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A B S T R A C T

A series of novel chiral diphosphite ligands have been synthesized from (1R,2R)-trans-1,2-

cyclohexanediol, (1S,2S)-trans-1,2-cyclohexanediol, racemic trans-1,2-cyclohexanediol and chloropho-

sphoric acid diary ester, and were successfully employed in the Cu-catalyzed asymmetric 1,4-conjugate

addition of diethylzinc to cyclohexenone with up to 99% ee. It was found that ligand 1,2-bis[(R)-1,10-

binaphthyl-2,20-diyl]phosphitecyclohexanediol 6a derived from racemic diol skeleton can show similar

catalytic performance compared with ligand (1R,2R)-bis[(R)-1,10-binaphthyl-2,20-diyl]phosphitecyclo-

hexanediol 6a0 derived from enantiopure starting material. A significant dependence of stereoselectivity

on the type of enone and the ring size of the cyclic enone was observed. Moreover, the configuration of

the products was mainly determined by the configuration of the binaphthyl moieties of diphosphite

ligands in the 1,4-addition of cyclic enones.
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1. Introduction

The development of efficient methodologies to provide
optically active products has aroused great interest between
academia and industry due to the ever increasing demands for
chiral chemicals. Among the various approaches employed for this
purpose, asymmetric catalysis represents one of the most general
and attractive strategies in terms of chirality economy and
environment considerations [1,2]. The asymmetric conjugate
addition (ACA) of carbon nucleophiles to a,b-unsaturated com-
pounds is an important method for carbon–carbon bond formation
in asymmetric catalysis [3–6]. To achieve maximum chiral
multiplication, an impressive array of chiral ligands, such as
phosphoramidite [7–14], phosphite ligands [15–21], P,N-ligands
[22–26] and others [27–35], have been developed to control the
stereochemistry of ACA. Among these ligands, phosphite ligands
have shown significant promise because of their facile synthetic
method, and efficiency for 1,4-addition. In spite of huge achieve-
ments in this area, however, further research is needed to
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understand how to obtain an efficient enantiocontrol [36,37]. In
this context, the design of new ligands is still an important area of
research, thus the careful selection of a suitable alcohol backbone
has become a meaningful procedure for us.

1,2-Cyclohexanediol (CHD) is widely used in preparing
polyester, epoxy resin thinner, o-dihydroxybenzene and so on.
As an important organic intermediate, CHD has enjoyed great
success over the years in the fields of medicine, pesticides, spices
and organic synthesis [38–41]. For example, Spilling et al. [42]
found that catalysts formed by mixing (1S,2S)-trans-1,2-cyclohex-
anediol 1 and Ti(OiPr)4 at a 1.1:1 ratio proved to be effective for the
phosphonylation of cinnamaldehyde providing hydroxyphospho-
nate with good enantiomeric excesses (up to 70% ee) (Fig. 1.).
Subsequently, RajanBabu et al. [43] undertook a study of the
hydrocyanation of 1,3-dienes using bis-1,2-diphenylphosphinite 2
derived from racemic trans-1,2-cyclohexanediol, and over 95%
yield was gained. Recently, the Mercè Rocamora group [44] used
N,N’-dibenzylcyclohexane-1,2-diamine and CHD as starting mate-
rials, and prepared enantiopure bidentate bis(diamidophosphite)
ligand 3, which is employed in Rh-catalyzed asymmetric
hydrogenation of methyl (Z)-a-acetamidocinnamate with up to
76% ee. Previous results found the CHD skeleton was successfully
applied in asymmetric catalytic reactions, and extremely useful for
vel cyclohexanediol-derived chiral phosphite ligands and their
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Scheme 1. The synthesis of diphosphite ligands derived from racemic trans-1,2-

cyclohexanediol, (1R,2R)-trans-1,2-cyclohexanediol, and (1S,2S)-trans-1,2-

cyclohexanediol.
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Fig. 1. The representative examples of the application of trans-1,2-cyclohexanediol

in organic synthesis.
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the synthesis of chiral ligands. Based on these findings and
considering the importance of the electron density at the
phosphorus atom and the configuration of the biaryl moieties in
inducing high enantioselectivity, a series of new chiral aryl
diphosphite ligands 6a through 6d using racemic trans-1,2-
cyclohexanediol as the diol skeleton were designed and synthe-
sized. At the same time, ligands 6a0, 6a00 and 6b0 0 derived from
enantiopure trans-1,2-cyclohexanediol were also prepared to
compare to the asymmetric inducing ability of ligands 6a through
6d. The results indicated that ligand 6a gave high activity (97%
yield) and enantioselectivity (97% ee) in the Cu-catalyzed ACA of
ZnEt2 to 2-cyclohexenone. To our delight, similar results were
obtained (98% yield, 99% ee) when ligand 6a0 was used.

2. Experimental

The NMR spectra were recorded on a Bruker 300 MHz, or Bruker
400 MHz spectrometer. The 1H and 13C NMR spectra were reported
in parts per million (ppm) with TMS (d = 0.00 ppm) as an internal
standard. The 31P NMR spectra were reported in ppm with 85%
H3PO4 as an external reference. Proton chemical shifts (d) and
coupling constants (J) were reported in ppm and Hz, respectively.
Spin multiplicities were given as s (singlet), d (doublet), t (triplet)
and m (multiplet). High resolution mass spectra (HRMS) were
recorded on a Bruker microTOF-QII mass spectrometer. All the
melting points were determined on an X-4 melting point apparatus
and are uncorrected. Optical rotations were measured on a Perkin–
Elmer 241 MC polarimeter at 20 8C.

All non-aqueous reactions and manipulations were performed
under an N2 atmosphere with standard Schlenk techniques.
Reactions were monitored by thin layer chromatography (TLC,
silica gel GF254 plates). Column chromatography separations were
conducted on silica gel (200–300 mesh). Reagents Et3N, THF, Et2O
and toluene were distilled with Na and benzophenone as an
indicator, and CH2Cl2 was dried over CaH2 before use. The H8-
binaphthol was prepared according to a literature procedure
[45]. All the other chemicals were obtained commercially and used
without further purification.

2.1. Synthesis of diphosphites 6a–6d, 6a0, 6a0 0 and 6b0 0

As shown in Scheme 1, diphosphite ligands 6a through 6d, 6a,
6a0 0 and 6b0 0 were easily synthesized in one step from racemic
trans-1,2-cyclohexanediol 4, (1R,2R)-trans-1,2-cyclohexanediol 40,
(1S,2S)-trans-1,2-cyclohexanediol 1, and chlorophosphoric acid
diary ester 5, which derived from 2,2’-dihydroxy-1,1’-binaphthol(-
binaphthol), and 2,2’-dihydroxy-5,5’,6,6’,7,7’,8,8’-octahydro-1,1’-
binaphthol (H8-binaphthol). Ligand 6a through 6d, 6a0, 6a0 0 and 6b0 0

were purified on a silica gel column under a nitrogen atmosphere
with low to general yields. The 31P NMR, 1H NMR and 13C NMR
were consistent with the expectation for these ligands. The ratios
of the two diastereoisomers for ligands 6a through 6d obtained by
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the integrated area of two singlets in the 31P NMR of ligands were
1.18, 1.00, 1.43 and 1.12, respectively. It is worth mentioning that
the ratio was changed slightly each time when the same ligand was
synthesized.

2.1.1. 1,2-bis[(R)-1,10-binaphthyl-2,20-diyl]phosphitecyclohexanediol

6a
To a 100 mL Schlenk flask equipped with a condenser were

added 2.0 g of (R)-binaphthol, 20 mL of toluene, and 12 mL of
PCl3. Under a nitrogen atmosphere the mixture was refluxed for
20 h. After removal of the excessive PCl3 and toluene, the residue
was dissolved in 20 mL of toluene, and then was transferred to
another Schlenk flask, and toluene was removed in vacuo to obtain
compound (R)-1,10-binaphthyl-2,20-diyl-chlorophosphite (5a) as a
white powder, which was used directly in the following step
without further purification. To a stirred solution of compound 4
(87.5 mg, 0.75 mmol), compound 5a (529.3 mg, 1.51 mmol), and 4-
dimethylaminopyridine (DMAP) (18.4 mg, 0.15 mmol) in THF
(10 mL) at �15 8C, Et3N (0.32 mL) was slowly added using a
syringe over 1 min, and the solution was stirred at �15 8C for 0.5 h.
The mixture was then stirred at r.t. for 1 h. THF was distilled off in
vacuo, and then toluene (20 mL) was added. The solid was removed
by filtration through a pad of silica gel, and the solvent was
removed under reduced pressure. The residue was purified by flash
chromatography (Rf = 0.53, n-hexane:THF = 3:1, v:v), and furn-
ished ligand 6a as a white foamy solid (169.3 mg, 30.34% yield).
[a]D

20 �253(c 0.19, CH2Cl2); Mp 153–154 8C; 1H NMR (400 MHz,
DMSO-d6): d 8.16 (dd, 2H, J = 8.8, 6.4 Hz, Ar), 8.10–7.98 (m, 6H, Ar),
7.58 (d, 1H, J = 8.8 Hz, Ar), 7.56–7.45 (m, 7H, Ar), 7.34 (dd, 4H,
J = 12.4, 7.4 Hz, Ar), 7.27 (d, 1H, J = 8.8 Hz, Ar), 7.21 (dd, 3H, J = 8.4,
2.8 Hz, Ar), 4.35–4.13 (m, 2H, CH), 2.24–2.09 (m, 1H, CH2), 1.91 (d,
1H, J = 12.8 Hz, CH2), 1.63 (s, 1H, CH2), 1.57–1.41 (m, 3H, CH2), 1.27
(m, 2H, CH2). 13C NMR (101 MHz, DMSO-d6): d 148.10, 148.06,
147.94, 147.91, 147.34, 147.31, 132.45, 132.16, 131.57, 131.28,
131.22, 131.08, 130.46, 130.36, 129.06, 128.93, 127.12, 127.11,
vel cyclohexanediol-derived chiral phosphite ligands and their
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126.98, 126.39, 126.34, 125.71, 125.51, 124.07, 123.96, 123.86,
123.81, 122.45, 122.35, 122.32, 122.11, 122.02, 121.95, 77.59,
77.38, 77.12, 76.95, 32.76, 31.96, 23.30, 22.62. 31P NMR (162 MHz,
DMSO-d6): d 150.75, 149.31. HRMS (ESI+): calcd. for C46H34NaO6P2

[M + Na]+ 767.1723; found: 767.1738.

2.1.2. (1R,2R)-Bis[(R)-1,10-binaphthyl-2,20-diyl]phosphitecyclohexanediol

6a0

Treatment of compound 40 (77.6 mg, 0.67 mmol), 5a
(507.5 mg, 1.45 mmol), and DMAP (17.7 mg, 0.15 mmol) as
described for the synthesis of ligand 6a afforded ligand 6a0,
which was purified by flash chromatography (Rf = 0.48, n-
hexane:THF = 3:1) to produce a white solid (223.2 mg, 44.77%
yield). [a]D

20 -449 (c 0.15, CH2Cl2); Mp 132–133 8C; 1H NMR
(400 MHz, DMSO-d6): d 8.14 (d, 2H, J = 8.8 Hz, Ar), 8.06 (d, 4H,
J = 8.2 Hz, Ar), 7.99 (d, 2H, J = 8.8 Hz, Ar), 7.47–7.57 (m, 6H, Ar),
7.44 (d, 2H, J = 8.8 Hz, Ar), 7.35 (dd, 4H, J = 15.6, 8.0 Hz, Ar), 7.25–
7.29 (m, 2H, Ar), 7.22 (s, 2H, Ar), 4.17 (m, 2H, CH), 2.14 (t, 2H,
J = 12.0 Hz, CH2), 1.62 (s, 2H, CH2), 1.47 (d, 2H, J = 10.0 Hz, CH2),
1.17–1.27 (m, 2H, CH2). 13C NMR (101 MHz, DMSO-d6): d 147.94,
147.34, 132.46, 132.17, 131.58, 131.28, 131.09, 130.36, 129.08,
128.93, 127.13, 126.98, 126.39, 126.34, 125.72, 125.68, 124.02,
123.97, 122.45, 121.95, 77.56, 77.39, 32.75, 23.30. 31P NMR
(162 MHz, DMSO-d6): d 150.74. HRMS (ESI+): calcd. for
C46H34NaO6P2 [M + Na]+ 767.1723; found: 767.1725.

2.1.3. (1S,2S)-Bis[(R)-1,10-binaphthyl-2,20-diyl]phosphitecyclohexanediol

6a0 0

Treatment of compound 40 (77.6 mg, 0.67 mmol), 5a (507.5 mg,
1.45 mmol), and DMAP (17.7 mg, 0.15 mmol) as described for the
synthesis of ligand 6a afforded ligand 6a0 0, which was purified by
flash chromatography (Rf = 0.48, n-hexane:THF = 3:1) to produce a
white solid (184.0 mg, 36.90% yield). [a]D

20 �246 (c 0.11, CH2Cl2);
Mp 112–113 8C; 1H NMR (400 MHz, DMSO-d6): d 8.17 (d, 2H,
J = 8.8 Hz, Ar), 8.09 (t, 2H, J = 6.8 Hz, Ar), 8.03 (t, 4H, J = 8.2 Hz, Ar),
7.61 (d, 2H, J = 8.8 Hz, Ar), 7.51 (q, 6H, J = 6.2 Hz, Ar), 7.35 (t, 4H,
J = 8.0 Hz, Ar), 7.30–7.23 (m, 4H, Ar), 4.31 (m, 2H, CH), 1.92 (d, 2H,
J = 11.8 Hz, CH2), 1.79–1.74 (m, 1H, CH2), 1.60–1.39 (m, 5H, CH2).
13C NMR (101 MHz, DMSO-d6): d 148.12, 147.32, 132.46, 132.17,
131.58, 131.24, 131.10, 130.48, 129.08, 128.96, 127.12, 127.00,
126.42, 126.36, 125.54, 123.88, 123.83, 122.33, 122.13, 122.04,
77.17, 77.01, 31.99, 22.65. 31P NMR (162 MHz, DMSO-d6): d
149.44. HRMS (ESI+): calcd. for C46H34NaO6P2 [M + Na]+ 767.1723;
found: 767.1738.

2.1.4. 1,2-Bis[(S)-1,10-binaphthyl-2,20-diyl]phosphitecyclohexanediol

6b
(S)-1,10-Binaphthyl-2,20-diyl-chlorophosphite 5b was synthe-

sized by the same procedure as 5a, and was used directly without
further purification. Treatment of compound 4 (62.3 mg,
0.54 mmol), 5b (412.7 mg, 1.18 mmol), and DMAP (14.4 mg,
0.12 mmol) as described for the synthesis of ligand 6a afforded
ligand 6b, which was purified by flash chromatography (Rf = 0.51,
n-hexane:THF = 3:1) to produce a white solid (160.1 mg, 39.83%
yield). [a]D

20 180 (c 0.18, CH2Cl2); Mp 138–139 8C; 1H NMR
(400 MHz, DMSO-d6): d 8.16 (dd, 2H, J = 8.8, 6.4 Hz, Ar), 8.05 (dt,
6H, J = 22.0, 7.6 Hz, Ar), 7.59 (d, 1H, J = 8.8 Hz, Ar), 7.57–7.42 (m,
7H, Ar), 7.36 (m, 4H, Ar), 7.30–7.21 (m, 4H, Ar), 4.24 (m, 2H, CH),
2.15 (t, 1H, J = 12.6 Hz, CH2), 1.91 (d, 1H, J = 11.6 Hz, CH2), 1.63 (s,
1H, CH2), 1.49 (d, 3H, J = 21.6 Hz, CH2), 1.25 (d, 2H, J = 12.0 Hz, CH2).
13C NMR (101 MHz, DMSO-d6): d 148.11, 148.06, 147.93, 147.92,
147.34, 147.31, 132.45, 132.16, 131.57, 131.27, 131.22, 131.08,
130.46, 130.36, 129.06, 128.93, 127.12, 127.10, 126.97, 126.40,
126.34, 125.68, 124.02, 123.97, 123.87, 123.82, 122.45, 122.34,
122.32, 122.11, 122.02, 121.95, 77.56, 77.39, 77.15, 76.98, 32.77,
31.98, 23.30, 22.63. 31P NMR (162 MHz, DMSO-d6): d 150.77,
Please cite this article in press as: Z.-B. Pang, et al., Synthesis of no
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149.32. HRMS (ESI+): calcd. for C46H34NaO6P2 [M + Na]+ 767.1723;
found: 767.1732.

2.1.5. (1S,2S)-Bis[(S)-1,10-binaphthyl-2,20-diyl]phosphitecyclohexanediol

6b0 0

Treatment of compound 1 (62.3 mg, 0.54 mmol), 5b (412.7 mg,
1.18 mmol), and DMAP (14.4 mg, 0.12 mmol) as described for the
synthesis of ligand 6a afforded ligand 6b0 0, which was purified by
flash chromatography (Rf = 0.50, n-hexane:THF = 3:1) to produce a
white solid (175.1 mg, 39.13% yield). [a]D

20 98 (c 0.14, CH2Cl2); Mp
135–136 8C; 1H NMR (400 MHz, DMSO-d6): d 8.14 (d, 2H, J = 8.8 Hz,
Ar), 8.10–8.03 (m, 4H, Ar), 8.00 (d, 2H, J = 8.8 Hz, Ar), 7.57–7.47 (m,
6H, Ar), 7.44 (d, 2H, J = 8.8 Hz, Ar), 7.36 (dd, 4H, J = 15.6, 7.6 Hz, Ar),
7.26 (d, 2H, J = 8.4 Hz, Ar), 7.23–7.17 (m, 2H, Ar), 4.18 (m, 2H, CH),
2.23–2.11 (m, 2H, CH2), 1.63 (s, 2H, CH2), 1.48 (d, 2H, J = 10.0 Hz,
CH2), 1.23 (d, 2H, J = 7.2 Hz, CH2). 13C NMR (101 MHz, DMSO-d6): d
147.94, 147.33, 132.45, 132.17, 131.57, 131.29, 131.09, 130.37,
129.08, 128.93, 127.14, 127.00, 126.38, 126.34, 125.73, 125.52,
124.00, 123.96, 122.45, 122.34, 77.57, 77.39, 32.76, 23.30. 31P NMR
(162 MHz, DMSO-d6): d 150.72. HRMS (ESI+): calcd. for
C46H34NaO6P2 [M + Na]+ 767.1723; found: 767.1733.

2.1.6. 1,2-Bis[(R)-1,10-H8-binaphthyl-2,20-diyl]phosphitecyclohexanediol

6c
(R)-1,10-H8-Binaphthyl-2,20-diyl-chlorophosphite 5c was syn-

thesized by the same procedure as 5a, and was used directly
without further purification. Treatment of compound 4 (77.9 mg,
0.67 mmol), 5c (530.0 mg, 1.48 mmol), and DMAP (18.0 mg,
0.15 mmol) as described for the synthesis of ligand 6a afforded
ligand 6c, which was purified by flash chromatography (Rf = 0.54,
n-hexane:toluene = 2:1) to produce a white solid (124.0 mg,
24.34% yield). [a]D

20 �153 (c 0.11, CH2Cl2); Mp 91–92 8C; 1H
NMR (400 MHz, DMSO-d6): d 7.13 (d, 2H, J = 8.8 Hz, Ar), 7.04 (dd,
3H, J = 15.2, 8.0 Hz, Ar), 6.98 (d, 1H, J = 8.0 Hz, Ar), 6.86 (dd, 2H,
J = 16.0, 8.2 Hz, Ar), 4.09 (m, 2H, CH), 2.90–2.54 (m, 12H, CH2),
2.23–2.02 (m, 6H, CH2), 1.86–1.59 (m, 14H, CH2), 1.58–1.32 (m, 8H,
CH2). 13C NMR (101 MHz, DMSO-d6): d 146.32, 146.17, 145.83,
145.80, 138.37, 138.26, 137.35, 137.29, 134.99, 134.90, 133.89,
133.81, 129.84, 129.82, 129.40, 129.39, 127.75, 127.61, 127.60,
119.37, 119.23, 119.06, 118.99, 77.18, 77.15, 76.97, 76.95, 32.76,
28.83, 27.70, 27.67, 27.58, 23.39, 22.49, 22.40, 22.38, 22.32, 22.27.
31P NMR (162 MHz, DMSO-d6): d 145.11, 142.80. HRMS (ESI+):
calcd. for C46H50NaO6P2 [M + Na]+ 783.2975; found: 767.3010.

2.1.7. 1,2-Bis[(S)-1,10-H8-binaphthyl-2,20-diyl]phosphitecyclohexanediol

6d
(S)-1,10-H8-Binaphthyl-2,20-diyl-chlorophosphite 5d was syn-

thesized by the same procedure as 5a, and used directly without
further purification. Treatment of compound 4 (64.9 mg,
0.56 mmol), 5d (500.0 mg, 1.40 mmol), and DMAP (17.1 mg,
0.14 mmol) as described for the synthesis of ligand 6a afforded
ligand 6d, which was purified by flash chromatography (Rf = 0.45,
n-hexane:toluene = 2:1) to produce a white solid (132.7 mg,
31.16% yield). [a]D

20 170 (c 0.10, CH2Cl2); Mp 105–106 8C; 1H
NMR (400 MHz, DMSO-d6): d 7.13 (d, 2H, J = 8.2 Hz, Ar), 7.04 (dd,
3H, J = 15.4, 8.2 Hz, Ar), 6.98 (d, 1H, J = 8.4 Hz, Ar), 6.86 (dd, 2H,
J = 16.0, 8.0 Hz, Ar), 4.10 (m, 2H, CH), 2.79 (m, 8H, CH2), 2.68–2.54
(m, 4H, CH2), 2.26–1.97 (m, 6H, CH2), 1.84–1.60 (m, 14H, CH2),
1.58–1.36 (m, 8H, CH2). 13C NMR (101 MHz, DMSO-d6): d 146.32,
146.17, 145.82, 145.80, 138.37, 138.26, 137.34, 137.28, 134.99,
134.90, 133.89, 133.81, 129.84, 129.82, 129.40, 129.39, 127.75,
127.60, 119.37, 119.23, 119.05, 118.99, 77.18, 77.13, 76.97, 76.94,
32.77, 30.17, 28.83, 27.70, 27.67, 27.58, 23.39, 22.49, 22.40, 22.38,
22.33, 22.27. 31P NMR (162 MHz, DMSO-d6): d 145.14, 142.85. HRMS
(ESI+): calcd. for C46H50NaO6P2 [M + Na]+ 783.2975; found:
767.3002.
vel cyclohexanediol-derived chiral phosphite ligands and their
yclic enones, Chin. Chem. Lett. (2015), http://dx.doi.org/10.1016/
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Table 2
The Cu-catalyzed enantioselective conjugate addition of diethylzinc to 2-

cyclohexenone.a

Entry Cu precursor L/Cu Temp

(8C)

Time

(h)

Con.

(%)b

Yield

(%)b

% ee

(Conf.)b

1 (CuOTf)2�C6H6 1 0 4 50 19 98 (R)

2 Cu(OAc) �H O 1 0 4 80 53 12 (R)
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2.2. Representative procedure for the 1,4-addition of Et2Zn to

2-cyclohexenone 7a

A solution of CuTc (0.005 mmol, 1.0 mg) and ligand 6a
(0.005 mmol, 3.7 mg) in Et2O (4 mL) was stirred for 1 h at r.t.
under nitrogen. After the solution was cooled to 0 8C, 2-
cyclohexenone 7a (0.25 mmol, 0.025 mL) was added and the
solution was stirred for 10 min at 0 8C. Then Et2Zn (1.2 mmol,
1.2 mL of 1.0 mol/L solution in hexane) was added dropwise using
a syringe within 2 min. After 4 h, the reaction was quenched by
H2O (2 mL) and 2 mol/L HCl (2 mL), and extracted with ethyl
acetate (5 mL � 3). The combined organic layer was washed with
saturated NaHCO3 solution, brine, and then dried over anhydrous
Na2SO4, filtered, and concentrated in vacuo to obtain the crude
product. The conversion and the yield were determined by GC
equipped with a SE-30 column (30 m � 0.32 mm ID) using
dodecane as an internal standard. The enantiomeric excess was
determined by GC with a Chiraldex A-TA column (50 m � 0.25 mm
ID), or a CP-Chirasil-Dex CB column (25 m � 0.25 mm ID). The
absolute configuration was determined by comparison with
authentic samples.

3. Results and discussion

The asymmetric induction ability of the chiral phosphite
ligands was thoroughly explored in the Cu-catalyzed ACA of
diethylzinc to cyclic enones. Owing to lower sensitivity to air and
moisture, Cu(OTf)2 was chosen as the Cu source for the preparation
of the optically active catalysts. And 2-cyclohexenone was used as
a substrate because this reaction has been performed with a wide
range of ligands with several donor groups enabling the direct
comparison of the efficiency of various ligand systems. The
catalytic system was generated in situ by adding the corresponding
ligand to a suspension of catalyst precursor. Results for the
application of ligands 6a through 6d are shown in Table 1 (entries
1–4). The use of ligand 6a gave 3-ethylcyclohexanone (8a) in 29%
yield and 42% ee (R) (Table 1, entry 1). And ligand 6b, which bears
(S)-binaphthyl moieties in comparison with ligand 6a, gave 12%
yield and 17% ee (S) (Table 1, entry 2). A 35% yield and 20% ee (R)

was gained when using 6c as the ligand (Table 1, entry 3). In
contrast, the use of ligand 6d, in which the configuration of the H8-
binaphthyl moiety was opposite to that of 6c, gave 17% yield and
15% ee (S) (Table 1, entry 4). It was found that the catalyst prepared
Table 1
The Cu-catalyzed enantioselective conjugate addition of diethylzinc to 2-

cyclohexenone.a

Entry L. Solvent Con.b (%) Yield (%)b % ee (Conf.) c

1 6a Toluene 66 29 42 (R)

2 6b Toluene 45 12 17 (S)

3 6c Toluene 69 35 20 (R)

4 6d Toluene 60 17 15 (S)

5 6a THF 59 19 54 (R)

6 6a Et2O 99 69 52 (R)

7 6a CH2Cl2 91 61 37 (R)

a Reaction conditions: Cu(OTf)2 (0.005 mmol), ligand (0.005 mmol), Et2Zn

(1.0 mol/L in hexane, 0.6 mmol), 7a (0.25 mmol), solvent (4 mL), 0 8C, 4 h.
b The data on conversion and yield were determined by GC using dodecane as

internal standard with a SE-30 column (30 m � 0.32 mm I.D.).
c The enantiomeric excess of compound 8a was determined by GC equipped with

a Chiraldex A-TA column (50 m � 0.25 mm I.D.). The absolute configuration of 8a
was determined by comparison with authentic sample.

Please cite this article in press as: Z.-B. Pang, et al., Synthesis of no
application in the Cu-catalyzed conjugate addition of organozinc to c
j.cclet.2015.10.009
in situ from Cu(OTf)2 and ligand 6a was more effective than that
from either ligands 6b, 6c, or 6d (Table 1, entries 2, 3, and 4 vs.

entry 1). It is interesting to note that the sense of enantioselectivity
was mainly determined by the configuration of the binaphthyl or
H8-binaphthyl moiety of ligands 6a through 6d from Table 1.

A screening of the solvents revealed that the reaction proceeded
with significantly higher enantioselectivity in coordinating sol-
vents (Et2O and THF, Table 1, entries 5 and 6) than non-
coordinating solvents (toluene and CH2Cl2, Table 1, entries
1 and 7). This result was consistent with the observations of
Alexakis et al. [46] and Chan et al. [47] that the asymmetric
conjugate addition of diethylzinc to enones gave higher ee values
using coordinating solvents when compared to other reaction
media. Although THF leads to slightly higher ee values, Et2O was
chosen as an appropriate solvent among the solvents examined
because of the higher yield.

It is well known that the copper precursor plays a crucial role in
the high catalytic activity and enantioselectivity of these reactions
[48,49]. So the influence of the copper precursor as well as the
copper/ligand ratio on the catalytic performance was examined
(Table 2, entries 1–6). In comparison to Cu(OTf)2, (CuOTf)2�C6H6 as
a catalytic precursor could dramatically enhance the enantios-
electivity in the presence of ligand 6a, but much lower yield was
realized (Table 2, entry 1). Interestingly, a better yield (97%) and
enantioselectivity (97% ee) were obtained when (CuOTf)2�C6H6 was
replaced by CuTc in the presence of ligand 6a (Table 2, entry 4),
which suggested that the matched combination of CuTc and ligand
6a under the reaction conditions gave an excellent enantioselec-
tivity and chemical yield of the product 8a. An enhancement in
2 2

3 Cu(acac)2 1 0 4 99 98 70 (R)

4 CuTc 1 0 4 99 97 97 (R)

5 CuTc 0.5 0 4 99 97 94 (R)

6 CuTc 2 0 4 71 43 97 (R)

7 CuTc 1 20 4 99 99 91 (R)

8 CuTc 1 �10 12 99 94 92 (R)

9 CuTc 1 �20 12 99 91 90 (R)

10 CuTc 1 �40 12 99 90 62 (R)

11c CuTc 1 0 4 99 98 99 (R)

12d CuTc 1 0 4 72 18 30 (R)

13e CuTc 1 0 4 94 83 95 (R)

14f CuTc 1 0 4 99 94 98 (R)

15g CuTc 1 0 4 99 91 94 (R)

16h CuTc 1 0 4 82 69 51 (S)

17c CuTc 1 0 2 99 94 99 (R)

a Reaction conditions: Cu precursor (0.005 mmol), ligand 6a (0.0025–

0.01 mmol), Et2Zn (1.0 mol/L in hexane, 0.6 mmol), 7a (0.25 mmol), Et2O (4 mL),

�40–20 8C, 4–12 h.
b The data on conversion, yield, the enantiomeric excess, and the absolute

configuration of the product were determined by the same condition as noted in

Table 1.
c Using ligand 6a0 .
d Using ligand 6a0 0 .
e Ligands 6a0/6a0 0 = 1:2.
f Ligands 6a0/6a0 0 = 1:1.
g Ligands 6a0/6a0 0 = 2:1.
h Using ligand 6b0 0 .
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enantioselectivity was obtained when the molar ratio of ligand to
CuTc ranged from 0.5/1 to 1/1 (Table 2, entries 4 and 5). Further
increase of the ratio of ligand 6a/CuTc resulted in no obvious
change of the enantioselectivity, but the yield of the reactions
significantly decreased (Table 2, entries 4 and 6) in agreement with
our previous discovery [15]. Furthermore, the effect of reaction
temperature on the enantioselectivity was investigated and when
the temperature was decreased from 20 to 0 8C, the ee of (R)-
enantiomers improved from 91% to 97% (Table 2, entries 4 and 7).
With a further decrease of the temperature from 0 to �20 8C, a
lower yield and enantioselectivity were gained (Table 2, entries 7–
9). When the temperature was decreased to �40 8C, the enantios-
electivity was significantly lowered to 62% (Table 2, entry 10).
From these results, we can conclude that this novel catalytic
system have shown excellent catalytic activity over a wide
temperature range (Table 2, entries 7–9).

The 31P spectrum of the ligand 6a in DMSO-d6 exhibits two
singlets with parameters dp 150.75 and 149.31 at a 1.18:1 ratio. In
order to verify the authentic catalytic species as racemic diols in
the ligands, ligands 6a0 and 6a0 0 derived from enantiopure diols 40

and 1 were prepared and applied in the same reaction, up to 99% ee

(R) and 30% ee (R), respectively, were obtained. No significant
changes in catalytic performance were observed by changing the
ratio of ligands 6a0/6a0 0 (mol/mol) from 1/2 to 2/1 (Table 2, entries
13–15). From this we can conclude that 6a0/CuTc is the actual
catalytic species, however, noting the effect of ligand 6a0 0 was
restrained when mixed ligands were used in the reaction. For
ligand 6a0, the result was similar to that of catalyst 6a/CuTc. In
other words, this reaction should proceed effectively by using 6a,
which is derived from cheaper racemic starting materials, instead
of 6a0 as the ligand (Table 2, entries 11 and 12 vs. entry 4).
Moreover, we can also conclude that the matching combination of
(1R,2R)-trans-1,2-cyclohexanediol and (R)-binaphthyl moieties of
ligand 6a0 was fundamental to obtaining higher enantioselectivity.
Encouraged by this conclusion, we synthesized ligand 6b0 0 to verify
the hypothesis whether there is a matching combination between
(1S,2S)-trans-1,2-cyclohexanediol and (S)-binaphthyl moieties of
Table 3
The Cu-catalyzed enantioselective conjugate addition of dialkylzinc to cyclic

enones.a

Entry Sub. Product Time (h) Con.b (%) Yield (%)b % ee (Conf.)b

1 7b 8b 4 39 27 62 (S)

2c 7c 8c 4 58 49 51 (R)

3c,d 7a 8d 24 14 10 25 (R)

4e 7a 8e 24 70 30 64 (R)

5f 7a 8e 24 53 21 58 (R)

a Reaction conditions: CuTc (0.005 mmol), ligand 6a (0.005 mmol), Et2Zn

(1.0 mol/L in hexane, 0.6 mmol), enone (0.25 mmol), Et2O (4 mL), 0 8C, 4–24 h.
b The data on conversion, yield, the enantiomeric excess, and the absolute

configuration of the product were determined by the same condition as noted in

Table 1.
c The enantiomeric excess was determined by GC equipped with a CP-

ChirasilDex CB (25 m � 0.25 mm I.D.).
d Me2Zn (1.2 M in toluene, 1.2 mmol), 24 h.
e CuTc (0.005 mmol), 6a (0.0015 mmol), Ph2Zn (1.2 mol/L in toluene, 0.6 mmol),

24 h, isolated yield, the ee of 8e was determined by HPLC (Daicel Chiralcel AD-H,

hexane/i-PrOH = 99/1, 0.5 mL/min at 20 8C, detected at 209 nm.
f Using ligand 6a0 .
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ligand 6b0 0, unfortunately, only 51% ee (S) was received (Table 2,
entry 16). Although a standard reaction time of 4 h was chosen,
the addition reaction was nearly complete within 2 h (Table 2,
entry 17).

With the optimal reaction conditions in hand, the 1,4-addition
of ZnEt2 to 2-cyclopentenone 7b and 2-cycloheptenone 7c in the
presence of ligand 6a/CuTc was examined. It can be found that
(S)-3-ethylcyclopentanone 8b was obtained in 62% ee, while (R)-3-
ethylcycloheptanone 8c was obtained in 51% ee (Table 3, entries
1 and 2). It is interesting to note that the opposite configuration of
the product was found when using 2-cyclopentenone instead of
2-cyclohexenone as the substrate. These results indicated a
significant dependence of the enantioselectivity on the ring size
of the cyclic enones. The Cu-catalyzed asymmetric 1,4-additions of
other organozinc reagents, such as ZnMe2 and ZnPh2, to 2-
cyclohexenone were also assessed. Unfortunately, when Me2Zn or
Ph2Zn was utilized in the reaction, the enantioselectivity decreased
to 25% (R) and 64% (R), respectively (Table 3, entries 3 and 4).
Similarly, we obtained moderate enantioselectivity for 8e using
6a0/CuTc as the catalyst (Table 3, entry 5).

4. Conclusion

We have developed a new class of chiral diphosphite ligands
derived from racemic and enantiopure diol materials. These
ligands were successfully utilized in the copper-catalyzed asym-
metric conjugate addition of dialkylzincs to cyclic enones with up
to 99% ee. For substrate 2-cyclohexenone, similar catalytic
performance was obtained when using ligand 6a instead of ligand
6a0. It was proven that the configuration of products was
predominately determined by the configuration of the biaryl
moieties of diphosphite ligands. Research concerning the use of
these ligands in other transition metal-catalyzed asymmetric
reactions is currently underway.
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