 
temperature, N2 atmosphere. Isolated yields are provided. ND = not de-
tection. 

Next, a variety of Ugi condensation products 5 prepared by 
reactions of indole-3-carboxaldehydes, amines, and propiolic acids 
were subjected to the optimized conditions for the dearomatizing 
alkenylation (Scheme 3). To our delight, almost all these sub-
strates were converted to tetracyclic spiroindolines 3 in good to 
excellent yields. These transformations involve tandem intramo-
lecular 5-exo-dig cyclization to provide the corresponding spi-
roindolenine and subsequent in situ nucleophilic addition reaction 
toward the imine functionality with the amide acting as the nu-
cleophile. Specifically, substrates with R1 = H, R2 = Ph, R4 = tBu, and 
R3 = n-Pr, benzyl, or PMB (p-methoxyphenyl) were found to afford 
products 3a–3c in excellent yields (87–95%). The structure of 3a 
was verified by single-crystal X-ray analysis (see the SI). Further-
more, high yields were obtained when R1 was either elec-
tron-donating (Me or OMe) or electron-withdrawing (F, Cl, Br, or 
CN) (3d–3n, 62–96%). The substituent at R2 could also be elec-
tron-donating or electron-withdrawing: desired products 3o–3v 
were obtained in 75–90% yields. In addition, substrates bearing a 
2,4,4-trimethylpentyl or cyclohexyl group at R4 also delivered ex-
cellent yields of corresponding products 3w and 3x, respectively. 
Notably, even when there was a Me group at C2 of the indole 
moiety, the in situ nucleophilic addition still occurred to give 3y, 
albeit in low yield (21%). However, when R2 was Me, correspond-
ing product 3z was not detected, and most of the substrate de-
composed. 

Scheme 3  Substrate Scope for Spiroindoline Formation.a 
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a Reaction conditions, unless otherwise noted: 5 (0.2 mmol), NaOMe (20 mol %), THF (1 mL), room temperature, N2 atmosphere. Isolated yields are pro-
vided. ND = not detection. 

Encouraged by the above-described results, we carried out 
experiments aimed at converting alkynyl indoles 1 into spiroin-
dolines 4 by means of a cascade involving 5-exo-dig cyclization to 
afford spiroindolenines and subsequent in situ reduction of the 
imine moiety. This transformation would avoid the necessity of 
isolating the intermediate spiroindolenines, which tend to de-
compose during silica gel chromatography.[13] For a reductant, we 
chose copper(I) hydride (CuH), which is frequently used in reduc-
tion reactions[14] and was generated by the reaction of a copper 
salt, an alkoxide, and a silane. We envisioned that the alkoxide 
might also simultaneously catalyze the dearomatizing alkenylation 
step. To our delight, upon treatment of 1 with CuCl, dppf 
(bis(diphenylphosphino)ferrocene), LiOtBu, and TMDS 
(bis(dimethylsilyl)amine)) in THF containing trace amount of H2O 
as a proton source at room temperature, corresponding spiroin-
dolines 4a–4l, were formed in one pot in moderate to excellent 
yields (62–92%, Scheme 4). It is notable that during such process, 
[Cu-H] can chemoselectively reduce the C=N bond in the presence 
of an electron-deficient C=C bond. The keeping of the C=C bond 
might result from its weaker electron-withdrawing ability and 
large steric hidrance of the tri-substitutents. For the detailed reac-
tion optimization for the formation of 4a, please see the Eletronic 
Supporting Information. Notably, other alkoxides, such as, NaOMe 
NaOtBu, KOtBu led to no formation of 4a but a significant amount 
of 2a. Conventionally, tert-butyl oxygen anion is used as a base to 
generate CuH species and lithium ion faciliates the reductive ami-
nation.[15] LiOtBu possibly promoted the formation of Cu-H species 
and reduction steps simultaneously.  

Scheme 4  Substrate Scope for One-Pot Spiroindoline Formation.a 
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aReaction conditions Reaction conditions, unless otherwise noted: 1 (0.2 
mmol), CuCl (10 mol %), dppf (12 mol %), LiOtBu (3.0 equiv), TMDS (3.0 
equiv), THF (1000 ppm H2O, 3 mL), room temperature, N2 atmosphere, 12 
h. Isolated yields are provided. TMDS = 1,1,3,3-tetramethyldisilazane. 

A control experiment was conducted to gain insight into the 
reaction mechanism. Specifically, we subjected spiroindolenine 2a 
to the standard conditions shown in Scheme 4 and obtained cor-
responding product 4a in 99% yield (Scheme 5a). On the basis of 
this outcome，previously reported results on dearomatizing 
alkenylation reactions of indoles[5-8] and CuH-catalyzed reduction 
reactions,[14] we propose the mechanism shown in Scheme 5b. 
First, indolenine anion intermediate A is generated by reaction of 
1a or 5a with the alkoxide. Then C3 of the indole undergoes 
5-exo-dig-type intramolecular nucleophilic addition with the al-
kyne, which is followed by protonation to generate spiroindole-
nine intermediate B and regenerate the alkoxide. When R is an 
amide, the imine can be trapped and 3a is formed. In contrast, 
when R is H, spiroindolenine 2a reacts with (L)CuH to form the 
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intermediate D, which is then transformed into 4a and (L)CuOtBu 
(E). The reaction of E with silane regenerates (L)CuH. 

Scheme 5  Control Experiment and Possible Reaction Mechanism 
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Conclusions 

In summary, we have developed a protocol for accessing pol-
ycyclic indolines and indolenines via base-catalyzed intramolecular 
dearomatizing alkenylation reactions of alkynyl indoles at room 
temperature. This transformation involves the use of a simple 
base to enhance the nucleophilicity of C3 for dearomatizing 
alkenylation, which is an unusual strategy. This protocol provides 
an alternative route to dearomatizing alkenylation of indole ring 
with arylated alkynoic amide under simple and mild conditions in 
anti-michael addition fashion. The initially formed spiroindolenine 
products can undergo a cascade sequence involving in situ nucle-
ophilic addition or in situ reduction to afford spiroindolines. These 
mild reactions use readily available starting materials and show 
high step- and atom-economy. We are currently investigating 
further applications of this protocol, including the use of other 
(hetero)aromatic rings, and we are exploring the bioactivities of 
the structurally novel products. 

Experimental 

General Procedure for the Synthesis of 2 and 3.  To an ov-
en-dried 25 mL Schlenk tube under N2 atmosphere equipped with 
a magnetic bar were added substrate 1 or 5 (0.2 mmol, 1.0 equiv ), 
NaOMe (2.0 mg, 20 mol %) and THF (1.0 mL). The mixture was 
stirred at room temperature for 12 h. The corresponding reaction 
mixture was filtered through a pad of celite, washed with EtOAc 
and concentrated under reduced pressure. The residue was puri-
fied by silica gel column chromatography (petroleum ether /ethyl 
acetate = 5/1) to give corresponding products. 

General Procedure for the Synthesis of 4.  To an oven-dried 
25 mL Schlenk tube under N2 atmosphere equipped with a mag-
netic bar were added CuCl (10 mol %, 2.0 mg), dppf (12.3 mg, 12 
mol %), t-BuOLi (48.0 mg, 3 equiv), TMDS (80.0 mg, 3 equiv) and 
THF (2 mL), the mixture was stirred at room temperature for 10 
minutes. And then substrate 1 in THF (1.0 mL) was added. The 
mixture was stirred at room temperature for 12 h. After comple-
tion of the reaction, the corresponding reaction mixture was fil-
tered through a pad of celite, washed with EtOAc and concen-
trated under reduced pressure. The residue was purified by silica 
gel column chromatography (petroleum ether /ethyl acetate = 3/1) 

to give corresponding products. 
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