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Abstract: Syntheses of several new functionalized cage com-
pounds are described. The key steps of the reaction sequence are ad-
dition of lithiated methoxyallene 2 to cage diketone 1, preparation
of dehydrated intermediate 5, and its ozonolysis leading to diester
7. Alternatively, 5 could be hydrolyzed to provide cage compound
6 with a bisenone subunit. Via diol 9 chiral crown ether 11 could be
prepared in low yield. A first stereoselective epoxidation of chal-
cone 12 with tert-butyl hydroperoxide in the presence of 11 gave the
epoxide 13 in reasonable yield, but with a low level of enantioselec-
tivity.

Key words: methoxyallene, cage molecules, crown ether, ozonoly-
sis, epoxidation.

We and others explored alkoxyallenes1 as interesting key
intermediates for the syntheses of different types of het-
erocycles. Compounds such as 1,2-oxazines,2,3 dihydro-
furanones,4 dihydropyrroles,5 pyrrolidinones,6 pyridines,7

imidazoles,8 pyrroloisoindolones,9 and bisbenzannulated
spiroketals10 have been prepared. Stereoselective synthe-
sis of heterocycles via lithiated alkoxyallenes makes these
C-3 building blocks particularly attractive.1,11 Most of
these reactions of lithiated alkoxyallenes were performed
with monofunctionalized electrophiles. Only a few spe-
cial examples are known where the lithiated allenyl spe-
cies react with electrophiles bearing more than one
electrophilic center, for example, bisnitrones,3c,12 bis-
imines,5c or diketones.13 In this communication we de-
scribe the addition of lithiated methoxyallene 2 to
pentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-dione (1) as
an interesting biselectrophile14 and the elaboration of the
resulting addition product to various functionalized cage
compounds, including a chiral crown ether. A number of
cage-annulated macrocycles based on diketone 1 are in-
teresting targets due to their potential for enantioselective
recognition of chiral ammonium salts15 as well as their
ability as host compounds for transport processes.16,17

Diketone 1 is easily available in a two-step sequence from
cyclopentadiene and para-benzoquinone.18 In a first at-
tempt 1 was treated with ten equivalents of lithiated meth-
oxyallene 2, generated in situ from methoxyallene and n-
BuLi in THF (Scheme 1). Instead of the expected double
addition product 4, the monosubstituted compound 3 was
formed in 71% yield as main product contaminated with

unknown impurities. Compound 4 was only detected in
trace amounts. Gratifyingly, when the reaction was per-
formed with a larger excess (20 equiv) of 2 at –78 °C bis-
allenylated CS-symmetrical product 4 was obtained in
74% yield.19 The first addition of lithiated methoxyallene
to 1 provides the lithium salt of 3 and by this internal pro-
tection as lithiated hemiketal the second addition is fairly
difficult. Only application of a larger excess of the nucleo-
phile allows the efficient trapping of the small quantities
of free ketone in equilibrium with lithiated 3.

The subsequent dehydration of diol 4 was first examined
under standard conditions as described by Marchand and
co-workers for other cage diols.16 Treatment of 4 with p-
toluenesulfonic acid in refluxed benzene only led to de-
composition of the acid labile compound 4. Mesylation of
4 in the presence of triethylamine as base was more suc-
cessful. The expected polycyclic ether 5 was directly ob-
tained under these reaction conditions in excellent yield
(Equation 1).20

Scheme 1 Synthesis of methoxyallene adducts 3 and 4
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Equation 1 Dehydration of 4. Reagents and conditions: a) MsCl,
Et3N, CH2Cl2, 0 °C, 30 min; r.t., 2.5 h.
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When bisallenyl ether 5 was allowed to stand with MgSO4

in dichloromethane at room temperature (drying of the ex-
tracts after aqueous workup) it was converted into bis-
enone 6 (Equation 2). The same hydrolyzed product 6 was
obtained when 5 was treated under acidic reaction
conditions21 (e.g., 5% aq H2SO4, 0 °C, 48% yield). a,b-
Unsaturated carbonyl compounds are synthetically very
useful building blocks.22 Therefore, compound 6 may
serve as useful intermediate for further transformations
such as Michael addition, Baylis–Hillman or metathesis
reaction preparing new functionalized cage molecules.

The ozonolysis of bisallenyl ether 5 at –78 °C gave a mix-
ture of diester 723 (23% yield) with methyl ketone 8 (10%
yield, Equation 3).24 At present we have to state that all at-
tempts to increase the yield of diester 7 by changing the
reaction conditions (e.g., different solvents and reaction
times, workup with and without of Ph3P or Me2S) did not
lead to an improvement. The formation of 7 is in accor-
dance to known ozonolyses of alkoxy-substituted al-
lenes.5c,25,26

Diester 7 served as starting material for the preparation of
a chiral crown ether which should be tested as ligand in a
stereoselective reaction, for example, an epoxidation reac-
tion.27 Reduction of 7 by treatment with lithium aluminum
hydride smoothly afforded the expected diol 9 in 75%
yield (Equation 4).

The known bismesylated BINOL derivative 1028 served
as chiral moiety in the crown ether synthesis. The reaction
of diol 9 with 10 was performed in the presence of sodium
hydride as base under reflux conditions which gave the
crown ether 11 in low yield; 12% of 10 could be re-isolat-
ed (Equation 5). So far, no attempts to optimize this dou-
ble substitution reaction have been made;29 the low yield
is probably due to a high degree of oligomerization (inter-
molecular reaction instead of ring closure). The structure
of 11 was clearly confirmed by NMR spectroscopy, MS
(EI method) and HRMS.30

Finally, we tested chiral crown ether 11 in an epoxidation
reaction employing a typical protocol as described by
Bakó et al.27a The reaction of chalcone 12 with tert-butyl
hydroperoxide was carried out in a two-phase system (tol-
uene–aq NaOH solution) in the presence of 5 mol% of 11
(Equation 6). The expected epoxide 13 was obtained in
56% yield, but with a low enantioselectivity of only 18%
ee.

In summary, we prepared a series of new functionalized
cage compounds including chiral macrocycle 11. The key
steps are addition of lithiated alkoxyallene to the diketone
1 and ozonolysis of bisallenyl-substituted intermediate 5
forming diester 7. Although the  low stereoselectivity in
the epoxidation induced by 11 certainly needs improve-
ments, further options are the application of chiral crown
ethers such as 11 as a host in the recognition of guest mol-
ecules.31 Functionalized cage compounds such as 5, 6, and
7 may also be of interest for other applications.
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Equation 2 Formation of a,b-unsaturated bisenone 6. Reagents and
conditions: a) MgSO4, r.t., quant.; b) 5% aq H2SO4, 0 °C, 48%.
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Equation 3 Ozonolysis of 5. Reagents and conditions: a) O3,
MeOH, CH2Cl2, –78 °C, 20 min.
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Equation 4 Reduction of diester 7. Reagents and conditions: a) LiAlH4,
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Equation 5 Formation of the chiral crown ether 11. Reagents and
conditions: a) NaH, THF, reflux, 84 h.
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Equation 6 Epoxidation of 12 using chiral crown ether 11.
Reagents and conditions: a) t-BuOOH, 20% aq NaOH, toluene, 5 °C
to r.t., 15 h.
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